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ABSTRACT 

In this paper flow around a circular cylinder free 

to move in two-degrees-of-freedom is investigated 

numerically in the Reynolds number range of 

Re=80–240. Reynolds number is varied with the 

reduced velocity U* using Re=34.74U* and the mass 

ratio is fixed at m*=10. The main purpose of the 

study is to investigate the effects of streamwise and 

transverse damping values (ζx and ζy). Computations 

are carried out for different Re and U* pairs to 

investigate the separate effects of ζx and ζy. Although 

ζx has a negligible effect on flow parameters, at small 

transverse damping values a significant increase is 

identified in the mechanical energy transfer E and a 

substantial drop occurs in the root-mean-square and 

time-mean values of drag (CDrms and CDmean). Energy 

transfer is influenced mainly by transverse cylinder 

motion. Changes in the vortex structure are also 

identified. In addition, computations are carried out 

for different ζy (ζx=0) values with varying Re and U*. 

Two-branch cylinder response and small E are 

observed for ζy=0.001 while high E is observed at 

larger but still low ζy values. At high ζy all quantities 

investigated become small. CDrms and CDmean curves 

plotted against Re shift downwards with increasing 

ζy. 
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NOMENCLATURE  

b [kg/s] damping 

CD [-] drag coefficient, 2𝐹𝐷/(𝜌𝑈∞
2 𝑑) 

CL [-] lift coefficient, 2𝐹𝐿/(𝜌𝑈∞
2 𝑑) 

d [m] cylinder diameter, length scale 

FD [N/m] drag per unit length of cylinder 

FL [N/m] lift per unit length of cylinder 

FN [-] reduced natural frequency, fNd/U∞ 

fN [1/s] natural frequency of system 

k [N/m] spring stiffness 

K [-] non-dimensional natural 

  frequency, fNd2/ν 

m [kg/m] mass of cylinder per unit length 

m* [-] mass ratio, 4m/(d2πρ) 

R [-] radius, non-dimensionalised by d 

Re [-] Reynolds number, U∞d/ν 

St0 [-] dimensionless vortex shedding 

  frequency for a stationary cylinder 

t [-] time, non-dimensionalised by 

  d/U∞ 

U∞ [m/s] free stream velocity, velocity scale 

U* [-] reduced velocity, U∞/(fNd) 

x, y [-] Cartesian coordinates, non-

  dimensionalised by d 

x0, y0 [-] cylinder displacement in x and y 

  directions, non-dimensionalised

  by d 

ζ [-] structural damping coefficient,

  𝑏/(2√𝑚𝑘) 
ν [m2/s] kinematic viscosity of fluid 

ρ [kg/m3] fluid density 

 

Subscripts and Superscripts 

 

L, D lift, drag 

rms root-mean-square value 

mean time-mean values 

x, y streamwise and transverse directions 

1,2 on cylinder surface, at outer boundary of 

domain 

0 refers to cylinder response (x0, y0) or to a 

stationary cylinder (St0) 

1. INTRODUCTION 

Flow around an elastically supported circular 

cylinder has been thoroughly investigated using both 

numerical and experimental approaches. Vortices 

shedding periodically from the body can cause high 

amplitude vibrations that can result in serious 

damage to the structure (e.g. collapse of the Tacoma 

Narrows Bridge, 1940). On the other hand, these 
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vibrations can be beneficial. Bernitsas et al. [1] 

studied the possibilities of energy harvesting from an 

oscillating body placed in a free stream. 

The vibration can take place either streamwise 

with or transverse to the main stream, or both. 

Several articles deal with one-degree-of-freedom 

(1DoF) motion. In their experimental study Khalak 

and Williamson [2] investigated transverse-only 

motion at low mass-damping values m*ζ, where m* 

is the mass ratio and ζ is the structural damping 

coefficient. They found initial, upper and lower 

branches, where the highest oscillation amplitude 

belongs to the upper branch. In contrast, Feng [3] 

found two-branch response (initial and lower 

branches) for high m*ζ cases. Klamo et al. [4] 

analysing the damping effects for 1DoF transverse-

only vibration found that m*ζ alone is insufficient to 

predict the branching behaviour of the cylinder as it 

is also affected by the Reynolds number Re=U∞d/ν, 

where U∞ is the free stream velocity, d is the cylinder 

diameter and ν is the kinematic viscosity of the fluid. 

The effect of structural damping coefficient for 

transverse-only motion was also studied numerically 

at low Reynolds numbers. Bahmani and Akbari [5] 

investigated the individual effects of m* and ζ and 

found that the oscillation amplitude and the width of 

the lock-in domain where the cylinder motion 

synchronises with the vortex shedding decreases by 

increasing either m* or ζ. Leontini et al. [6] carried 

out computations for Re=200 and ζ=0.01 with 

varying reduced velocity U*=U∞/(fNd), where fN is 

the natural frequency of the cylinder, identifying a 

two-branch cylinder response. 

In reality coupled two-degrees-of-freedom 

(2DoF) motion occurs when the cylinder is allowed 

to move in both streamwise x and transverse y 

directions. Generally, the natural frequency (fNx and 

fNy), the mass ratio (𝑚𝑥
∗  and 𝑚𝑦

∗ ) and the structural 

damping coefficient values (ζx and ζy) are different in 

the two directions. Moe and Wu [7] carried out 

experiments where the streamwise to the transverse 

natural frequency ratio was kept at fNx/fNy=2.18 and 

𝑚𝑦
∗ /𝑚𝑥

∗  was set to 2. Lock-in was found in a wide 

reduced velocity 𝑈𝑦
∗=U∞/(fNyd) range. Sarpkaya [8] 

and Dahl et al. [9] investigated experimentally the 

effect of fNx/fNy and found that when increasing the 

ratio of natural frequencies between fNx/fNy≅1–2 the 

transverse oscillation amplitude increases and the 

peak amplitude shifts to higher U* values. In [8] and 

[9] the mass ratios in streamwise and transverse 

directions were different. Jauvtis and Williamson 

[10] investigated 2DoF cylinder motions with 

identical natural frequencies and identical mass 

ratios in the two directions. It was shown that by 

decreasing the mass ratio below m*=6 a super-upper 

branch occurs. 

As was mentioned, Re influences the flow 

significantly (see [4]). Most of the numerical 

simulations investigating the flow around an 

elastically supported circular cylinder are carried out 

at low Reynolds numbers using two-dimensional 

approaches. Although Reynolds number and reduced 

velocity are not fully independent parameters, their 

separate effects are investigated numerically. Singh 

and Mittal [11] studied the effect of U* at constant 

Reynolds number of Re=100 and also investigated 

the effect of Re at constant reduced velocity of 

U*=4.92 for 2DoF motion. Assuming that the natural 

frequency of the cylinder is constant, a linear 

relationship can be written between Re and U*, 

Re=KU* where K=fNd2/ν is the dimensionless natural 

frequency. Pransanth and Mittal [12] investigated the 

case of K=16.6 for 2DoF vibration and Bahmani and 

Akbari [5] and Willden and Graham [13] analysed 

1DoF transverse-only motion at K=17.9 and 20, 

respectively. 

The effect of structural damping coefficient has 

already been analysed for 1DoF transverse-only 

oscillation. However, although streamwise and 

transverse damping coefficients (ζx and ζy) are not 

identical in the 2DoF experiments of [7-9], their 

separate effects were not investigated, and neither 

experimental nor numerical studies seem to have 

focussed on this aspect. In this study the individual 

effects of ζx and ζy on the two-dimensional flow 

around an elastically supported cylinder in 2DoF 

motion are analysed at four different combinations of 

Re and U*. After that further computations are 

carried out at four distinct ζy values using 

Re=34.74U*. Reynolds number and reduced 

velocity are varied for Re=80–240 and their 

corresponding reduced velocity values U*=2.3–6.91 

with the mass ratio fixed at m*=10. 

2. COMPUTATIONAL METHOD 

The non-dimensional governing equations for the 

two-dimensional, incompressible, Newtonian, 

constant property fluid flow around a freely vibrating 

circular cylinder in two-degrees-of-freedom (2DoF) 

motion are the two components of the Navier-Stokes 

equations written in a non-inertial system fixed to the 

moving body, the continuity equation and the 

Poisson equation for pressure. The displacement, 

velocity and acceleration components of the cylinder 

are obtained from the two non-dimensional structural 

equations (see [2])  
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where 𝑈𝑥
∗=U∞/(fNxd) and 𝜁𝑥 = 𝑏𝑥/(2√𝑚𝑘𝑥) are the 

reduced velocity and structural damping values in 

streamwise direction and 𝑈𝑦
∗=U∞/(fNyd) and 𝜁𝑦 =

𝑏𝑦/(2√𝑚𝑘𝑦) are the same quantities in transverse 

direction. In these non-dimensional equations x0 and 



y0 are the displacements, �̇�0 and �̇�0 are the velocity 

components and �̈�0 and �̈�0 are the acceleration 

components of the cylinder in streamwise and 

transverse directions, respectively. In Eqs. (1) and 

(2) CD and CL are the drag and lift coefficients and 

m*=4m/(d2πρ) is the mass ratio, where ρ is the fluid 

density. 

The mechanical energy transferred between the 

oscillating cylinder and the surrounding fluid is 

computed as follows [14] 

 

𝐸 = ∫ (𝐶𝐷�̇�0 + 𝐶𝐿�̇�0)d𝑡
𝑇

0

= 𝐸1 + 𝐸2, (3) 

 

where t is the dimensionless time, T is the motion 

period and E1 and E2 are the energy transfer in 

streamwise and transverse directions, respectively. 

The physical and computational domains are 

shown in Fig. 1. The cylinder surface is represented 

by the dimensionless radius R1 and that of the far 

field, where potential flow is assumed, is denoted by 

R2. Dirichlet-type boundary conditions are used for 

the velocity components and Neumann-type 

boundary conditions is applied for pressure both on 

the cylinder surface and in the far field [14].  

 

 

Figure 1. The physical and computational 

domains 

In order to satisfy the boundary conditions 

accurately, the physical domain is mapped into a 

rectangular computational domain. Mapping 

functions are chosen so that the grid on the 

computational plane is equidistant and the mesh on 

physical domain is fine near the cylinder and coarse 

in the far field. An in-house code based on the finite 

difference method is used to solve the transformed 

governing equations with the boundary conditions 

[14]. The space derivatives are discretised using 

fourth-order accurate difference schemes except for 

the convective terms, where third-order modified 

upwind difference scheme is applied [14]. The two 

components of the Navier-Stokes equations and the 

two structural equations are integrated explicitly and 

the pressure Poisson equation is solved using the 

successive over-relaxation method. 

The computational method was extensively 

validated against the available experimental and 

numerical data for stationary cylinder and forced 

cylinder oscillation cases (see [14]). Results obtained 

using the current code also compare well with those 

available the literature for elastically supported 

cylinder [15]. 

In this study the number of grid points is fixed at 

360×292, the computational domain is characterised 

by R2/R1=160 and the dimensionless time step is kept 

at 0.0005. 

3. COMPUTATIONAL SETUP 

In this study the effects of streamwise and 

transverse structural damping coefficients (ζx and ζy) 

on the flow around an elastically supported circular 

cylinder in 2DoF motions are investigated 

numerically at the mass ratio value of m*=10. The 

natural frequencies in the two directions are chosen 

to be identical fNx = fNy = fN therefore the reduced 

velocities are also equal, 𝑈𝑥
∗ = 𝑈𝑦

∗ = 𝑈∗. 

Furthermore, keeping fN at constant value, a linear 

relationship can be written between Re and U*, i.e. 

Re=KU*, where K=fNd2/ν is the non-dimensional 

natural frequency. Assuming that the reduced natural 

frequency FN=1/U* is equal to the dimensionless 

vortex shedding frequency for a stationary cylinder 

St0 at Re0=180, the non-dimensional natural 

frequency can be computed as K=Re0 × St0=34.74 

(here St0=0.192 is obtained from [16]). Using 

Re=34.74U*, Reynolds number and the reduced 

velocity values are varied within the ranges of 

Re=80–240 and U*=2.3–6.91, correspondingly. 

The numerical simulations for undamped 

cylinder oscillations show that lock-in occurs 

between Re≅164–212 and U*≅4.72–6.1. The 

individual effects of ζx and ζy are investigated at 

Re=164, 175, 180 and 190, where relatively large 

oscillation amplitudes occur. The corresponding U* 

values are calculated as U*=Re/34.74. The 

streamwise and transverse damping coefficients are 

varied between ζx=0–15 and ζy=0–0.3, respectively. 

It was found that ζy has a greater impact than ζx, 

therefore additional computations are carried out at 

fixed transverse structural damping values of 

ζy=0.001, 0.04, 0.06 and 0.2 while the streamwise 

structural damping coefficient is set to zero (ζx=0) 

and Re is varied with U* using Re=34.74U*. 

4. COMPUTATIONS FOR DIFFERENT 
REYNOLDS NUMBERS 

Figure 2 shows the root-mean-square (rms) values of 

the transverse cylinder displacement y0rms against 

Reynolds number for ζx = ζy = 0. Two-branch 



cylinder response was identified, which is consistent 

with the results available in the literature for low 

Reynolds numbers (see [12]). The initial branch 

occurs at Re<140 and U*<4.03 where low transverse 

cylinder displacement is observed [y0rms=O(10-2)]. 

This branch is associated with 2S vortex shedding 

mode ([17]; two single vortices are shed from the 

cylinder periodically). In the range of Re=164–212 

and U*≅4.72–6.1 lock-in is observed, where y0rms 

becomes large (y0rms≅0.41 at Re=164). C(2S) vortex 

structure is observed at the lower edge of the lock-in 

domain (either positive and negative vortices 

coalesce in the cylinder wake, see [17]). With 

increasing Re and U* in the synchronisation domain, 

y0rms decreases and at Re=178.8 a small jump is 

observed. This jump is associated with a switch in 

the vortex structure from C(2S) to 2S mode. The 

vortex contours at the two sides of the jump are 

shown in Fig. 3a and 3b. 

 

Figure 2. The rms values of transverse cylinder 

displacement for ζx=ζy=0 

 

(a) Re=178.7 

 

(b) Re=178.8 

Figure 3. Vortex contours at the two sides of the 

jump in y0rms at t=800 

The effects of streamwise and transverse 

structural damping values are investigated at four 

different Reynolds numbers in the lock-in domain: at 

Re=164 and 175 where C(2S) vortex shedding mode 

is identified and at Re=180 and 190 where 2S mode 

is observed. Note that different reduced velocity 

values belong to each Reynolds number 

(U*=Re/34.74), but only Re is used to identify the 

different computational cases here. 

4.1. Effects of streamwise damping 

The effect of ζx is investigated first while the 

transverse damping is kept at zero (ζy=0). Figure 4 

shows the mechanical energy transfer E between the 

oscillating cylinder and the surrounding fluid against 

ζx. It can be seen that E is positive in the entire ζx 

domain, meaning that energy is transferred from the 

fluid to the cylinder. It can also be observed that by 

increasing ζx, the mechanical energy transfer first 

increases and reaches its maximum value at 

approximately ζx=1. The peak value decreases with 

Reynolds number but its location does not depend on 

Re. For damping coefficients over ζx>1 E decreases 

gradually. In Fig. 5 the rms values of drag CDrms are 

shown against ζx. The CDrms curves shift downwards 

with increasing Re. Overall, it is found that aside 

from the negligible increase in E, the streamwise 

structural damping coefficient does not have any 

significant effect. 

 

Figure 4. Mechanical energy transfer against ζx at 

different Re for ζy=0 

 

Figure 5. The rms values of drag against ζx at 

different Re for ζy=0 
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4.2. Effects of transverse damping 

The effect of transverse structural damping is 

investigated by varying the coefficient ζy (ζx=0). 

Figure 6 shows mechanical energy transfer E against 

ζy at four different Reynolds numbers. It can be seen 

in the figure that for the undamped vibration 

(ζx=ζy=0) E is approximately zero for all Re values 

investigated. At low transverse damping values E 

increases steeply with ζy and in three cases reaches 

its maximum value at ζy≅0.03. The transverse 

damping effect is much stronger than the streamwise: 

for instance, at Re=175 the maximum value of the 

mechanical energy transfer obtained by varying ζy is 

Emax≅0.6, around 30 times larger than the result of 

Emax≅0.02 by varying ζx (see Fig. 4). As ζy is further 

increased, E decreases gradually. It can also be seen 

that the E curves belonging to increasing Reynolds 

numbers (except for Re=164) shift downwards and, 

as expected, using large damping (ζy>0.2) E is almost 

the same for all the investigated Re values. 

The results for Re=164 show somewhat different 

behaviour. The maximum energy transfer values 

appear to be smaller than those computed for 

Re=175, although some computational points are not 

plotted in the range of ζy=0.006–0.04 due to irregular 

cylinder motion. One possible explanation is that the 

combination of (Re, U*)≅(164, 4.721) for undamped 

vibration is near the boundary that separates initial 

and lower branches, where the flow is chaotic. 

 

Figure 6. Mechanical energy transfer ζy at 

different Re for ζx=0 

The question arises which vibration component 

is responsible for high energy transfer. In Figs. 7 and 

8 the time histories of 𝐶𝐿�̇�0 and 𝐶𝐷�̇�0 are shown. 

Integrating these signals over a motion period T the 

mechanical energy transfer values originating from 

streamwise and transverse motions (E1 and E2) are 

obtained [see Eq. (3)]. It can be seen in Fig. 7 that the 

area under 𝐶𝐿�̇�0 over T where 𝐶𝐿�̇�0>0 (indicated by 

‘+’ markers) is significantly larger than that where 

𝐶𝐿�̇�0<0 (shown by ‘–’ markers), which leads to 

relatively large E2>0. On the other hand E1 is 

approximately zero because the areas under 𝐶𝐷�̇�0 

over T where 𝐶𝐷�̇�0>0 and 𝐶𝐷�̇�0<0 are almost 

identical (see in Fig. 8). For this reason the 

mechanical energy transfer (E=E1+E2) is influenced 

mainly by transverse cylinder motion. 
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Figure 7. Time history of 𝑪𝑳�̇�𝟎 for (ζx, ζy)=(0, 0.06) 

at Re=164 
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Figure 8. Time history of 𝑪𝑫�̇�𝟎 for (ζx, ζy)=(0, 0.06) 

at Re=164 

Figure 9 shows vortex structures at three 

different ζy values for Re=175. It is found that at 

Reynolds numbers where C(2S) mode is identified 

for undamped vibration (Re=164 and 175 in this 

study) C(2S) vortex shedding mode is observed 

below ζy=0.07 (see Fig. 9a and b). In the vicinity of 

ζy=0.07 the vortex structure changes from C(2S) to 

2S mode which is shown in Fig. 9c. In contrast, 

vortex shedding mode does not change where 2S 

mode is observed originally at ζx=ζy=0 (Re=180 and 

190 in this study). 

In Figs. 10 and 11 the rms and time-mean (TM) 

values of drag coefficient CDrms and CDmean are 

plotted against ζy for different Re values. It can be 

seen that varying transverse damping from ζy=0 to 

0.1 CDmean and CDrms diminish approximately by 25% 

and 75%, respectively. Beyond ζy=0.1 CDmean and 

CDrms remain almost constant for all the Reynolds 

numbers investigated. No strong Re effect is found, 

as the curves fall close to each other. 
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(a) ζy=0 

 

(b) ζy=0.07 

 

(c) ζy=0.8 

Figure 9. Vortex structures at different ζy values 

for Re=164 and ζx=0 at t=800 

 

Figure 10. The time-mean values of drag against 

ζy at different Re for ζx=0 

 

Figure 11. The rms values of drag against ζy at 

different Re for ζx=0 

5. COMPUTATIONS FOR DIFFERENT 
TRANSVERSE DAMPING VALUES 

It was shown in Section 4 that ζy influences the flow 

much more strongly than ζx. For this reason 

systematic computations are carried out at different 

damping coefficients of ζy=0.001, 0.04, 0.06 and 0.2, 

while keeping ζx=0 and the natural frequency 

constant (Re=34.74U*). In these investigations the 

Reynolds number and the reduced velocity are varied 

(Re=80–240 and U*=2.3–6.91). 

In Fig. 12 y0rms is shown against Re for different 

ζy values. It can be seen that the results for ζy=0.001 

are very similar to those from undamped vibrations 

(ζx=ζy=0); the cylinder response shows two-branch 

behaviour and at the boundaries of the lock-in 

domain irregular cylinder motion is observed. In 

contrast, for ζy=0.04, 0.06 and 0.2 the chaotic flow 

regime at the lower and upper limit of the 

synchronisation domain completely disappears and 

y0rms increases to around Re=175 and beyond that 

decreases continuously. As expected, y0rms curves 

belonging to increasing ζy values shift to lower 

values in the lock-in domain. 

 

Figure 12. The rms values of transverse cylinder 

displacement against Re at different ζy values for 

ζx=0 

Figure 13 shows mechanical energy transfer 

against Re for different ζy values. It can be seen that 

for undamped vibration E is approximately zero. For 

ζy=0.001 E slightly increases but is still negligible. 

The results show that large positive mechanical 

energy transfer values can be obtained in the domain 

of Re=160–180 for relatively small transverse 

damping (ζy=0.04 and 0.06). As was seen in Fig. 6, 

where ζy was varied independently, for large ζy 

values E decreases, which is consistent with results 

in Fig. 13: for ζy=0.2 lower mechanical energy 

transfer occurs compared to the cases ζy=0.04 and 

0.06. 

In Figs. 14 and 15 CDmean and CDrms are shown 

for different transverse damping values. It is no 

surprise that for the smallest ζy value (here ζy=0.001) 

the results do not differ from those obtained for the 
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undamped case (similarly to y0rms shown in Fig. 12). 

For larger but still small damping values (ζy=0.04 or 

0.06) CDmean and CDrms curves belonging to different 

ζy shift downwards within the lock-in domain. For 

ζy=0.2, where the maximum transverse oscillation 

amplitude is about y0rms=0.05 (an almost stationary 

cylinder) neither CDmean nor CDrms show significant 

increases. 

 

Figure 13. Mechanical energy transfer against Re 

at different ζy values for ζx=0 

 

Figure 14. The time-mean values of drag against 

Re at different ζy for ζx=0 

 

Figure 15. The rms values of drag against Re at 

different ζy values for ζx=0 

5. CONCLUSIONS 

In this study two-dimensional flow around an 

elastically supported circular cylinder in 2DoF 

motion is investigated at the mass ratio value of 

m*=10. The natural frequency of the cylinder is 

assumed to be constant, leading to a linear 

relationship between Reynolds number Re and 

reduced velocity U*, i.e. Re=KU* where K=34.74 is 

the non-dimensional natural frequency. The 

individual effects of streamwise and transverse 

structural damping coefficients (ζx and ζy) are 

investigated at Re=164 and 175, with C(2S) vortex 

shedding mode, and at Re=180 and 190, where 2S 

vortex structure is identified for undamped vibration. 

The main findings are as follows: 

 Streamwise damping coefficient ζx slightly 

influences the mechanical energy transfer 

E; 

 Transverse damping coefficient ζy has a 

much stronger influence than ζx. Changes in 

ζy may result in large effects on E and the 

amplitude of cylinder vibration. The peak 

energy transfer Emax=0.6 obtained at 

Re=175 is almost 30 times larger than 

Emax=0.02 obtained by varying ζx at the 

same Re. The transverse vibration 

component is mainly responsible for the 

energy transfer. By increasing ζy over 0.02 

E decreases gradually. 

 Transverse damping may affect vortex 

structure. Changes from C(2S) to 2S mode 

were found at ζy≅0.07 in Reynolds numbers 

where C(2S) mode was identified for 

undamped vibration, but 2S mode remained 

unchanged. 

 Drastic decreases occur in CDrms and CDmean 

when transverse damping is changed from 

ζy=0 to 0.1, but values fall only gradually at 

larger ζy values. 

Systematic computations are carried out for 

ζy=0.001, 0.04, 0.06 and 0.2 where Re and U* are 

varied between Re=80–240 and U*=2.3–6.91 using 

Re=34.74U*. The main findings: 

 The results for ζy=0.001 are similar to those 

for undamped vibration. Chaotic cylinder 

motion is observed at the boundaries of the 

lock-in regime and E approaches low 

values. 

 Using transverse damping values of 

ζy=0.04, 0.06 and 0.2 chaotic flow domain 

at the lower and upper edges of the 

synchronization domain completely 

disappear.  

 High mechanical energy transfer can be 

obtained for ζy=0.04 and 0.06. 
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