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ABSTRACT 
This study investigates flow around a circular cylinder in 
forced two-degree-of freedom motion at four different 
phase angles between the transverse and in-line cylinder 
motion, at a Reynolds number of 250. Time-mean and rms 
values of force coefficients and mechanical energy transfer 
are investigated against frequency ratio in the lock-in 
domain. Computations were carried out by an in-house 
finite difference code developed by the author. Results 
reveal that an increase in phase angle, by bending the 
figure-eight cylinder path downstream, can reduce drag. 
Mechanical energy transfer was mostly positive, meaning 
that energy is transferred from the fluid to the cylinder, 
leading to a potentially dangerous VIV situation. The 
change in the initial conditions resulted in hardly any 
changes in the results.  

NOMENCLATURE 
a0x,y the dimensionless x and y components of cylinder 

acceleration 
Ax,y amplitude of oscillation in x or y directions, 

respectively, non-dimensionalised by d 
CD drag coefficient, 2FD  /(ρU2 d) 
CL lift coefficient, 2FL  /(ρU2 d) 
d cylinder diameter (m) 
E mechanical energy transfer 
f oscillation frequency, non-dimensionalised by dU  
fv vortex shedding frequency, non-dimensionalised by 

U/d 
FD drag per unit length of cylinder (N/m) 
FL lift per unit length of cylinder (N/m) 
R radius, non-dimensionalised by d  
Re Reynolds number, Ud  
St non-dimensional vortex shedding frequency, fv d/U 
t time, non-dimensionalized by d/U 
T motion period, 1/fy 
U free stream velocity, velocity scale (m/s) 
v0x,y the dimensionless x and y components of cylinder 

velocity 

x,y Cartesian coordinates, non-dimensionalised by d 
θ phase angle difference between transverse and in-

line cylinder motion  
ρ fluid density 

Subscripts 
D drag 
fb fixed body 
L lift 
rms root-mean-square value 
v vortex shedding 
x, y components in x and y directions 
0 for cylinder motion; for stationary cylinder at 

same Re; for initial condition 
1 on the cylinder surface 
2 on the outer boundary of the physical domain 
 
INTRODUCTION 

The flow past a single circular cylinder has been 
studied as a prototype of bluff body flows theoretically, 
experimentally and numerically. Some examples of these 
in real life are silos or smokestacks in wind or underwater 
pipes in a current. When vortices are shed from the 
structure a periodic force is generated which might lead to 
the vibration of the structure especially if the damping is 
small. The motion resulting from this force usually has 
either one or two degrees of freedom. The most frequently 
investigated type of one-degree-of-freedom (1-DoF) 
cylinder motion is the transverse cylinder oscillation. Both 
experimental and numerical studies have dealt with pure 
transverse cylinder motion (e.g., Williamson and Roshko, 
1988; Lu and Dalton, 1996; Blackburn and Henderson, 
1999. Less often investigated is pure in-line cylinder 
motion (e.g., Cetiner and Rockwell, 2001; Al-Mdallal et 
al., 2007; Mureithi et al., 2010). 

However, far fewer investigations have been carried 
out for combined, two-degree-of-freedom (2-DoF) 
cylinder motion. In reality, however, both motions are 
often present, leading to a Lissajous-type path. The vortex-



induced vibration (VIV) arising in such cases can lead to 
problems such as fatigue and damage of structures.  

Kheirkhah and Yarusevych (2010) suggest that where 
the mass ratio (the ratio of the mass of the vibrating 
system to the mass of the displaced fluid) is high, as 
mainly occurs when a structure is oscillating in air, then 
the frequency of oscillation in in-line and in transverse 
directions are approximately equal to each other. This can 
lead to an elliptical path, such as that observed in tube 
bundles in heat exchangers (Blevins, 1990). Studies by 
Didier and Borges (2007), Baranyi (2008) and Kheirkhah 
and Yarusevych (2010), among others, look at elliptical 
cylinder motion. The occurrence of vortex switches at 
certain amplitude values was noted (Baranyi, 2008). 

A more typical Lissajous-type path, on the other hand, 
occurs with a low mass ratio, typically found when a 
cylinder is moving in liquid: cables and pipes submersed 
in flowing water may undergo fatigue or damage due to 
this kind of motion. In this case the frequency of the 
cylinder motion in in-line direction is approximately twice 
its frequency in transverse direction, as for example found 
by Jeon and Gharib (2001), Jauvtis and Williamson 
(2004), and Sanchis et al. (2008). The phase angle 
difference between in-line and transverse motion Θ results 
in different cylinder paths (Jeon and Gharib, 2001). One 
typical Lissajous curve is a figure-eight-shaped path, while 
a path in the shape of an arc, or C-shape, has also been 
observed in the experimental study for an elastically 
supported cylinder of Sanchis et al. (2008) in the Reynolds 
number domain of Re=(1.3 to 1.9)x104 and in the 
numerical work of Prasanth and Mittal (2009).  

Figure-eight paths have been studied to some extent 
in numerical investigations with forced cylinder motion 
(e.g., Baranyi, 2011; Peppa et al., 2010). Both studies 
looked at the influence of the direction of motion along 
the figure-eight path; i.e., when the path is traced in a 
clockwise direction in the upper half or lobe of the figure 
(and naturally anticlockwise in the lower lobe), or vice 
versa. It was found that the orientation influenced the 
mechanical energy transfer: anticlockwise motion in the 
upper lobe (acw) resulted in positive energy transfer, 
meaning that the fluid tends to amplify the cylinder 
oscillation, which can easily lead to VIV. Force 
coefficients were also affected, with higher drag values for 
acw. Sanchis et al. (2008) found acw orientation in their 
free vibration study. 

In their experimental study of flow around a forced 2-
DoF cylinder motion, Jeon and Gharib (2001) investigated 
regular figure-eight paths and figure-eight patterns with 
the lobes bent slightly downstream. They state that the 
phase angle differences found ranged between Θ =0° and -
45°. Similar distorted figure-eight paths were also found 
in Sanchis et al. (2008).  

Based on the results of the above-mentioned 
experimental studies, a numerical simulation can be 
designed in order to investigate the effect of phase angle 
difference on the flow past a cylinder in 2-DoF figure-
eight motion. Mechanical oscillation is used to simulate 

flow around the cylinder as a preliminary study, without 
carrying out a full fluid-structure interaction (FSI) study. 
While it is true that a direct relationship between results of 
investigations of free and of forced vibration is difficult to 
ascertain (e.g., Williamson, 2004), this is a first step 
towards considering FSI, with special attention to the 
energy transfer between the cylinder and fluid.  

Low-Reynolds number simulation is sometimes 
criticised for being irrelevant to real-life cases, which 
almost always involve higher Reynolds (Re) numbers. 
However, as Newman and Karniadakis (1995) argue, since 
many phenomena in flow-induced vibrations are only 
weakly dependent on Re, they can be fairly accurately 
simulated even at relatively low Re. 

In this numerical study a circular cylinder is placed in 
a uniform flow at Reynolds number Re=250 and 
mechanically oscillated in two directions, yielding various 
figure-eight paths (all anticlockwise in the upper lobe) for 
four phase angle differences. Mechanical energy transfer 
and the time-mean and root-mean-square (rms) values of 
force coefficients are investigated. 

COMPUTATIONAL METHOD 
A non-inertial system fixed to the accelerating 

cylinder is used to compute 2D low-Reynolds number 
unsteady flow around a circular cylinder placed in a 
uniform stream. The governing equations are the non-
dimensional Navier-Stokes equations for incompressible 
constant-property Newtonian fluid in a non-inertial system 
fixed to the accelerating cylinder, the equation of 
continuity and the Poisson equation for pressure. 

On the cylinder surface, no-slip boundary condition is 
used for the velocity and a Neumann type boundary 
condition is used for the pressure. At the far region, 
potential flow is assumed. Computational results show 
that this approximation results in some inaccuracies near 
the outer boundary only, and in practice it has no influence 
on the results of the near-wake flow and forces acting on 
the cylinder. 

Boundary-fitted coordinates are used to impose the 
boundary conditions accurately. The physical domain 
bounded by two concentric circles with radii R1 and R2 is 
mapped into a rectangular computational domain with 
equidistant spacing in both directions (see Fig. 1). In the 
physical domain logarithmically spaced radial cells are 
used, providing a fine grid scale near the cylinder wall and 
a coarse grid in the far field. The transformed governing 
equations and boundary conditions are solved by finite 
difference method. Space derivatives are approximated by 
fourth order central differences, except for the convective 
terms for which a third order modified upwind scheme is 
used. The Poisson equation for pressure is solved by the 
successive over-relaxation (SOR) method. The Navier-
Stokes equations are integrated explicitly and continuity is 
satisfied at every time step. For further details see Baranyi 
(2003; 2008). 

The 2D code developed by the author has been 
extensively tested against experimental and computational 



results with good agreement being found, (Baranyi, 2008). 
A systematic comparison with results from the commercial 
software package Ansys Fluent also yielded very good 
agreement (Baranyi et al., 2011).  

In this study the dimensionless time step is 0.0005, 
the number of grid points is 481x451, and a relatively 
large physical domain of R2 /R1=360 has been chosen to 
enhance accuracy. 

 

 
 

 
 

Figure 1. Physical and computational domains 
 

This study investigates the behaviour of flow past a 
cylinder placed in a uniform stream with its axis 
perpendicular to the main flow. The cylinder is oscillated 
mechanically in both in-line and transverse directions in 
relation to the uniform stream. The dimensionless 
displacement of forced cylinder motion given in the 
experimental study of Jeon and Gharib (2001) is adopted 
here, defined as 

 
x0=Ax sin(4 π fy (t-t0)+Θ);      y0= Ay sin(2 π fy (t-t0)),   (1) 

 
where Ax and Ay are the dimensionless oscillation 
amplitudes and fy is the frequency of oscillation in 
transverse direction. Here t and t0 are non-dimensional 
time, with t0 being the initial condition, and Θ is the phase 
angle difference between the two oscillations. The second 
time derivatives of x0 and y0 give the accelerations that 
occur in the Navier-Stokes equations.  

Jeon and Gharib (2001) suggest that the value of 
phase angle Θ tends to drift for free-vibration cases, but is 
usually in the range of 0 to – 45°. Different phase angle 
values result in different cylinder paths. Based on the 
suggestion of Jeon and Gharib (2001) Θ =0°, -15°, -30°, 
and -45° are investigated here. As shown in Fig. 2, Θ =0° 

gives a symmetric figure-8-path; whereas at Θ = -45° the 
path is a figure-8 pattern with the lobes bent downstream. 
The dimensionless oscillation amplitudes in this study are 
fixed at Ax=0.1 and Ay=0.4 throughout the study, ensuring 
slender cylinder paths. The Reynolds number is fixed at 
Re=250. The independent variable for the investigation is 
the frequency ratio of fy/St0 ranging from around 0.7 to 1.1 
(in the vicinity of the natural vortex shedding frequency 
fy/St0=1), but limited to within the lock-in domain. Here 
St0 is the dimensionless vortex shedding frequency for a 
stationary cylinder at the same Reynolds number. For 
Re=250 the value St0=0.20355 was used (from Posdziech 
and Grundmann, 2007). 

Since initial condition was earlier found to influence 
the number and/or location of jumps in the TM and rms 
values of force coefficients for a cylinder in 2-DoF motion 
(Baranyi, 2008), computations were carried out for three 
different initial conditions (t0=0, 0.5, 1.0) for Θ = -15°. 
For the other Θ values the initial condition was t0=0.  
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Figure 2. Cylinder paths for different phase angles Θ 
 
The time-history of force coefficients (lift, drag, base 

pressure and torque), pressure and velocity field are 
computed. From these data, time-mean (TM) and root-
mean-square (rms) values of force coefficients, 
streamlines, and vorticity contours can be obtained. Where 
jumps are found when force coefficients are plotted 
against frequency ratio, pre- and post-jump analysis is 
carried out by investigating limit cycle curves, time history 
curves, FFT spectra and vorticity contours. 

Throughout this paper the lift and drag coefficients 
used do not contain the inertial forces originated from the 
non-inertial system fixed to the accelerating cylinder, 
except for the determination of the mechanical energy 
transfer E. Coefficients obtained by removing the inertial 
forces are often termed ‘fixed body’ coefficients (see Lu 
and Dalton, 1996). The relationship between the two sets 
of coefficients can be written as 

 
CD=CD fb +π a0x / 2,    CL=CL fb +π a0y / 2       (2) 

 



where a0x and a0y are the cylinder acceleration components 
and subscript ‘fb’ refers to the fixed body (understood in 
an inertial system fixed to the stationary cylinder), Baranyi 
(2005). Since the inertial terms are periodic functions, 
their TM values vanish, resulting in identical TM values 
for lift and drag in the inertial and non-inertial systems. 
Naturally the rms values of CL and CD will be somewhat 
different in the two systems. 

Investigation was restricted to lock-in cases. Lock-in, 
or the synchronization between vortex shedding and 
cylinder motion, produces a periodic solution for each of 
the force coefficients. In this paper, we consider lock-in to 
be when the vortex shedding frequency is identical to fy, 
the frequency of transverse cylinder oscillation. 

The non-dimensional mechanical energy transfer 
originally introduced by Blackburn and Henderson (1999) 
for transversely oscillated cylinder was extended for a 
general 2-DoF motion of the cylinder by Baranyi (2008): 
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where T=1/fy is the motion period chosen, xv0  and yv0  are 
the x and y components of cylinder velocity. Note that Eq. 
(3) is valid for 1-DoF cylinder motion as well.  

RESULTS 
In this study, computations are carried out for the flow 

past a cylinder following a distorted figure-8-path at 
Re=250 against frequency ratio fy/St0 within the lock-in 
domain. Mechanical energy transfer E between the 
cylinder and the fluid, time-mean (TM) and rms values of 
lift CL, drag CD, base pressure and torque coefficients are 
investigated, but for the sake of simplicity only CL, CD and 
E values will be shown in the paper. Sudden jumps 
between state curves were found in some cases; these 
indicate a sudden change in the vortex structure (Baranyi, 
2008). Values just before and just after a jump (vortex 
switch) are presented in a pre- and post-jump analysis. 

 
Time-mean and rms values 

At all four phase angle values investigated, the TM of 
lift and torque coefficients was zero throughout the 
locked-in frequency domain (not shown here). This has 
also been found for all transversely oscillated cases 
investigated by the author. The rms of fixed-body lift, 
shown in Fig. 3, generally increases with frequency ratio 
for all Θ values. A tendency that can be observed in Fig. 3 
above the frequency ratio of 0.84 is that the absolute value 
of Θ increases with fy/St0. Some jumps can be seen in the 
curves. The curve belonging to Θ= -45° is not even 
continuous, because – in accordance with the findings of 
Gharib (1999) – for Θ = - 45° a not-locked-in domain 
exists that is bounded by two lock-in domains. 
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Figure 3. Rms of lift versus frequency ratio  
for phase angles Θ=0°, -15°, -30° and -45° 

 
The TM of drag versus frequency ratio for the four 

phase angle values is shown in Fig. 4 in the lock-in 
domain. It can be seen that the TM of drag decreases with 
larger absolute values of the phase angle over most of the 
lock-in frequency ratio domain for the given parameters. 
Clear changes in behaviour are seen between Θ=0° and the 
other Θ values; as the path is bent downstream, the drag is 
drastically reduced, while sudden jumps in the curve 
appear, indicating an abrupt switch in vortex structure (see 
e.g. Baranyi, 2008). 
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Figure 4. Time-mean of drag versus frequency ratio 
 for phase angles Θ=0°, -15°, -30° and -45° 

 
The rms of fixed body drag against frequency ratio 

can be seen in Fig. 5. It seems that the values for Θ=0° are 
much higher than CDfbrms values belonging to other Θ 
values. As can be seen in the figure, the curves belonging 
to Θ= -15°, -30° and -45° are grouped together. As no 
substantial jump can be observed in the figure, it seems 
that vortex switches do no not have much effect on CDfbrms 
values, probably due to symmetry. 

 



Figure 8-shape path; fx=2fy; Re=250
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Figure 5: Rms of drag versus frequency ratio  
for phase angles Θ=0°, -15°, -30° and -45° 

 
Mechanical energy transfer 

Figure 6 shows the mechanical energy transfer E 
between the fluid and cylinder. For Θ=0° and at the 
amplitudes of Ax and Ay investigated, E remained positive 
throughout the lock-in domain, and practically constant 
from 0.77 to 0.93. For the other three values, although the 
largest part of the lock-in domain exhibits positive 
mechanical energy transfer values, there are some sub-
domains where E is negative. Positive E means that energy 
is introduced into the cylinder and in the case of free 
vibration, this could well lead to VIV. It can also be seen 
in the figure that E decreases with larger phase angle 
differences. 
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Figure 6. Mechanical energy transfer vs. frequency 
ratio for phase angles Θ=0°, -15°, -30° and -45° 

Effect of initial condition 
As is well known, a main feature of non-linear systems 

is that their solutions can be very sensitive to the initial 
condition. A very small change in the initial conditions can 
result in a drastic change in the solution. To check whether 
this is the case here computations for Θ= -15°, first carried 

out at t0=0, were repeated for t0=0.5 and 1.0 (see Eq. (1)). 
In contrary to previous findings in Baranyi (2008) for an 
elliptical path, where the location of jumps was affected 
strongly by the initial condition, here the solutions 
basically were independent of the initial conditions: the 
three curves collapse into one, as can be seen in Figs. 7 
and 8. Note that the curve for the TM of drag in Fig. 7 is 
the same as that denoted by blue empty triangles in Fig. 4, 
while the mechanical energy transfer curve shown in Fig. 
8 is seen also in Fig. 6. Curves for all other variables also 
coincided for the three different t0 values. For these 
parameters, it can thus be stated that the initial condition 
has essentially no effect on the flow.  

 
Distorted Figure 8-shape; fx=2fy; Re=250; Theta=-15
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Figure 7. Time-mean of drag vs. frequency ratio for 
phase angle Θ=-15° and t0=0, 0.5, 1.0 
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Figure 8. Mechanical energy transfer vs. frequency 
ratio for phase angle Θ=-15° and t0=0, 0.5, 1.0 

Pre- and post-jump analysis 
As can be seen in most of the figures, sudden jumps 

in the curves can be seen at some frequency ratio values, 
which can probably be attributed to vortex switches. The 
vicinity of a jump is investigated by different means, such 
as the time history of fixed body lift, limit cycle curves 
and vorticity contours before and after a jump. Due to lack 



of space pre- and post-jump results will be shown only for 
the single case of Θ= -45°, with frequency ratios on the 
two sides of the jump of (fy/St0)1=0.8345 and 
(fy/St0)2=0.835.  

The time histories of the periodic part of the fixed 
body lift for the two frequency ratios are shown against 
the dimensionless time t in Fig. 9. Pre-jump curves are 
denoted by red lines and post-jump curves by blue lines in 
Figs. 9 and 10. As can be seen in the figure, despite the 
tiny difference in the frequency ratios, the two time-
history curves are substantially different.  
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Figure 9. Time history of fixed body lift  
(red line: fy/St0=0.8345; blue line: fy/St0=0.835) 

 
The limit cycle curves (CDfb,CLfb) can be seen in Fig. 

10 for the pre-jump and post-jump frequency ratios. The 
very small difference in frequency ratio results in a drastic 
change in the shape of the two limit cycle curves 
Interestingly, both curves have reflection symmetry. This 
is true for the drag-lift limit cycle curves of every 
computational point with a periodic solution. This 
symmetry originates from the fact that the drag is the same 
for both positive and negative y0 displacement values.  

When CLfb and its time derivative ĊLfb are plotted only 
at the multiples of the motion period T a Poincaré map is 
obtained, which can be interpreted as a discrete dynamical 
system. Here, we investigate the limit cycle curves 
(CLfb,ĊLfb) containing all the points in the phase plane as a 
continuous function of time, for pre-jump (Fig. 11) and 
post-jump (Fig. 12) frequency ratios. Again, noticeable 
differences occur. The curve in Fig. 11 exhibits two cusps, 
and is much smaller than the post-jump curve in Fig. 12, 
which is a relatively smooth curve.  
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Figure 10. Limit cycle (CDfb,CLfb) for Θ=-45°; 
fy/St0=0.8345 (red) and 0.835 (blue) 

 
 
 

 
 

Figure 11. Limit cycle (CLfb,ĊLfb) for Θ=-45°; 
fy/St0=0.8345 (pre-jump) 

 
 

 
 
 

Figure 12. Limit cycle (CLfb,ĊLfb) for Θ=-45°;  
fy/St0=0.835 (post-jump) 

 
Vorticity contours are presented for pre-jump (Fig. 13) 

and post-jump (Fig. 14) frequency ratio values. The blue 
lines indicate negative vorticity values (clockwise 
rotation), and the red lines show positive values 
(anticlockwise rotation). The contours belong to the same 



cylinder position, at t=240T, by which time the solution is 
fully periodic.  

With pure in-line oscillation mirror image switches 
have been observed, so the pattern remains the same type 
(in the cases investigated, one pair of vortices is shed in 
one cycle) (Baranyi et al., 2010). This was probably 
caused by symmetry-breaking bifurcation (see e.g. 
Crawford and Knobloch, 1991). For tranverse cylinder 
oscillation no switches were found, and the 2S pattern (a 
single vortex shed from each side of the cylinder within a 
single cycle; see Williamson and Roshko, 1988) appears to 
be typical around Re=250 (Baranyi et al. 2011). With 
elliptical motion, the solution flips but appears to move 
further from the mirror image solution as the transverse 
component increases (Baranyi, 2008). In this case, the 
flow patterns do not seem to flip in the vicinity of the 
cylinder, but a striking difference in flow structure can be 
seen. Figure 13 shows what appears to be 2P shedding (a 
pair shed from each side of the cylinder in one cycle), 
while the post-jump pattern seems to be 2S, rather similar 
to the Kármán vortex street but with a broader wake.   
 
 

 
 

Figure 13. Vorticity contours at t=240T for Θ=-45°; 
fy/St0=0.8345 (pre-jump) 

 
 

 
 
 

Figure 14. Vorticity contours at t=240T for Θ=-45°; 
fy/St0=0.835 (post-jump) 

 

CONCLUSIONS 
Low-Reynolds number flow around a circular 

cylinder in two-degree-of-freedom forced motion is 
investigated numerically at the Reynolds number of 250. 
Computations were carried out at four different phase 
angles of Θ=0°, -15°, -30° and -45°, ranging from a 
symmetrical to a distorted figure-eight shape, with an 
anticlockwise direction of orientation in the upper lobe.  

The numerical investigation revealed that larger phase 
angle differences can reduce drag by bending the figure-
eight cylinder path further downstream. 

 Mechanical energy transfer also decreases with 
increasing phase angle difference, but remains mostly in 
the positive domain, meaning that energy is transferred 
from the fluid to the cylinder, thus leading to a potentially 
dangerous VIV situation. 

At all four phase angle values investigated, the time-
mean of lift and torque coefficients was zero throughout 
the locked-in frequency domain.  

The initial condition had scarcely any effect on the 
solution for Θ= -15°. 

Where jumps in time-mean or rms values representing 
vortex switches were identified, pre- and post-jump 
analysis was carried out, revealing different time-history 
and limit cycle curves, vorticity contours and even 
different vortex shedding patterns.   

As this study investigated only an anticlockwise 
direction of orbit, further investigation could include 
repeating computations for the clockwise case or at other 
Reynolds numbers or oscillation amplitude values.  
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