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1. Introduction

Flow around a single circular cylinder is very rich in 
physical phenomena, and this is even more so when 
the cylinder is oscillating. Some examples of these in 
real life are silos or smokestacks in wind or underwa-
ter pipes in a current. When vortices are shed from the 
structure a periodic force is generated, which might 
lead to the vibration of the structure, especially if the 
damping is small. The motion resulting from this force 
usually has either one or two degrees of freedom. The 
most frequently investigated type of one-degree-of-
freedom (1-DoF) cylinder motion is the transverse 
cylinder oscillation. Both experimental and numer-
ical studies have dealt with pure transverse cylinder 
motion, e.g. Williamson and Roshko [1], Lu and Dal-
ton [2] and Blackburn and Henderson [3]. Less of-
ten investigated is pure in-line cylinder motion, e.g., 
Cetiner and Rockwell [4], Al-Mdallal et al. [5] and 
Mureithi et al. [6].

However, far fewer investigations have been car-
ried out for combined, two-degree-of-freedom (2-DoF) 

cylinder motion. In reality, however, both motions are 
often present, leading to a Lissajous-type path. The 
vortex-induced vibration (VIV) arising in such cases 
can lead to problems such as fatigue and damage of 
structures. 

Kheirkhah and Yarusevych [7] suggest that where 
the mass ratio (the ratio of the mass of the vibrating 
system to the mass of the displaced fl uid) is high, as 
mainly occurs when a structure is oscillating in air, 
then the frequency of oscillation in in-line and in 
transverse directions are approximately equal to each 
other. This can lead to an elliptical path, such as that 
observed in tube bundles in heat exchangers [8]. El-
liptical cylinder motion is studied in [7, 9–11], among 
others. The occurrence of vortex switches at certain 
frequency or amplitude values has been noted in [2] 
and [10].

Numerical studies often place a cylinder in 
forced motion in order to gain an approximation of 
fl uid-structure interaction. This results in a simplifi ed 
model. Although, as Williamson states in [12], a di-
rect relationship between free and forced vibration is 
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diffi cult to confi rm, it is a convenient approach to be-
gin investigation of the complex phenomena involved 
when a bluff body is moving in fl ow. 

A more typical Lissajous-type path, on the other 
hand, occurs with a low mass ratio, typically found 
when a cylinder is moving in liquid: cables and pipes 
submersed in fl owing water may undergo fatigue or 
damage due to this kind of motion. In this case the 
frequency of the cylinder motion in in-line direction is 
approximately twice its frequency in transverse direc-
tion, as found for example in Jeon and Gharib [13], 
Jauvtis and Williamson [14] and Sanchis et al. [15]. 
The phase angle difference between in-line and trans-
verse motion Θ results in different cylinder paths [13]. 
The experimental investigation of 2-DoF forced cyl-
inder motion in [13] emphasises the importance of the 
phase difference between the two motions. They sug-
gest that the phase value tends to vary within 45 de-
grees of zero for free vibration cases. Baranyi [16] in 
his numerical study examined the effect of phase angle 
difference between 0 and 45 degrees as suggested in 
[13] and found that Θ has a strong infl uence on force 
coeffi cients and mechanical energy transfer between 
the fl uid and the cylinder. One typical Lissajous curve 
is a fi gure-eight-shaped path, while a path in the shape 
of an arc, or C-shape, has also been observed by San-
chis et al. in their experimental study for an elastically 
supported cylinder in the Reynolds number domain of 
Re = (1.3 to 1.9)  ·104 [15] as well as in the numerical 
work of Prasanth and Mittal [17].

Perdikaris et al. [18] numerically investigated 
fl ow around a mechanically oscillated cylinder fol-
lowing a fi gure-8-path at Reynolds number Re = 400 
while varying the transverse amplitude of oscillation. 
Their study looked at the power transfer parameter for 
two frequency ratios of 0.5 and 1. They found that the 
orientation of the motion (clockwise or anticlockwise 
orbit in the upper loop) infl uences the results, general-
ly leading to higher force coeffi cients and power trans-
fer for the anticlockwise orientation. Peppa et al. [19] 
carried out a similar investigation for Re = 400 at fre-
quency ratios of 0.9, 1 and 1.1 at two different Ax/Ay 
ratio values. They also carried out computations for 
both directions of orbit and found that an anticlock-
wise orbit in the upper loop resulted in a positive pow-
er coeffi cient, meaning an increased chance of vortex-
induced vibration for a cylinder in free vibration.

An earlier numerical study of mine [20] dealt 
with forced fi gure-8-motion for Re = 150, 200 and 250 
against in-line oscillation amplitude and Re = 250 for 
frequency ratio, for clockwise orientation only. Force 
coeffi cients and mechanical energy transfer were in-
vestigated against both in-line oscillation amplitude 
and frequency ratio. No sudden change in vortex 
structure was detected when investigated against am-
plitude, but a vortex switch was found against the fre-

quency ratio. The current numerical investigation in-
troduces further computational results for the frequen-
cy ratio and also investigates fi gure-8-motion with an 
anti-clockwise orientation (at Re = 200, 250 and 300). 

Nomenclature:
Ax,y amplitude of oscillation in x or y directions, re-

spectively, non-dimensionalised by d
CD drag coeffi cient, 2FD /(ρU 2d)
CL lift coeffi cient, 2FL /(ρU 2d)
d cylinder diameter (m)
E mechanical energy transfer, non-dimensional-

ised by ρU 2d 2/ 2
F force per unit length of cylinder, FD i + FL j 

(N/m)
FD drag per unit length of cylinder (N/m)
FL lift per unit length of cylinder (N/m)
f oscillation frequency, non-dimensionalised by 

U/d
i, j unit vectors in x and y directions, respectively
p pressure, non-dimensionalised by ρU 2
Re Reynolds number, Ud /ν 
R radius, non-dimensionalised by d
St non-dimensional vortex shedding frequency
T motion period, non-dimensionalised by d/U
t time, non-dimensionalised by d/U
tq torque coeffi cient, non-dimensionalised by  

ρU 2d 2
U free stream velocity, velocity scale (m/s)
v0 cylinder velocity, non-dimensionalised by U, 

v0x i + v0y j
x, y Cartesian co-ordinates, non-dimensionalised 

by d
ν kinematic viscosity (m2/s)
Θ phase angle difference between transverse and 

in-line cylinder motion
ρ fl uid density (kg/m3)

Subscripts:
fb fi xed-body
D drag
L lift
rms root-mean-square value
x, y components in x and y directions
0 for cylinder motion; for stationary cylinder at 

the same Re

2. Computational method

A non-inertial system fi xed to the cylinder is used to 
compute two-dimensional (2D) low-Reynolds number 
unsteady fl ow around a circular cylinder placed in a 
uniform stream and forced to oscillate in transverse or 
in in-line direction, or in both. The non-dimensional 
Navier–Stokes equations for incompressible constant-
property Newtonian fl uid, the equation of continuity 
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and the Poisson equation for pressure can be written 
as follows:
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In these equations, u and v are the x and y compo-
nents of velocity, t is time, p is the pressure, Re is the 
Reynolds number based on cylinder diameter d, free 
stream velocity U, and kinematic viscosity ν,  and D 
is the dilation. Although D is theoretically equal to 0 
from Eq. (3), it is kept in Eq. (4) to avoid accumulation 
of numerical errors, following Harlow and Welch [21]. 
In Eqs. (1) and (2) a0x and a0y are the x and y compo-
nents of cylinder acceleration, respectively.

On the cylinder surface, no-slip boundary con-
dition is used for the velocity and a Neumann-type 
boundary condition is used for the pressure. At the far 
region, potential fl ow is assumed, which is reasonable 
aside from the narrow wake. Since the outer boundary 
of the computational domain is very far from the cyl-
inder, this assumption results in only a small distortion 
of the velocity fi eld, and only near the outer boundary 
wake region, see Baranyi and Shirakashi [22].

Boundary-fi tted coordinates are used to impose 
the boundary conditions accurately. Using unique, 
single-valued functions, the physical domain bounded 
by two concentric circles is mapped into a rectangu-
lar computational domain with equidistant spacing in 

both directions (Fig. 1). In the physical domain loga-
rithmically spaced radial cells are used, providing a 
fi ne grid scale near the cylinder wall and a coarse grid 
in the far fi eld. The transformed governing equations 
and boundary conditions are solved by the fi nite dif-
ference method. Space derivatives are approximated 
by fourth order central differences, except for the con-
vective terms for which a third-order modifi ed upwind 
scheme is used. The Poisson equation for pressure is 
solved by the successive over-relaxation (SOR) meth-
od. The Navier-Stokes equations are integrated explic-
itly and continuity is satisfi ed at every time step. For 
further details see [10, 23].

The 2D code developed by the author has been 
extensively tested against experimental and computa-
tional results for a stationary cylinder, see e.g. [10, 24, 
25], and computational results for cylinders oscillat-
ing in transverse or in in-line directions or following 
a circular path, including [2, 5, 9], with good agree-
ment being found [10]. Comparisons with second-
order Runge–Kutta discretisation results showed that 
– at this small time step – the results agree well with 
each other [26], thus justifying the use of a fi rst-order 
approach here. In this study the dimensionless time 
step is 0.0005, the number of grid points is 481×451 
(peripheral × radial), and a relatively large physical 
domain of R2 /R1 = 360 has been chosen to enhance 
accuracy.

3. Computational setup

This study investigates the behaviour of fl ow past a 
cylinder placed in a uniform stream with its axis per-
pendicular to the velocity vector of the main fl ow. The 
cylinder is oscillated mechanically in both in-line and 
transverse directions in relation to the uniform stream. 
The motion of the centre of the cylinder is described 
by the following equations:

Fig. 1. Physical and computational domains
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 x0 = Ax sin (4π fy t + Θ), (5)

       y0 = Ay sin (2π fy t), (6)

where Θ is the phase angle difference between the two 
oscillations. Naturally the second time derivatives of 
x0 and y0 give the accelerations a0x and a0y in Eqs. (1) 
and (2).

The time-history of force coeffi cients (lift, drag, 
base pressure and torque), pressure and velocity fi elds 
are computed. From these data, time-mean (TM) and 
root-mean-square (rms) values of force coeffi cients, 
streamlines, and vorticity contours can be obtained.

Throughout this paper the lift and drag coeffi -
cients used, unless otherwise stated, do not contain 
the inertial forces originating from the non-inertial 
system fi xed to the accelerating cylinder. Coeffi cients 
obtained by removing the inertial forces are often 
termed ‘fi xed body’ coeffi cients (see [2]). The rela-
tionship between the two sets of coeffi cients can be 
written as

 CD = CD fb + π a0x / 2, (7)

 CL = CL fb + π a0y / 2, (8)

where subscript fb refers to the fi xed-body (under-
stood in an inertial system fi xed to the stationary cyl-
inder) [27], and a0x and a0y denote the acceleration of 
the cylinder in x and y directions, respectively. Since 
the inertial terms are T-periodic functions, their time-

mean values vanish, resulting in identical TM values 
for lift and drag in the inertial and non-inertial sys-
tems. Naturally the rms values of CL and CD will be 
somewhat different in the two systems (but this does 
not affect the curve being continuous).

The investigation was restricted to lock-in cases. 
Lock-in – the synchronisation between vortex shed-
ding and cylinder motion – produces a periodic solu-
tion for each of the force coeffi cients. In this paper, 
we consider lock-in to be when the vortex shedding 
frequency is identical to fy, the frequency of transverse 
cylinder oscillation.

To create a fi gure-8-path with a clockwise (CW) 
and anticlockwise (ACW) orientation in the upper 
loop, respectively, the conditions

 fx = 2 fy;  Θ = π  (for CW), (9)

 fx = 2 fy;  Θ = 0  (for ACW) (10)

should be fulfi lled in Eqs. (5) and (6).
The non-dimensional energy transfer E originally 

introduced in [3] for a transversely oscillated cylin-
der was extended for a general two-degree-of-freedom 
(2-DoF) motion of the cylinder in [10]:

 ( )0 0 02 2
0 0

2 d d ,
T T

D x L yE t C v C v t
U d

= ⋅ = +∫ ∫F v
ρ

 (11)

where T is the motion period, v0x and v0y are the ve-
locity of the cylinder in x and y directions, respective-
ly. Since the frequencies in the two directions are dif-
ferent (see Eqs. (9) and (10)) the larger period of T = 
Ty = 1 / fy is chosen for the investigation. Equation (11) 
is also valid for 1-DoF cylinder motions; i.e., for pure 
transverse (v0x = 0) and for in-line (v0y = 0) cylinder 
motions. Some researchers (e.g. [18]) prefer to use the 
concept of non-dimensional power transfer  instead of 
mechanical energy transfer E.

4. Results

For a single computation, all parameters (Ax, Ay, Re, fx,  
fy  , Θ) are kept constant. The computations are then re-
peated at different Ax (see Section 4.1.) or fy /St0 (see 
Section 4.2) values to investigate the effect of oscilla-
tion amplitude and frequency ratio, respectively. Here 
St0 is the non-dimensional vortex shedding frequency 
from a stationary cylinder at the given Reynolds num-
ber. Only the locked-in domain was considered. For 
both cases, time-mean (TM) and root-mean-square 
(rms) values of lift (CL), drag (CD), and torque (tq) co-
effi cients, furthermore the mechanical energy transfer 
E between the cylinder and fl uid were determined and 
plotted against the independent variable.
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Jumps representing vortex switches were found 
for the clockwise (CW) case at Re = 250 and 300 when 
the independent variable was the frequency ratio. Pre- 
and post-jump analyses were carried out in the vicinity 
of the jumps (see Section 4.3.).

4.1. Effect of in-line amplitude for clockwise orbit in 
the upper loop

Here, three Re values were investigated: Re = 150, 
200, and 250. The frequency of transverse oscilla-
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tion was kept at fy / St0 = 0.9, under resonant forcing. 
This frequency ratio ensures moderate amplitude val-
ues for subharmonic lock-in. The dimensionless trans-
verse amplitude of oscillation Ay was fi xed at the value 
of 0.5 while Ax was varied systematically between 0.1 

and 0.2 to keep the fi gure-8-path slender found exper-
imentally, e.g. in [15]. 

Figure 3 shows the variation of TM of lift against 
Ax for the three different Re values. As seen in the 
fi gure, all TM values of lift in the domain are posi-
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tive, the values increase with both Ax and Reynolds 
number, and there are no jumps in the values. Please 
note that the TM of lift is zero for a stationary cylin-
der or for a cylinder oscillating transverse to the main 
stream but for several other types of cylinder motion 
it is not [10, 28].

Figure 4 shows the variation of rms value of the 
fi xed body (see Eqs. (7) and (8)) lift coeffi cient against 
Ax for the three Re values. The trend for these curves 
is very similar to that shown in Fig. 3. Other TM and 
rms curves show the same trend, with the exception 
of the TM of the torque coeffi cient (non-dimensional 
torque due to the shear stress on the cylinder surface), 
shown in Fig. 5, where no general tendency can be 
ascertained yet. These results are unexpected, since in 
earlier investigations it has generally been found that 
the time-mean of the torque coeffi cient behaves simi-
larly to the lift coeffi cient; see e.g. [28–30]. Further 
investigations are needed in this area.

Finally, Fig. 6 shows the variation of E with Ax for 
the three Reynolds numbers. This mechanical energy 
transfer was negative for all of the investigated cases, 
meaning that energy is transferred from the cylinder 
to the fl uid. The absolute value of E increases with in-
creasing amplitude Ax and also with Re. As it can be 
seen in the fi gure, the relationship between E and Ax is 
almost linear for all three Reynolds numbers. Since all 
mechanical energy transfer values are negative, there 
is no danger of vortex-induced vibration (VIV) for 
free vibration cases.

Note that no jumps indicating vortex switches 
were found within this parameter domain, in contrast 
to fi ndings for an orbiting cylinder [10] or cylinder 
moving in-line [28], meaning that no bifurcation was 
found within this domain. For this reason, it was de-
cided not to extend the investigation against amplitude 
Ax for any further Reynolds numbers. This is also why 
the investigation against amplitude Ax for anticlock-
wise orientation was ignored at this stage of the re-
search (to be frank, results plotted against frequency 
ratio proved to be more intriguing).

4.2. Effect of frequency ratio for both directions of 
orbit

Here, three Reynolds numbers were investigated, Re = 
200, 250 and 300. Ay was chosen to be 0.5; Ax was 0.14 
during the whole investigation. This choice ensures 
a slender cylinder path. The usual step between two 
consecutive frequency ratio fy / St0 values was 0.01, 
 except around the area of the jump, where computa-
tions were carried out at smaller intervals to determine 
the location of the jump. The investigations were lim-
ited to locked-in cases, i.e. when the vortex shedding 
synchronises with the cylinder motion (vortex shed-
ding frequency is equal to fy ).

Figure 7 shows the TM of lift CL for six cases: 
three Reynolds numbers for both clockwise (CW) and 
anticlockwise (ACW) directions of orbit in the upper 
loop of fi gure-8-path. It can be seen in the fi gure that 
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the TM values of lift for the ACW case (fi lled signals) 
are zero for all three Reynolds numbers. Similar re-
sults were found for pure transverse cylinder oscilla-
tion in [29], thus demonstrating one kind of symme-

try, as investigated by Crawford and Knobloch [31]. 
The curves for the CW cases (empty signals) show 
one jump each for Re = 250 and 300, representing a 
sudden switch in vortex structure (no jump was found 
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for Re = 200 in the lock-in domain). The values jump 
from negative to positive values, and their absolute 
values are approximately equal to each other. Con-
sidering fi ndings from earlier studies (e.g., [10, 28]), 
there exist two so-called state curves that can be repro-

duced by varying some parameters or the initial condi-
tions. These state curves were found to be symmetric 
around zero (i.e., the value for a stationary cylinder) 
for in-line oscillation [28], and this may be the case 
here, as well. If so, the vortex switch – the jump in the 
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state curves – is probably due to a symmetry-breaking 
bifurcation (see [31]). It seems that there are two at-
tractors in this non-linear system and the solution is 
attracted to one or the other depending on the param-
eters and initial conditions.

The rms of fi xed-body lift, shown in Fig. 8, also 
shows different behaviour depending on direction, 
with the CW curves changing gradually, and the ACW 
exhibiting a different pattern. From around the value 
of fy / St0 = 0.8, the difference between the two sets 
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of curves increases with frequency ratio. There is a 
non-locked-in domain for ACW orbit for Re = 300 at 
around fy / St0 = 0.8. This harmonizes with the obser-
vations of Gharib, who found that his 2-DoF free vi-
bration cases were much less likely to exhibit lock-in 
behaviour (where the wake locks to the natural fre-
quency of the structure for some range of parameters) 
[32]. Although the values are much smaller, basically 
the same tendencies were found for the TM and rms 
of torque coeffi cients shown in Figs. 9 and 10 (c.f. 
Figs. 7 and 8) including the locations and number of 
jumps.

The TM of drag is shown in Fig. 11 against the 
frequency ratio for the three Reynolds numbers and 
two directions of orbit. The notations are exactly the 
same as earlier. As can be seen in the fi gure, the values 
for CW orbit increase almost linearly with frequen-
cy ratio and their dependence on Reynolds number is 
weak, increasing only slightly with Re. We can also 
observe that the shapes of the ACW curves are dif-
ferent from that of the CW curves.  The slope of the 
curves changes abruptly at about fy / St0 = 0.79. Above 
this value the curves varys almost linearly with the fre-
quency ratio. The TM of drag increases with Reynolds 
number and a stronger Re effect can be seen than for 
the CW cases. It is obvious from the fi gure that the 
TM of drag is smaller for the CW case over the large 
part of lock-in domain; hence it can be considered to 
be the more favourable orbital direction for free vibra-
tion cases.

In Fig. 12 the rms values of fi xed-body drag  
against the frequency ratio are shown for the six cas-
es displayed earlier. In this case the tendency is op-
posite compared to the TM of drag: the rms values are 
higher for the CW case over the whole investigated 
domain. This means that for CW orbit, although the 
TM of the drag is smaller, the oscillation amplitude of 
the signal is larger than for the ACW case. A relatively 

weak Re number dependency can be seen in the rms 
of drag (see Fig. 12).

Base pressure coeffi cients (not shown here) show 
basically the same tendency as was found for the 
drag for both TM and rms values for all three Rey-
nolds numbers and both directions of orbit (see Figs. 
11 and 12).

The mechanical energy transfer E between the 
fl uid and the cylinder within one motion period (based 
on fy ) is given in Fig. 13. For CW, it can be seen that 
E curves are close to each other and always negative 
within the lock-in domain, while the ACW curves are 
always positive. These fi ndings are in agreement with 
those of [18]. The positive energy transfer means that 
cylinder motion is amplifi ed by the fl uid, which can 
lead to vortex-induced vibration (VIV) of the cylinder. 
Hence the ACW orbit is the less favourable case from 
this point of view. As can be seen in the fi gure, E is 
approximately constant over fy  / St0 = 0.8 for all three 
Re values for the ACW case.

4.3. Pre- and post-jump analysis

As was shown earlier, jumps were found in the TM of 
lift and torque for the clockwise (CW) orbit for both 
Re = 250 and 300 (see Figs. 7 and 9). These jumps 
can be attributed to vortex switches. The vicinity of 
a jump is investigated by different means, such as the 
time history of fi xed body lift and drag (not shown), 
limit cycle curves and vorticity contours before and 
after the jump. Since the Re = 250 and Re = 300 re-
sults are very similar, only those for Re = 250 are 
shown here. The limit cycle curves (CDfb, CLfb) can be 
seen in Fig. 14(a). The curves are very complex; the 
pre-jump curve ( fy / St0 = 0.71213) is denoted by the 
thick line and the post-jump curve ( fy / St0 = 0.71214) 
by the thin line. The difference in frequency ratios is 
only 0.00001, but a drastic change in the outcome is 
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Fig. 14. Limit cycle curves, Re = 250. Thick line: fy / St0 = 0.71213, thin line: fy / St0 = 0.71214. a): both curves (CDfb, CLfb);
b): pre-jump curve (CDfb, CLfb), post-jump curve (CDfb, –CLfb)
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evident. Although it is not obvious at fi rst sight, these 
curves are mirror images of each other (fl ipping along 
the line of CL = 0), as can also be seen in Fig. 14(b), 
where the post-jump CLfb values are replaced by (–CLfb) 
values.

The vorticity contours shown in Fig. 15 also 
show the drastic change of the fl ow patterns before 
and after a jump. The contours belong to the same 
cylinder  position (at x0 = y0 = 0; see Eqs. (5) and (6), 
and Fig. 2). The grey lines indicate negative vorticity 
values, rotating clockwise, and the black are positive, 
rotating anticlockwise. The vortex shedding mode 
starts out as P + S, meaning that a pair (P) of vorti-
ces and a single (S) vortex are shed in one period. It 
can be seen that the vortex pattern has switched to 
a near-mirror image: before the jump double vorti-
ces are in the lower row but then switch to the up-
per row. Later, however, the mode seems to shift to-
wards 2S (two single vortices are shed in one period). 
It is worth mentioning that the pre- and post-jump 
time history lift curves are not a mere refl ection of 
each other; they are refl ected and translated by a half 
period (T / 2) with respect to each other (not shown 
here). That is probably the reason why the pre- and 
post-jump vorticity contours are not exactly mirror 
images of each other. It was shown earlier in [28] that 
for forced in-line cylinder motion the pre- and post-
jump time history curves, the (drag, lift) limit cycle 
curves and the vorticity contours are all mirror im-
ages of each other.

The present cylinder-fl ow system is almost re-
fl ection-symmetric about a line through the cylinder 
centre and parallel to the free stream velocity vector, 
as shown by both the limit cycle curves and vorticity 
contours. A physical system that is symmetric is vul-
nerable to symmetry-breaking bifurcation [31], and 
this may well be the case here.

5. Conclusions

Forced cylinder motion in the shape of a slender fi g-
ure 8 was investigated in this numerical study using a 
2D computational method based on the fi nite differ-
ence method. The effects of in-line amplitude Ax and 
frequency ratio fy / St0 on the mechanical energy trans-
fer E, the time-mean (TM) and rms values of force co-
effi cients were investigated for low-Reynolds number 
fl ows within the lock-in domain.

1)  Ax effects for clockwise (CW) orbit in the upper 
loop of the fi gure-eight for Re = 150, 200 and 
250:
 – No jumps (vortex switches) were found,
 – E was always negative (hence no dangers of 

VIV for free vibration cases),
 – TM and rms of lift and the absolute value of E 

increase with increasing Ax and Re,
 – TM of torque coeffi cient tq did not show a 

clear tendency.
2) Frequency ratio fy / St0 effects for both clockwise 

(CW) and anticlockwise (ACW) orbit in the up-
per loop of fi gure-eight for Re = 200, 250 and 
250:
a) Clockwise (CW) orbit

 – E was always negative (hence no dangers 
of VIV for free vibration cases),

 – TM of drag is smaller, rms of drag is larger 
than for the ACW cases,

 – Jumps (representing switches in vortex 
structures) were found in TM of lift and 
torque when plotted against fy / St0 for Re 
= 250 and 300; solutions on mirror-image 
state curves (as for in-line cylinder motion),

 – Pre- and post-jump analysis showed per-
fect mirror-image symmetry for the (drag, 
lift) limit cycle curves. Vorticity contours 

Fig. 15. Pre- and post-jump vorticity contours. Top: fy / St0 = 0.71213, bottom: fy / St0 = 0.71214
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are very different from each other (almost 
a mirror image change) before and after a 
jump; P + S vortex structure was found. 

b) Anticlockwise (ACW) orbit:
 – E was always positive (dangers of VIV for 

free vibration cases),
 – TM of lift and torque are identically zero 

(as for transverse cylinder motion),
 – TM of drag is larger; rms of drag is smaller 

than for the CW cases,
 – No jumps were found in the investigated 

domain.

Future research might include the investigation of 
the effect of initial conditions for the CW case in or-
der to produce more complete state curves and confi rm 
their symmetric nature. Closer examination of the ef-
fect of oscillation amplitude for the ACW case could 
also prove to be worthwhile.
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