
 

 

 
Abstract—Two-dimensional low-Reynolds number flow (Re=160)  

about a transversely oscillating heated circular cylinder placed in a 
uniform stream is investigated numerically using the commercial 
software package Ansys Fluent. The flow is simulated in a frame 
fixed to the cylinder and with an oscillating cross flow. The effect of 
oscillation amplitude on the force coefficients and heat transfer 
characteristics are investigated in the locked-in domain for four 
different temperature ratios. Comparisons include the mechanical 
energy transfer, time-mean and root-mean-square values of the lift 
and drag coefficients and Nusselt number. 

 
Keywords— Heat transfer, Lift and drag coefficients, Mechanical 

energy transfer, Nusselt number, Transverse oscillation  

I. INTRODUCTION 
HE flow around a circular cylinder placed in a uniform 
stream is an important engineering problem in fluid 

mechanics. Its physical and engineering applications have 
attracted the attention of engineers and scientists for over a 
century, leading to many theoretical, experimental and 
numerical investigations [1]-[3]. In addition, heat transfer 
becomes an issue in applications such as chimneys, tube 
bundles of heat exchangers, and hot wire anemometers.  

For flows over a heated cylinder the fluid properties such as 
viscosity, density and thermal conductivity vary with the 
temperature. Consequently the thermodynamic properties in 
the system of the governing equations also become 
temperature dependent. This has a significant effect on the 
flow characteristics, making the flow phenomena much more 
complex than in the isothermal case. The vortex shedding from 
a cylinder can be reduced or even completely suppressed by 
increasing the cylinder temperature [4]-[6].  

For isothermal case the flow around a transversely 
oscillating circular cylinder has been studied extensively with 
focus on among others the shedding regime, phase angle 
between body displacement and transverse force [3], [7]. Heat  
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transfer has been investigated for a transversely oscillating  
cylinder in a uniform stream at low Reynolds numbers in [8], 
[9]. To the best knowledge of the authors, the effect of surface 
temperature on the mechanical energy transfer between the 
fluid and cylinder has not attracted much attention so far. 

The objective of the present work is therefore to investigate 
the effect of cylinder surface temperature on heat transfer from 
a heated circular cylinder placed in a uniform stream and 
oscillating in transverse direction, and on force coefficients 
and mechanical energy transfer between fluid and cylinder.  

II. NUMERICAL METHOD 
The computational domain is characterized by two 

concentric circles: the inner represents the cylinder surface 
with diameter d, the outer the far field with diameter d∞ (see 
Fig. 1). The origin of the coordinate system is in the center of 
the cylinder and the positive x-axis is directed downstream.  

 

 
Fig. 1 Computational domain 

 
The flowing fluid is air, considered to be incompressible. 

Far from the cylinder constant absolute temperature ∞T~  (K) is 
prescribed, while the cylinder surface is kept at constant 
temperature wT~  (K). Temperature ratio is defined as  
 

∞= TTT w
~/~* . (1) 

 
Four temperature ratios are investigated: 1.0, 1.1, 1.2 and 1.5. 
Especially for the larger T* values the temperature difference 
between the fluid and the cylinder surface is large enough to 
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influence the fluid properties, therefore the dependence of 
fluid properties on the temperature is taken into account.  

At the inlet the time-dependent free stream undisturbed 
velocity is defined as the superposition of uniform free stream 

mU~  (m/s) and an oscillatory flow in transverse direction 
 

( ) ( ) jtfAfiUjviUtv ymym

rrrrr ~~
2cos~~

2~~~
0 ππ−=+= , (2) 

 
where v0y is the time dependent fluctuating velocity, f

~
(1/s) is 

the frequency of oscillation, yA~ (m) is the oscillation 

amplitude for transverse motion, t~ (s) is the time and ji
rr

,  are 
the unit vectors in x and y directions (see Fig. 1), respectively. 
By introducing length and velocity scales all quantities can be 
non-dimensionalized. The non-dimensional time t, frequency 
of oscillation f and oscillation amplitude Ay can be written 
 

dUtt m /~~= , mUdff ~/
~

= , dAA yy /~
= . (3) 

 
The dimensionless oscillation frequency was set at 

f=0.8St0=0.14912, where St0 is the non-dimensional vortex 
shedding frequency, or Strouhal number, for a stationary 
cylinder at Re=160. This frequency ratio value ensures that 
lock-in condition can be reached at moderate amplitude 
values. Lock-in or synchronization happens when the vortex 
shedding frequency synchronizes with the frequency of 
cylinder motion. Here only locked-in cases are considered. 

The governing equations and boundary conditions are 
solved by the commercial software package Ansys Fluent, 
based on the finite volume method (FVM). The accuracy of 
the computed results depends on the resolution (number, shape 
and distribution of cells), the time step, the size and shape of 
the computational domain. In [10] the effect of domain size, 
the mesh, and the time step is investigated on the solution of a 
low-Reynolds number flow around a stationary circular 
cylinder. The influence of computation domain size was 
investigated further in [11], and computational results were 
compared with those of several studies, finding very good 
agreement. In this study a mesh with domain size d∞/d=180 
and 360x298 (azimuthal× radial) cells compromises between 
computational cost and accuracy. In the physical domain 
logarithmically spaced radial cells are used, providing a fine 
grid near the cylinder wall and a coarse grid in the far field. 
The minimal dimensionless mesh size in radial direction is 
0.00875, and the dimensionless time step of Δt=0.025 is used. 

  

III. COMPUTATIONAL RESULTS 

A. Lift and drag coefficient 
The accuracy of the numerical results is compared by 

means of integral quantities such as lift CL and drag CD 
coefficients. The lift and drag coefficients are defined as 
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where ρ is the fluid density, d is the cylinder diameter, FL and 
FD is the lift and drag force per unit length of the cylinder. The 
time-mean and root-mean-square (rms) values of the lift and 
drag coefficients are calculated as 
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where P is a period of a vortex shedding, n is the number of 
periods and t1 is the starting point of calculation. Coefficient C 
in (5) stands for drag and lift coefficients. Unless otherwise 
indicated, the lift and drag coefficients shown in this study do 
not contain inertial forces originating from the system fixed to 
the accelerating cylinder. Coefficients obtained by removing 
the inertial forces are often termed ‘fixed body’ coefficients 
[7]. The relationship between the two sets of coefficients can 
be written as 
 

,
2 0 yfbLL aCC π

+= ,
2 0xfbDD aCC π

+=  (6) 

 
where subscript fb refers to the fixed body [12]. Here a0x and 
a0y are the dimensionless x and y components of oscillating 
flow acceleration. Since these accelerations are periodic their 
time-mean values vanish, resulting in identical TM values for 
the two setups. Equation (6) shows that for transverse motion 
the two drag coefficients are identical. 

For the unheated case (T*=1.0) the present results are 
compared with the earlier data of the second author [13], who 
used his own code based on the finite difference method 
(FDM). The FDM code is set up for a mechanically-oscillated 
cylinder placed in a uniform stream, while the present FVM 
simulation is for oscillating flow around a stationary cylinder. 
However, when viewed from a system fixed to the cylinder, 
these two cases are kinematically identical (though 
dynamically not) and can thus be compared. 

Figure 2 shows the TM value of drag (and fixed-body drag 
at the same time) against oscillation amplitude Ay for different 
temperature ratios. As seen in the figure, the TM of drag 
increases almost linearly with the oscillation amplitude and CD 
also increases with increasing temperature ratio. For the 
isothermal case the present results agree well with the FDM 
data in [13].  
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Fig. 2 Time-mean of drag versus amplitude Ay for different 
temperature ratios 

 
The rms of drag is shown against oscillation amplitude for 

different temperature ratio values in Fig. 3. The results in [13] 
and those of the present work are almost identical for the 
isothermal case (T*=0). 
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Fig. 3 Rms of drag versus amplitude Ay for different temperature 
ratios 

 
Figure 4 shows the rms of fixed body lift against the 

oscillation amplitude for different temperature ratios. It can be 
seen that the rms of lift increases with increasing oscillation 
amplitude. As also seen in the figure, the lift coefficient 
decreases with increasing temperature ratio. For the unheated 
cylinder the results in [13] are also included in the figure for 
comparison, and the two sets of results compare very well. 

For lift and drag coefficients it was observed that the wake 
behind the cylinder is not very sensitive to low temperature 
ratio values, while a significant effect is observable at T*=1.5. 
For the uniform flow (Ay=0) past a heated stationary cylinder it 
was found that the effect of heating is significant at the 
temperature ratio of 5.1* ≥T  [6], [14], [15]. 
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Fig. 4 CLfb rms versus oscillation amplitude for different temperature 
ratios 

 

B. Heat transfer 
The heat transfer between the cylinder and the surrounding 

fluid is calculated using the dimensionless heat transfer 
coefficient, or Nusselt number (see [16]),  

 

wallr
T

k
dh









∂
∂

−==Nu , (7) 

 
where k (W/(m·K)) is the thermal conductivity of the fluid, h 
(W/(m2·K)) is the heat transfer coefficient and r is the 
dimensionless radius (non-dimensionalized by d) and T is the 
dimensionless temperature defined by ( ) ( )∞∞ −− TTTT w

~~~~ , 
where T~ is the temperature of the fluid measured in K. In this 
study we investigate Nusselt number Nuf=Nu( fT~ ) based on 

the film temperature fT~  
 

2/)~~(~
∞+= TTT wf . (8) 

 
The uniform flow (Ay=0) past a heated stationary cylinder 

was investigated first. The distribution of the local Nusselt 
number Nuf  over the cylinder surface is shown in Fig. 5 for 
T*≈1.0 obtained by FDM (see [16]) and the FVM results for 
T*=1.1 and T*=1.5. Polar angle θ=0° at the front stagnation 
point where Nuf is the largest due to the thin boundary layer. 
The local Nusselt number first decreases until it reaches a 
minimum value of about Nuf=2 near the separation point θs 
and then slightly increases. At the separation point (θs≈135°) 
the Nu values are roughly identical for all three cases. 

The effect of temperature ratio on the local Nusselt number 
is investigated for oscillating cross flow and shown for the 
dimensionless amplitude value of 0.20 at the dimensionless 
instant of τ = 218 in Fig. 6. The local Nusselt number, just like 
for the stationary cylinder in uniform flow (see [15]), 
decreases with increasing temperature ratios for oscillating 
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flow, as seen in the figure. As an effect of heat transfer the 
value of the separation angle decreases slightly (θs ≈131.8°). 
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Fig. 5 Local distribution of Nuf  on the cylinder surface at Re=160 
and Ay=0 
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Fig. 6 Local distribution of Nuf  at Ay=0.20 for different temperature 
ratios 

 
In addition, the local Nusselt number was investigated at a 

given temperature ratio of 1.5 and amplitude of 0.20 for a 
complete cycle of vortex shedding at four different phases of 
vortex shedding. Figure 7 shows local Nusselt numbers at 
dimensionless times of τ; τ+P/4; τ+ P/2; τ+3P/4, where τ = 218 
(the maximum velocity value of oscillation belongs to this 
dimensionless time) and P is a period of vortex shedding. The 
curves are similar in shape and magnitude, but a substantial 
discrepancy between Nusselt numbers at a fixed surface point 
can be found within a period of vortex shedding. 

At the same dimensionless times the temperature contours 
of the wake in different phases of a vortex shedding cycle are 
shown for T*=1.5 and Ay=0.20 in Fig. 8. This illustrates the 
effect of the phase of vortex shedding on the temperature 
contours in the wake of the cylinder. 
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Fig. 7 The local distribution of Nuf  at T*=1.5 and Ay=0.2 for a 
complete cycle of vortex shedding 
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Fig. 8 Isothermal contours in different phases within a cycle  

(a) τ; (b) τ+P/4; (c) τ+P/2; (d) τ+3P/4 
 
Integrating the local Nusselt number over the cylinder 

surface, the peripherally averaged Nusselt number is obtained, 
which is a periodic function of time in the locked-in region. 
The TM of this peripherally averaged Nusselt number yields 
the time-averaged Nusselt number. For free stream flow 
without an oscillating component around a heated stationary 
cylinder, the TM of Nuf was analyzed at different Reynolds 
numbers in [15]. The agreement of the computational results 
of [15] with those of [14] is very good.  

For transverse motion TM values of Nuf are shown in Fig. 9 
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for different temperature ratios. The TM of Nusselt number 
increases with increasing oscillation amplitude, but decreases 
with increasing temperature, meaning that transverse flow or 
cylinder oscillation increases but the cylinder heating reduces 
the heat transfer per unit temperature difference between the 
fluid and cylinder. A similar tendency was found for a 
stationary cylinder placed in a uniform flow [14], [15]. 
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Fig. 9 Time-mean of Nuf  versus amplitude for different temperature 
ratios 

 

C. Mechanical energy transfer 
The mechanical energy transfer between the fluid and the 

cylinder for transverse cylinder motion was defined in [3]. For 
transverse motion the energy transfer coefficients can be 
written as follows: 

 

( )∫=
T

L dttytCE
0

0 )(& , (9) 

 
where  y0 represents the dimensionless displacement of the 
flow in y direction. The over-dot means differentiation by 
dimensionless time. 

Figure 10 shows the mechanical energy transfer for different 
temperature ratios. As can be seen in the figure, the energy 
transfer first increases with increasing amplitude, reaches a 
maximum value, and then decreases with increasing amplitude. 
The energy transfer is positive for the smaller amplitude values 
and negative for the larger Ay values. Positive E values mean 
that energy is added to the cylinder from the fluid, and so 
flow-induced vibration is liable to occur. By increasing the T* 
value, the energy transfer curve shift to smaller E values. For 
the unheated cylinder (T*=0) the agreement between FDM 
[13] results and the present FVM results is very good. 

Figure 11 shows the limit cycles (y0, CL) for four different 
temperature ratios at Ay=0.20. The area enclosed by the limit 
cycles (y0, CL) represents the mechanical energy transfer E (see 
[3], [17]). As can be seen in the figure, by increasing the 
amplitude, the shape of the curves varies. E is positive when 

the orientation of the limit cycle curve is clockwise. Since this 
is true for all curves shown in Fig. 11, E is positive at Ay=0.20, 
as can also be seen in Fig. 10. 
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Fig. 10 Mechanical energy transfer versus amplitude for different 
temperature ratios 

 
Limit cycle curves (y0, CL) were determined also for a larger 

amplitude of 0.5 and for the T* values shown earlier, and the 
curves are given in Fig. 12. E is negative when the orientation 
of the limit cycle curve is counterclockwise. It can be seen in 
that this holds for every curve in Fig. 12, meaning that E is 
negative. This harmonizes with the results shown in Fig. 10 at 
Ay=0.5.  

 

-0.2 -0.1 0 0.1 0.2

-0.1

-0.05

0

0.05

0.1

0.15

y
0

C
L

A
y
=0.20

← T*=1.0

← T*=1.1

← T*=1.2

← T*=1.5

 
 

Fig. 11 Limit cycles (y0, CL) at Ay=0.20 for different temperature 
ratios 

 
As can be seen in Figs. 11 and 12, at both amplitude values 

it is observed that all limit cycle curves go through the same 
two points on the (y0, CL) plane . We have not yet found an 
explanation for this. 
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Fig. 12 Limit cycles (y0, CL) at Ay=0.50 for different temperature 
ratios 

 

IV. CONCLUSIONS  
The influence of temperature ratio and oscillation amplitude 

was investigated on the two-dimensional superposition of 
uniform free stream flow and transversely oscillating flow of 
an incompressible fluid past a heated stationary circular 
cylinder. Investigations were based on the finite volume 
method and the dependence of fluid properties were taken into 
account.  

In this study several computational aspects were 
investigated at a given Reynolds number of 160. For an 
unheated cylinder the present results were compared with 
those obtained by a finite difference method and good 
agreement was found. 

With increasing surface temperature values the time-mean 
drag coefficients increase almost linearly, while the root-mean-
square values of lift and time-mean of the Nusselt number 
decrease. 

The distribution of the local Nusselt number over the 
cylinder surface was investigated over a complete vortex 
shedding cycle for a given temperature ratio and amplitude. It 
was found that the curves belonging to different phases are 
similar in shape and magnitude, but the Nusselt numbers at a 
fixed surface point can differ substantially.  

Both positive (enhancing cylinder motion) and negative 
(damping cylinder motion) values occur in energy transfer for 
the superposition of uniform main stream and transverse 
oscillation, and the E values decrease at a given amplitude 
with increasing temperature ratio. 

The wake is not very sensitive to low temperature ratios, 
while a significant effect was observed at T*=1.5.  

Future plans include the investigation of flow at other 
Reynolds numbers and frequency ratios. 
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