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The role of immune system is to protect the organism from the not built-in
program-like alterations inside and against the agents penetrating from outside
(bacteria, viruses, and protozoa). These functions were developed and formed
during the evolution. Considering these functions, the immune system promotes
the lengthening of lifespan and helps longevity. However, some immune functions
have been conveyed by men to medical tools (e.g., pharmaceuticals, antibiotics,
and prevention), especially in our modern age, which help the struggle against
microbes, but evolutionarily weaken the immune system. Aging is a gradual slow
attrition by autoimmunity, directed by the thymus and regulated by the central
nervous system and pineal gland. Considering this, thymus could be a pacemaker of
aging. The remodeling of the immune system, which can be observed in elderly
people and centenarians, is probably not a cause of aging, but a consequence of it,
which helps to suit immunity to the requirements. Oxidative stress also helps the
attrition of the immune cells and antioxidants help to prolong lifespan. There are
gender differences in the aging of the immune system as well as in the longevity.
There is an advantage for women in both cases. This can be explained by hormonal
differences (estrogens positively influences both processes); however, social factors
are also not excluded. The endocrine disruptor chemicals act similar to estrogens,
like stimulating or suppressing immunity and provoking autoimmunity; however,
their role in longevity is controversial. There are some drugs (rapamycin, metformin,
and selegiline) and antioxidants (as vitamins C and E) that prolong lifespan and also
improve immunity. It is difficult to declare that longevity is exclusively dependent
on the state of the immune system; however, there is a parallelism between the state
of immune system and lifespan. It seems likely that there is not a real decline of
immunity during aging, but there is a remodeling of the system according to the
claims of senescence. This is manifested in the remaining (sometimes stronger)
function of memory cells in contrast to the production and number of the new
antigen-reactive naive T-cells.
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Introduction

It is well known that the elderly people are less resistant to infectious
diseases, frequently develop cancers, and inclined to autoimmune diseases. These
processes can be deduced to the progressing weakness of immune response. The
general immune response really decreases with aging [1], and there are some
theories that point to the central role of declining immune system on the general
aging as well as to the lifespan [2–4]. However, it is not clear that whether the
deterioration of the immune system is the cause of the general senescence or it
becomes senescent as a part of the general aging of the organism. Either the former
or the latter supposition is right, the production and function of immune cells could
have a basic role in the process.

Senescence of Immune Cell Production and Cell Pool

The domino hypothesis of the age-associated immune deficiency declares
that the process initiates with the involution of the thymus [5, 6]. In this case, the
number of naive T-cells in the periphery is reduced [7] with the proliferation of
resident T-cells, which later stops the proliferation. This is followed by a decline
in immune function, consequently the weakness of immune defense against
infections and cancer [8]. In centenarians (aged between 92 and 107 years),
the frequency of T lymphocytes was lower than that in young adults [9]. The
decrease was more expressed in CD8 than in CD4+ cells, leading to a high
CD4/CD8 ratio, in older adults. The mitogenic response to phytohemagglutinin or
concanavalin A and the number of B-cells, as well as the production of IgM
in vitro, were also reduced. The aged people have vanishingly low numbers and
percentages of naive CD8+ T-cells in the peripheral blood and the number of
memory CD8+ T-cells is higher (the naive cells are differentiated into effector and
memory cells) [10]. These types of changes are less manifested in the case of
CD4+ naive T-cells and for B-cells, as well as for some elements of innate
immunity (dendritic cells and neutrophils); however, all immune cells are touched
to some degree. The age-dependent defects in T- and B-cell functions run parallel
with the changes in the innate immune system (decrease in cell-mediated immune
functions, as response to vaccination) [11–15]; however, the most immune
parameters are well preserved in centanarians, where there is only a small
reduction of T lymphocytes. Other observation [16] shows that in centenarians,
there is a relatively small reduction of virgin and memory T-cells [16] and the
ability of cells to proliferate after appropriate stimuli. In addition, healthy
centenarian’s immune cells (including NK cells and phagocytes) efficiently kill
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the target cells [17]. This does not indicate the loss of immune reactivity, but a
remodeling of the immune system during the progressing age. Chemotaxis,
phagocytosis, natural killer cell activity, and lymphoproliferation in neutrophils
and lymphocytes of peripherial blood were studied and found to be decreased in
elderly people [3]. However, not only the T-cell sort of immune cells are
decreasing with age, but also the B-cells, especially naive B-cells [18]. Macro-
phages, which are the very important participiants of the innate immune system,
also have age-related impairments [19]. Studies on chemotaxis, phagocytosis, NK
cell activity, and proliferation of lymphocytes and neutrophils show that cen-
tanarians have these functions almost similar to middle-aged adults [3]. This
means likely that a catastrophic decrease of the immune functions does not happen
and instead a programmed remodeling, which meets immunity to the requirements
of the given age.

Chronic stress or glucocorticoid exposure causes similar (but transient)
immunosenescence as progressing age. This permits the supposition that the
continuous attrition of immune cell producing organs as well as the alteration of
hormonal system have a role in immunosenescence [20].

In conclusion, though there is a decline in the strength of immunity in aged
people, the dominant process is not the loss of cells, but the restructuring
(remodeling) of immune cell pool and by this, there is a dominance of structures
other than in younger age [21–24]. This means that the immune response to new
antigens is significantly declined, whereas to the earlier (recall) antigens are well
recognized and antibody production is satisfactory [25]. There is also a restructur-
ing between the innate and the adaptive immune system, which is manifested by
the usable cell sorts [26, 27]. It seems to be likely that the immune system is not an
operator of longevity, but rather a marker of the rate of aging and a predictor of
longevity [28, 29].

The aging of the immune system is mainly responsible for the free
radicals, which are produced by the mitochondria and the balance between
the amount of free radicals and antioxidants, produced endogeneously or
consumed from outer sites [28–30]. However, the state of the nervous and
the endocrine systems also has a basic role in the regulation of aging of the
immune system by a nervous–immune communication [31]. The defensive
function of the immune cells, especially that of macrophages, requests the
abundant production of free radicals, while their membranes are very sensitive
to the oxidative stress, which is mainly compensated by the production of
antioxidants [32]. The absence or not efficient amount of antioxidants leads to
the deterioriation of innate immune system [33], consequently also the
weakness of adaptive immune system, which could be responsible for the
immunosenescence [28, 32].
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The Increase of Human Lifespan, Evolutionary Considerations

As it was mentioned, the duty of the immune system is to defend the
organism from inner and outer attacks caused by alterations in the genetically
determined order (e.g., cancers) as well as to control and annihilate the intruders
(such as bacteria, parasites, viruses, etc.). During evolution, the immune system
developed according to the claims of the animals and served the function of
defense until the reproduction time, as the establishment of the following
generation had a primary importance. In the world of mammals, the aging is
infrequent and unnecessary, and this was also the situation in the case of human
up to our modern age. Some centuries ago, the average human lifespan was
between 30 and 40 years in the more developed countries and less in underde-
veloped cases. This situation is also found to be present in Africa, and only the
more developed countries would be generally needed the immune defense after
the reproductive ages. This can explain why is a deterioration of the immune
system during aging or why is a reordering of this system to a virtually weak
state during aging. However, the evolutionary legacy is only one of the factors,
which impairs the immune system in elderly people. The other is the conveyance
of human evolution to tools.

Immunity and Conveyed Evolution

In the past 40,000 years, the human morphological and functional evolution
has stopped, although some signs of molecular evolution can be observed. Man
conveyed its evolution to instruments (tools), which helps in the maintenance of
life better than their original capabilities [34]). Man can move better using
carriage, later by car, than by legs of their own and can see better using magnifiers,
later microscopes, etc. Man developed vaccination to prevent infections and
antibiotics to kill bacteria, if the disease had already manifested. Earlier, the
memory of immune cells ensured the recognition of bacteria and this inhibited
the novel manifestation of an infectious disease in the case of second infection, but
the second manifestation is frequent today, which was because of the quick
antibiotic treatment and there is not enough time to develop immunity. Earlier in
the case of an epidemic of a dangerous disease, a large number of people died and
the rest who survived the epidemic inherited the resistance to the progeny gen-
erations and as a result, resistent populations appeared. In our age, this is inhibited
by the successful treatments. This means that the employment of the treating tools of
our modern age is very useful for the man individually, saving the personal life;
however, it is harmful for the species by not permitting the development of
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immunity and inheritance of resistance. Although immunity is as old as eukaryotic
life [35], changes in its mechanisms can always happen.

The aforementioned facts are combined as follows: immunity after the
reproductive age was not needed, as there was not a large population of aged
people and new quick treatments inhibited the development of immunity before
the reproductive age. The consequence of the combination of these two factors is
the weakening of immunity to new antigens after reproduction (together the
sustenance of immune memory) and (if we accept the outstanding role of immune
system in longevity) therefore, the weakness of resistance in aged people to
infectious and tumorous diseases results in their death. However, the long post-
reproductive lifespan could not be calculated by the evolution [36], as there was
not similar case in the mammalian world (and earlier in man) and the change to the
long post-reproductive life was very quick and it becomes more and more faster.
There was (and is) not enough time for the program-like integration of the long
post-reproductive lifespan into the mechanisms of the immune system. The
conveyed evolution continously produces novel tools, which help the longevity,
without the utilization of the immune system [37]. The average lifespan in many
countries is around 80 years and the maximal lifespan could be more than 120
years for exceptional men, whose immune system together with the “tools” helped
to survive infectious, degenerative, and tumorous diseases. As it was mentioned,
100 years ago, people were living till 40 years and at present, the mass of people
are not living more than 40 years in Africa.

The Thymus Pacemaker

Thymus has a basic role in the immune system and in determining the
longevity. It selects and kills the self-destructive lymphocytes, which help in the
development of the organism up to the time of adolescence; however, after this
period of life, thymus permits the erosion of the cells, as well as the intercellular
materials, which leads to aging and later to the death of the organism. This general,
continuous, and slow autoimmunity, which attacks the whole organism, is inde-
pendent on the autoimmune diseases that are manifested in specific organs
(e.g., rheumatoid arthritis, multiple scelerosis, lupus, etc.). There is a continuous
attrition of the thymus also before puberty; however, after puberty, this becomes
obvious, manifested in (morphologically visible) involution of the organ, which runs
parallel to the deterioration of the immune system, together with its rearrangement,
manifested in special organs [38]. The immune function of the thymus is regulated
by the pineal gland, which is working under the direction of the brain; it seems to be
likely that the primum mover of thymus pacemaker is in the suprachiasmatic
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nucleus, which is in direct neural and indirect chemical contact with the pineal gland
[39, 40]. Autoimmunity causes a slow, but continuous erosion of the components of
the organism, which leads to the determination of lifespan, consequently longevity
[41, 42]. Without external interventions (bacterial or viral infections, accidents, etc.),
the co-involution of pineal and thymus could cause the senescence of the immune
system, the inflammaging, and death.

Gender Differences in the Role of Immunity on Longevity

The average human lifespan is increasing. At the beginning of the past
century, it was 30 or 40 years in the more developed countries and now it is around
80 years. However, in the past and present alike, the lifespan of women was
always higher. The difference in years is region- and country-dependent, i.e., in the
United States (US) it is 6.7, in Great Britain 5.3, in Hungary 8.3, in Russia more
than 12, in India 0.6, and in the neighboring country Bangladesh 0.1. The numbers
permit to guess that not only biological, but also social factors are influencing the
differences; however, the female adventage is consequent. Studying the statistics
of 178 countries, the female advantage was observed in 176. At present, the
maximal human lifespan is 122 years and 90% of centenarians and supercente-
narians are women. The question is: what is the explanation of this gender
difference? As immunity has a dominant role in the resistance of inner and outer
harmful aggression (infectious diseases, tumors, etc.), the causes of the gender
differences are the first to be sought among all the differences of immune factors.

More XY chromosome-containing zygotes are existing after fertilization
than XX-containing ones and therefore more boys are delivered than girls
(105:100). However, this advantage is gradually decreasing and after the adoles-
cent age, it is equalized and then it is passed to the advantage of women. Hormonal
differences could be found in the reasons of it, as sexual hormones strongly
influence the immune system and immune response abilities.

It was observed in animal experiments that the thymus transiently involutes
during pregnancy and fully restores at the end of lactation [43]. It also atrophies
after estrogen treatment [44]; however, testosterone treatment also causes thymic
involution [45], which can be explained by the androgen–estrogen conversion in
the body. This is due to the binding of excess estrogens by estrogen receptors (ER
alpha and ER beta) [46], which can be found in a wide scale of immune cells [47].
B lymphopoiesis is also severely diminished during pregnancy [44]. This means
that generally, estrogens are negative regulators of the immune system, while
macrophage activity is stimulated by it [48], depending on the dose [49]. The loss
of naive T-cells does not allow the action against new antigens and helps the
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proliferation of memory cells against old (earlier) antigens, which is characteristic
to the elderly [50]. Hypogonadal state and androgen deficiency enhance the thymic
output of T-cells [51], which also indicate the negative effect by androgens.
Although the effect of sex hormones on immune system is unequivocal, the
directions are controversial [52–55]. Innate immune cells are the first to get
influenced; however, cells belonging to the adaptive immune system are also
involved [56, 57]. The sex hormones can influence the immune system either
directly or indirectly with the transmission of microbiome [58]. In addition to the
negative effects of sexual hormones to the immune system, adrenal steroids are
also able to trigger thymus involution [59]. In addition, hormones produced by the
thymus itself (sex steroids, catecholamines, etc.) are also able to influence
involution [60, 61]. As estrogen and androgen receptors are present in developing
immunocytes, the early exposure to sex hormones strongly influences the response
to the sexual hormones in adulthood (hormonal imprinting) [62–64].

The involution of thymus starts in 1-year-old infants without gender
differences and it continuously follows with a rate of 3% up to the middle age
and with yearly 1% after that [65]. However, the number of thymic emigrant cells
(CD3+ T-cells) is significantly higher in females than males and as a whole,
female immune system is more robust compared with males [66]. In animal
experiments, the thymic atrophy (involution) was slower in female mice compared
with male ones and in 9-month-old mice CD3+ cells were present in higher
number. Sexual hormones strongly influence the immune system and immune
response abilities, rather in females than in males [67].

Accepting the aforementioned facts, it can be concluded that hormonal
differences can be responsible for the immune-influenced longevity differences.
However, other factors are not excluded (e.g., protection from mutant immuno-
regulatory genes on the X chromosome, because of double X chromosomes in
women) [68]. Many social factors were disadvantageous for women in the past
and also currently, a similar situation exists in certain regions. At the same time,
globally, men’s habitual characteristics (e.g., smoking, drinking, heavy physical
work, etc.) can influence the immune system and also shorten the average life
expectancy. However, the discussion of these factors is not the aim of this review.

Probable Alterations in the Human Lifespan Caused by Modern-Age-
Produced Exogeneous Chemicals and Phytoestrogens (Endocrine Disruptors)

If steroid hormone receptors are present in the immune cells (and they have
indeed), they also bind steroid-like molecules of exogeneous origin. The main
representants of these molecules are the bisphenol A, vinclozoline, benzpyrene,
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dioxin, and phytoestrogens (e.g., soy genistein and daidzein). Bound to the
members of steroid (intranuclear) hormone receptor superfamily (including
estrogen receptors, androgen receptors, progesterone receptors, and retinoid
receptors), they can activate them or inhibit the binding of the physiological
hormone [69]. Consequently, they are able to stimulate or inhibit the physiological
hormonal regulation. Their effect can be acute or long-lasting. The acute effect is
an intervention into the normal hormonal regulation in adult and the long-lasting
effect is dependent on the period of ontogenetic development. An interesting
property of the endocrine disruptors is the occasional stronger effect of low doses,
related to the higher ones. Finally, the manifestation of more autoimmune diseases
was deduced to the exposure of endocrine disruptors [70, 71], and disease
susceptibility and its transmission to the progenies also increased [72].

If the endocrine disruptors act during the early (embryonic) phase of
intrauterine development, malformations of the sexual organs can be observed,
such as cryptorchidism, hypospadias, and micropenis. However, there are very
rare data on the effect to the immune system [73, 74]. This is understandable, as
the immune effects are not directly manifested, they can be measured after birth,
first of all in adult age. If the effect of endocrine disruptor is taking place
perinatally, faulty hormonal imprinting develops with lifelong receptorial con-
sequences [75]. This means that the function of immune system is seriously
affected [76]. In addition, the faulty hormonal imprinting is inherited to the
progenies [77, 78], its symptoms are manifested there too, and the repeated
exposition by the same or similar faulty imprinters happens on the injured
receptors. Faulty hormonal imprinting can also be provoked during adolescence,
as it is also an imprinting-sensitive period of life [79, 80].

The faulty hormonal imprinting by endocrine disruptors is practically
unavoidable, as these molecules are present in our foods (phytoestrogens and
pesticides), in our plastic tools [81, 82], in the air, surronding us (e.g., benzpyrene
and dioxin, by binding to the aryl hydrocarbon receptor), in our drinking water, in
our pharmaceuticals (e.g., anticoncipient pills), etc., and considering only bisphe-
nol A, as it is present in more than 90% of the US general population [81, 83] and
was demonstrated in fetal serum and full-term amniotic fluid [84]. Nearly 4 billion
kilogram of bisphenol A are produced yearly and utilized and more than 100,000
kg is released into the atmosphere.

Pro-immunity and Antiaging

Free radicals produced as end products of electron-transport chain destroy
the plasma membrane and different important components of the cells, causing
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aging of them. This process has an outstanding role in the senescence of the immune
system, as well as in the general aging and longevity (it is worthnoting that there are
contradictory studies, e.g., [85], which emphasize the positive and signal function of
free radicals [86, 87]). There is a built-in mechanism in the animal (human)
organism, which protects the cells from the destruction using antioxidants such
as superoxid dismutase and catalase and the balance between the oxidizing free
radicals and physiological antioxidants determines the state of the system. However,
there is a possibility to help fight against the oxidants, by the introduction of
antioxidant compounds. Some vitamins are in the frontline of this battle.

Two vitamins have outstanding antioxidant effects, i.e., vitamins C and E.
Vitamin C (ascorbic acid) is water soluble and its effect is manifested inside the
cells, whereas vitamin E is lipid soluble and its effect first save the plasma
membrane. Both vitamins participate in the free radical trapping and in the
suppression of pro-inflammatory genes influencing the innate and adaptive
immune systems alike [88–91]. Telomere shortening is also suspended by them.
Vitamin E improves T-cell functions [92] and T-cell proliferation [93, 94] by
particularly reversing the decline of naive T-cell [95]. Vitamin E supplementation
improves immune responsiveness by the decrease of lipid peroxidation products
(such as PGE2) [96, 97] and helps the quick recovery of thymic atrophy, after
X-ray irradiation [98].

Other vitamins, such as vitamins A and D, also have antioxidant effects and
by this they influence immunity and longevity [99, 100]. However, these effects –
in our present knowledge – seem to be not so important as the effects of vitamins C
and E. There is such antiaging remedy, which dates back on thousands of years,
such as ginseng [101], and are relatively new pharmaceuticals that have antiaging
effects, such as selegiline (deprenyl) [102], which also have immunostimulant
activity [103, 104].

There are also some pharmaceuticals that have pro-immune and antiaging
effects. These are the rapamycin, rapalogs (derivatives of rapamycin), and
metformin.

Rapamycin was originally isolated from Streptomyces hygroscopicus, which
is indigenous in the Easter Islands and was used originally for declining immune
response in the case of organ transplantation. However, later its robust immune-
enhancing effect was also cleared [105]. Its target is the mammalian target of
Rapamycin (mTOR), which is a serin/threonin kinase, encoded by the mTOR gene
in men. Rapamycin, inhibiting mTOR enhances immune system and prolong
lifespan [106–109].

Recognizing that hyperglycemia and hyperinsulinemia are important
factors in aging and insulin-like growth factor 1 (IGF-1) is linked to longevity,
it was supposed that caloric restriction has its beneficial (life-prolonging) effects

IMMUNITY AND LONGEVITY 9

Acta Microbiologica et Immunologica Hungarica 66, 2019



through these factors [110]. Because of this, the antidiabetic drug, metformin, had
been used for the extension of life. It is also a stimulant of the immune
system [111, 112].

Lifespan is not equal with healthspan and many old people suffer by chronic
diseases. This enhances the research of new antiaging and pro-immune com-
pounds [113]. These can be calorie-restriction mimetics, autophagy inducers,
senolytics, etc. [114]. This involves antiaging (and pro-immune) pharmacology,
which is a rapidly developing discipline.

Conclusions

The immune system has a prominent role in the struggle against diseases
both in younger and older age people and acute as well as chronic diseases
frequently cause death. The resistance to common diseases weakens in older age
and this works against longevity. From this point of view, strong immunity could
be the prime mover of longevity and it weakens the cause of short lifespan [115].
In addition, the spontaneous involution of the thymus and the thymus-directed
autoimmunity can also influence the lifespan, independent on infections or
atritions. Antiaging (longevity-provoking) drugs are influencing the immune
system and also promoting the supposition of the role of immune system in
longevity. In addition, it must be considered that in the case of longevity, the
immune system was studied very thoroughly and many-sided, whereas a lot of
other systems were neglected. Therefore, it is difficult to declare that the secret of
aging and longevity is hidden in the immune system, as the immune senescence
can be a part of the general senecence of the organism, regulated by factors other
than immune factors (brain, brain-regulated endocrine system, etc.) By all means,
the immune system has a very important role in longevity, which does not disclose
the participation of other systems or organs.

Although some researchers have grown enthusiastic about the presently
accepted upper limit of human lifespan (122 years) and believe that it can be
unlimited, death is unavoidable. However, the questions are: how and when. It
seems to be very likely that the immune system can positively determine the
“how,” warranting healthspan, or negatively, producing autoimmunity, and its
function is very important, especially when considering the continuously growing
number of elderly people.

If we accept that the state of the immune system has a leading role in aging
and lifespan, grave changes in longevity are expected by the extremely increasing
number and variety of the endocrine disruptors [116], as well as by the new
antiaging pharmaceuticals. However, the direction of the changes cannot be
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calculated at present. Considering that the alterations caused by the endocrine
disruptors in the early periods of life are inherited to progenies, the perspectives
seem to be more serious. However, theoretically, there is a possibility of
transformation of the whole endocrine system under the bombardment by endo-
crine disruptors, which could also influence the human immunity and longevity
alike, as the integration of some endocrine disruptors into the human endocrine
system is imaginable, as probably it was in the case of lipid-soluble vitamins
(exohormones) [117, 118].
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