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The success of Acinetobacter baumannii as an emerging organism is probably
linked to its high resistance to adverse environmental conditions. This study was
conducted to analyze the association between some factors that may favor the
dissemination of A. baumannii clinical isolates. A total of 47 clinical strains of
A. baumannii were evaluated to carbapenem, the ability to produce biofilm, the
susceptibility to some antiseptics, and the survival time on cotton fabrics. Most of the
isolates were resistant to carbapenem (72.3%), produced biofilm (83%), and survived
more than 7 (51%) days on fabrics. A significant association between decreased
susceptibility to antiseptics containing chlorhexidine or triclosan and carbapenem
resistance and survival on fabrics could be observed. The resistance to carbapenem
was significantly associated with survival on fabric, but not with the ability to form
biofilm. The survival of the isolates on fabric was not associated with the ability to
produce biofilms. Characteristics, such as resistance to antibiotics, ability to form
biofilm, and survival on dry surfaces, probably contribute to the proliferation of this
organism when selected in the hospital environment and can partly explain its success
as responsible for nosocomial infection.

Keywords: Acinetobacter baumannii, antiseptics, biofilm, antimicrobial
resistance, survival

Introduction

Acinetobacter baumannii is an opportunistic pathogen known for its ability to
survive in hospital environments, particularly under humid conditions where it can
form biofilms, thereby increasing its resistance to a wide variety of antibiotics [1, 2].
The majority of infections caused by A. baumannii are hospital-acquired, and the
transmission occurs mainly through the hands of healthcare workers, contaminated
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clinical material and clinical environments, and also possibly through the air [3, 4].
The prolonged environmental survival of this pathogen and its high capacity
to acquire resistance to multiple antibiotics makes its eradication difficult once it
has become endemic [5]. In recent years, the spread of carbapenem-resistant
Acinetobacter has worsened the worldwide epidemiological situation related to
this pathogen [6]. Since Acinetobacter was included in the European Antimicrobial
Resistance Surveillance Network in 2012, more than half of the countries involved
in the study showed an increase for the period 2012–2015 with regard to combined
resistance to the three antimicrobial groups: fluoroquinolones, aminoglycosides, and
carbapenems [5].

In light of its ability to survive in the environment, the disinfection of
materials, surfaces, and hands is particularly important to prevent the spread of
Acinetobacter spp. and other organisms responsible for nosocomial infections.
Unlike resistance to antibiotics, resistance to commonly used disinfectants
appears to have no active role in the spread of these organisms [7]. In general,
all disinfectants inhibit the growth of all organisms at the concentrations and
contact times recommended by the manufacturers; however, minor deviations
from the recommended procedures could have a determinate role in nosocomial
cross-transmission [8].

Some studies have linked the ability of bacteria to produce biofilms with their
resistance to harsh environmental conditions and difficulties in their eradication
from hospital environments [1, 9]. Bacteria within biofilms show greater resistance
to disinfectants, and several studies have established a significant correlation
between biofilm formation and resistance to multiple drugs [10, 11]. The protection
exerted by the extracellular matrix, phenotypic changes to the cells in biofilms, and
other mechanisms still to be fully elucidated confers increased tolerance by the cells
growing in biofilms to antibiotics and disinfectants [10, 12].

To better understand the characteristics of A. baumannii that contribute to its
ability to cause nosocomial infections, this study aimed to determine the correla-
tions between parameters of long-term survival on cotton fabrics, the ability to
form biofilms, and susceptibility to antibiotics and hand antiseptics in clinical
isolates.

Materials and Methods

Bacterial strains and antibiotic resistance

Non-repetitive clinical isolates of A. baumannii obtained from patients with
hospital-acquired infections at the University Hospital in Malaga (Spain) were
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used in this study. A 24-h culture in trypticase soy broth (TSB; Panreac, Spain) for
each isolate was centrifuged and the sediment resuspended in phosphate-buffered
saline (PBS; pH 7.4) to obtain a bacterial suspension adjusted to 0.12± 0.02 at
OD630. This bacterial suspension was 10-fold diluted in PBS to obtain a standard
culture (SC) and maintained at 4 °C until use (<2 h). A series of 10-fold dilutions
were prepared from the SC (∼107 CFU/ml) and 100 μl aliquots were then
concomitantly sprayed onto separate CHROMagar® Acinetobacter medium
(CRMA) plates and CRMA plates supplemented with CR102 (CHROMagar,
Paris, France). Trypticase soy agar (TSA) plates were used as a control and to
quantify the number of viable bacteria in each dilution. Plates were incubated
overnight at 37 °C. CRMA is a rapid medium for the selection and identification of
Acinetobacter spp. [13], and CR102 is an antimicrobial selective supplement that
can be added to CRMA (CRMA-CR102) to detect carbapenem-resistant Acine-
tobacter [14]. When A. baumannii strains only grew in CRMA, or their mean
growth (CFU/ml) in CRMA-CR102 plates was less than three standard deviations
that of the mean CRMA growth, the strains were classified as non-resistant to
carbapenem.

Antiseptic susceptibility testing

The antiseptics used in this study were as follows: 0.4% chlorhexidine (CHX)
and 70% vol/vol n-propanol (CHX 0.4%, Albus, Spain), 0.2% mecetronium
and 45% vol/vol 2-propanol, and 30% vol/vol 1-propanol (STR; Sterillium®, Lab
Bode-Chemie GmbH, Germany), 0.5% triclosan, 15.76% vol/vol 2-propanol, and
49.9% vol/vol ethanol (DRX; Daromix®, Lab Collado, Spain), and 70% ethanol vol/
vol as hydroalcoholic gel (ANG; Aniosgel®, Lab Anios, France). As a neutralizing
agent (NA), a commercial preparation (Scharlau Chemie, Spain) containing 0.1%
peptone, 0.1% L-histidine, 0.3% lecithin, 0.36% monopotassium phosphate, 0.72%
disodium phosphate, 0.43% sodium chloride, and 3% polysorbate 80 diluted in
distilled water was used. The bactericidal activities of the antiseptics were measured
by triplicate using the dilution–neutralization method against bacteria in suspension
as follows: 100 μl of a SC were added to tubes containing doubling-dilutions in
distilled water of antiseptic (900 μl). Tubes without biocide were used as a control.
After 1-min incubation at room temperature, 100 μl of the mixture were mixed with
900 μl of NA and maintained for 10 min. The bacterial count (in CFU/ml) was
subsequently determined on TSA by serial dilutions in TSB. To determine
the bactericidal activities of the antiseptics, the mean number of viable bacteria
(in CFU/ml) before and after exposure to a disinfectant was expressed as the log10
value, and the logarithmic reduction (LR) was calculated as described in the
UNE-EN 1040 [15]. Antiseptics were considered bactericidal when LR ≥5 within
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the chosen contact time. The higher dilutions of antiseptics in which LR≥5 for each
strain were designated as the minimum inhibitory concentration (MIC) dilution.

Biofilm formation

An aliquot of 100 μl of SC for each of the strains was transferred to the wells
of a sterile polystyrene flat-bottomed 48-well microtiter plate (Iwaki Co., Japan)
each containing 900 μl of TSB, and was incubated at 37 °C. After 24 h of
incubation, the culture medium was pipetted out of the wells and replaced with
fresh TSB. After incubation for another 24 h, the wells were decanted and washed
with PBS to remove any bacteria that had not adhered to the wells and then were
allowed to dry (30 min). Next, 900 μl of 99.8% methanol were added to each well
to fix the biofilm for 15 min, and later decanted and allowed to dry for another
30 min. The biofilm was then stained with 900 μl of 0.5% crystal violet (w/v) for
15 min, and once decanted again quantified at 560 nm after solubilization with
900 μl of 95% ethanol. TSB without bacteria was used as a negative control. Five
replicates were carried out for each strain and the results [optical densities (OD)]
were averaged. Biofilm production was interpreted according to previously
established criteria [9, 16]: the cut-off absorbance value (ODc) was considered
as three standard deviations above the mean OD of the negative control. The
A. baumannii strains were thus classified into four categories: none (OD≤ODc),
weak (ODc<OD≤ 2 ×ODc), moderate (2 ×ODc<OD≤ 4 ×ODc), and strong
biofilm producers (4 ×ODc<OD).

Survival on hospital fabric

A. baumannii survival was tested on fabric commonly used in our hospital
(100% smooth cotton) as follows. Autoclaved swatches (∼1 cm2) were placed in
petri dishes and 100 μl of a previously prepared SC (<2 h) were smoothly
deposited onto the surface of the fabric and incubated at 25 °C and 40%–60%
humidity, as previously described [17]. Viable counts were then determined at
0 days (<5 min after being inoculated) and 1, 3, 7, 14, and 21 days until the colony
counts on TSA plates were≤ 25. For viable counts, each swatch was vortexed for
60 s in 5 ml of sterile 0.2% Tween-80 in PBS (PBS-Tween) and 100 μl aliquots
were directly plated onto TSA plates (undiluted) or after appropriate dilution in
sterile PBS. Three swatches were used separately for each count, and three 10-fold
dilutions were made for each swatch. TSA plates were incubated at 37 °C for 24 h
for colony counting, and each assay was repeated thrice. The survival of each
strain on the fabric at each time point was calculated from the mean number of
viable colonies for each replicate.
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Statistical analysis

The χ2 test or Fisher’s exact test was used to compare qualitative variables,
as appropriate. Analysis of variance of the survival on fabric at each time point was
performed with regard to antibiotic resistance, biofilm formation, or the antiseptic
MIC dilution. Differences of p< 0.05 were considered statistically significant.

Results

A total of 47 A. baumannii clinical isolates were included in this study. A SC
containing an inoculum of ∼107 CFU/ml (range: 3 × 106–2.6 × 107 CFU/ml) was
obtained for each strain immediately before being used in any of the trials included
in this study. All of the 47 A. baumannii isolates (100%) grew on CRMA plates
and the counts did not show significant differences with respect to the inoculums
grown on control TSA plates. Of the 47 strains studied, 34 strains (72.3%) showed
growth on the CRMA-102 plates and were defined as carbapenem-resistant
A. baumannii (CRAB); the remaining 13 strains (27.7%) were defined as non-
resistant to carbapenem (non-CRAB) (Table I).

Most of the isolates (83%) were able to form some degree of biofilm,
whether this was classified as weak, moderate, or strong (Table I). Approximately
45% of the isolates (21 strains) were classified as strong biofilm producers. The
distribution of carbapenem resistance among the different strains was similar to
that of biofilm formation.

Table II shows the antiseptic susceptibility patterns of A. baumannii isolates
after 1 min exposure to each dilution of the tested antiseptics. All strains were
inhibited after 1 min exposure by dilutions in sterile distilled water of up to 1:4 for

Table I. Biofilm classification based on microtiter plate method and susceptibility to carbapenem according
to a method of screening using CRMA-102

Resistance to carbapenem

Total (%)CRAB Non-CRAB

No biofilm 6 2 8 (17.0)
Weak biofilm 8 4 12 (25.5)
Moderate biofilm 6 0 6 (12.8)
Strong biofilm 14 7 21 (44.7)
Total (%) 34 (72.3) 13 (27.7) 47 (100.0)

Note: CRAB: carbapenem-resistant A. baumannii; Non-CRAB: A. baumannii non-resistant to carbapenem;
CRMA-102: CHROMagar® Acinetobacter medium supplemented with CR102 to identify resistance to
carbapenem.
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STR and ANG, up to 1:8 for CHX, and up to 1:32 for DRX. The antiseptic with the
highest biocide activity at the lowest concentration was DRX.

Figure 1 shows the percentage of surviving A. baumannii strains on cotton
fabrics under the test conditions described above. Approximately 50% of the
strains survived for at least 1 week on the fabric samples, but only six strains
(12.7%) survived up to 14 days and no strains grew after 21 days on the fabric.

To evaluate the association between antimicrobial resistance, susceptibility
to antiseptics, the ability to form biofilm, and the persistence on cotton fabric
samples, A. baumannii isolates were classified as follows: strains that produced no
or weak biofilm were classified as scarce biofilm (SB) producers; strains that
produced moderate or strong biofilm were classified as abundant biofilm (AB)

Table II. Bactericidal activity of antiseptics for hand against A. baumannii isolates

Number of isolates according to MIC dilution obtained for each strain

1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256 1:512 RS ANRS

ANG 0 0 18 25 4 0 0 0 0 18 29
CHX 0 0 0 15 32 0 0 0 0 15 32
DRX 0 0 0 0 0 1 14 14 18 15 32
STR 0 0 12 32 2 1 0 0 0 12 35

Note: MIC dilution: the higher dilutions of antiseptics in which LR≥ 5 for each strain; ANG: Aniosgel®;
CHX: chlorhexidine 0.4%; DRX: Daromix®; STR: Sterillium®. RS: isolated showing reduced susceptibility
to antiseptics (MIC dilution= 1:8 for ANG and STR, 1:16 for CHX or ≤1:128 for DRX); ANRS: isolated
with non-reduced susceptibility to antiseptics (MIC dilution: ≥1:16 for ANG and STR, 1:32 for CHX or
≥1:256 for DRX).

Figure 1. Survival of clinical isolates of A. baumannii on cotton fabrics
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producers; strains susceptible only to the lowest dilutions tested with each
antiseptic (Table II) were classified as isolates with reduced susceptibility (RS)
to antiseptics, and strains susceptible to the highest dilutions tested were classified
as isolates with non-RS to antiseptic (ANRS); finally, based on their survival on
cotton fabrics, the isolates were classified as having either low persistence
(survival <7 days, 17 strains, 36.2%) or more persistence (MP, survival ≥7 days,
30 strains, 63.8%).

The resistance of the strains to carbapenem was not associated with the
degree of biofilm production, even when the ability to form biofilm was divided
into the two groups, SB (weak or no biofilm, 20 strains, 42.5%) and AB (moderate
and strong biofilm, 27 strains, 57.5%).

According to the susceptibility to each antiseptic, isolates with MIC dilution
values ≤8 (ANG), ≤16 (CHX), ≤128 (DRX), or ≤8 (STR) were classified as RS
for the respective antiseptic (Table II). Isolates with higher MIC dilution values
were considered as ANRS for the corresponding antiseptic. RS to DRX and CHX
was associated with resistance to carbapenem (DRX, p= 0.027 and CHX,
p= 0.002). However, RS to STR or ANG was not associated with resistance to
carbapenem. When comparing the MIC dilution values of the different antiseptics,
only RS to CHX was associated with RS to DRX (p= 0.007). Whereas, when
comparing the susceptibility to antiseptics of the isolates with the ability to form
biofilm, only RS to STR was associated (p= 0.036) with a greater ability to
produce biofilm (AB strains).

To compare the characteristics of survival on cotton fabric with resistance to
carbapenem, higher survival (MP ≥7 days) of the isolates on fabric was associated
(p= 0.017) with resistance to carbapenem. However, the survival of the isolates on
fabric was not associated with the ability to produce biofilm. When the survival on
fabric and the susceptibility to antiseptics was compared for Acinetobacter strains,
MP (≥7 days) was significantly associated with RS to DRX (P= 0.002) and to
CHX (P= 0.037), and was close to significance (p= 0.055) with STR.

Discussion

Several studies have investigated the rapid diffusion of antibiotic resistance
in hospital environments as a consequence of the widespread use of antibiotics
[18, 19], but no clear evidence has been found that the same thing happens with
antiseptics and disinfectants [7, 20]. Unlike antibiotics, the use of disinfectants/
antiseptics does not seem to have resulted in an increase in resistance, even after a
prolonged period of use [20]. In this study, the antiseptics tested were effective at
eliminating Acinetobacter isolates when used at the concentrations and according
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to the procedures recommended by the manufacturer. When the strains of
Acinetobacter included in the study were divided into two groups according to
their susceptibility to the antiseptics tested, the groups of isolates with RS to CHX
or DRX (more tolerant to antiseptic) were associated with resistance to carbape-
nem. The relationship between antibiotic resistance and RS to biocides is
controversial [8, 21] and has only been established for the biocides chlrohexidine
digluconate or benzalkonium chloride [22–24]. CHX and DRX, which include
CHX digluconate and triclosan, respectively, are good substrates of efflux pumps,
which in turn are involved in resistance to several antibiotics [23, 25]. This may
suggest a competitive advantage of the organisms more resistant to these biocides.

The relationship between the ability to produce biofilm and resistance to
antibiotics is a controversial issue [26]. Although the number of resistant biofilm-
forming strains is high, some studies have observed that non-biofilm-forming
strains are more resistant than biofilm-forming strains [1, 27], but these results
differ from those of other studies in which the opposite is observed [26, 28]. In this
study, 83% of the strains investigated had the ability to form biofilm, which was
consistent with the results observed by Sechi et al. [29] and Krzyściak et al. [30]
(80% and 81.9%, respectively). In addition, 85% of the biofilm-forming strains
were also classified as carbapenem resistant; however, the biofilm-forming strains
were not significantly more resistant than those that did not form biofilm.

Biofilm formation increases the survival rate of A. baumannii on dry
surfaces and may contribute to its persistence in hospital environments, increas-
ing the probability of causing nosocomial infections and outbreaks [1]. The
persistence of Acinetobacter on dry surfaces over long periods of time is well
known, and the observed differences in its ability to remain viable correspond
more to the composition of the surface, environmental conditions, and the
techniques used to determine its viability [30, 31]. In this study, the MP isolates
were significantly more resistant to antibiotics and with RS to the antiseptics
DRX and CHX. The relationship between biofilm formation and resistance to
antibiotics, survival on dry surfaces, and tolerance to antiseptics/disinfectant is
slowly being clarified. It is often stated that the general resistance of organisms to
antimicrobial agents as well as their long-term survival on dry surfaces con-
tributes to the epidemic spread of nosocomial pathogens [8, 32]. In this study, all
tested antiseptics displayed good bactericidal activity against all Acinetobacter
isolates at the concentrations of use. However, when the antiseptics were diluted
to calculate the MIC, strains that displayed an RS phenotype to antiseptics, such
as CHX or DRX, harbored resistance mechanisms that were shared in function
with antibiotic resistance mechanisms. Therefore, strains that displayed resis-
tance to antiseptics were more likely to be resistant to carbapenem and show
greater persistence on cotton fabric.
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It is known that Acinetobacter, like many other organisms, can persist on
surfaces in hospital environments for prolonged periods of time, and that this
duration can vary depending on the composition of the surface and factors such as
humidity or temperature [31, 33]. In this study, the survival time of the isolates was
within the range (3 days to 5 months), as previously described for this organism
[31], although the test methods, surfaces, and environmental factors used in
previous studies have been diverse. None of the isolates included in the study
survived 21 days on the cotton fabric under the conditions studied (Figure 1). It has
been shown that the survival of various organisms on cotton fabrics is lower than
that on other materials such as plastics or wood, which may explain why longer
survival periods were not detected [31, 34], although other environmental con-
ditions and the method used may also have influenced the results of this study.
A relationship between biofilm formation and the survival of A. baumannii was
observed by Espinal et al. [1] demonstrating that that biofilm producers were more
persistent on dry surfaces than non-biofilm producers; this was not possible to
detect in this study. The lack of association between the ability to form biofilm and
resistance to carbapenem and survival on cotton fabric could be related to the small
number of non-biofilm isolates used in this study, as was suggested to be the case
in another study [35], as those with weak or no ability to form biofilm showed a
high frequency of resistance to carbapenem. MP strains on cotton fabric, however,
were associated with carbapenem resistance and lower susceptibility to CHX
and DRX. These characteristics could potentially facilitate the colonization of
Acinetobacter strains that are more resistant to antibiotics and environmental
conditions in the hospital environment.

The mechanisms involved in the resistance of A. baumannii to carbapenem
or biofilm formation are complex and therefore it is difficult to establish a clear
relationship between phenotypes and the genes involved in the formation of
biofilm or susceptibility to antimicrobial agents [30].

The limitations of this study were that for clinical purposes, experiments
with antiseptics were performed on bacteria in suspension, which may not be fully
representative of the actual environmental conditions. In addition, this study was
only performed with clinical isolates, so additional studies would be necessary to
determine if the frequency of the characteristics analyzed (biofilm, tolerance to
antiseptics, and resistance to antibiotics or survival) varies among environmental
strains. Susceptibility to antibiotics was determined based on the growth of iso-
lates on CRMA-CR102 plates, rather than estimating the respective MICs to
the different antibiotics or analyzing the genes involved in resistance. However,
the use of CRMA-CR102 has proven effective as a screening medium for
the detection of CRAB, and carbapenem resistance has been associated with
multidrug resistance [14]. Furthermore, in this study, resistance to carbapenem
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was associated with lower susceptibility to antiseptics as common resistance
mechanisms exist.

The results of this study showed that most of the clinical isolates of
A. baumannii were able to form biofilm, were resistant to carbapenem, and could
survive in a dry environment on cotton fabric, and an association was detected
between the susceptibility to carbapenem and some antiseptics. The ability to
form biofilm, drug and antiseptic susceptibility, and persistence are survival
mechanisms for bacteria and their frequency among A. baumannii strains are
influenced by in different environmental pressure. Studies that analyze all of
these characteristics simultaneously should increase our understanding of the
causes behind the proliferation of this opportunistic pathogen in hospital
environments.
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