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ABSTRACT
The stoichiometry and stability constants of the gallium(III) and iron(III) complexes of two 

alkoxycarbonylmethyl-3-hydroxy-2(1H)-pyridinone ligands were determined by means of 

pH-potentiometry, UV-Vis spectrophotometry and 1H and 71Ga NMR spectroscopy in 

aqueous solution. The cytotoxicity of one of the gallium(III) complexes was also measured in 

multidrug resistant/non-resistant human colonic adenocarcinoma cell lines. Iron(III) forms 

complexes with the studied 3-hydroxy-2-pyridinones of higher stability than gallium(III), 

while the obtained pFe values are significantly lower (pFe: 14.95, 15.06; pH 7.4, cM = 1 M, 

cL = 10 M) compared to those of typical iron binders such as deferiprone or transferrin. The 

moderate gallium(III) and iron(III) binding ability of the compounds stands for lower solution 

complex stability compared to that of analogous bidentate non-substituted 3-hydroxy-2-

pyridinone or 3-hydroxy-4-pyridinone (O,O) donor ligands. Tris-ligand complexes of the 

general formula [ML3] (M = Ga, Fe) predominate at physiological pH for both ligands. No 

interaction with cell culture medium components was observed in the millimolar 

concentration range of gallium(III) complexes, however they can suffer significant 

decomposition at biologically relevant low concentrations leading to negligible cytotoxic 

activity. The redox potential of the studied iron–3-hydroxy-2-pyridinone complex (E1/2 = 

‒597 mV at pH 7.4) falls into the range that is typical of iron(III) complexes with 

conventional bidentate (O,O) donor-containing chelators.
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Introduction
Gallium, ruthenium, and copper complexes are often considered as attractive alternatives to 

platinum-based compounds such as cisplatin and oxaliplatin. Different types of platinum 

complexes are still widely used anticancer drugs, despite patients experiencing adverse effects 

and their lack of activity against certain types of cancer [1-5]. Ga(NO3)3 exerts antineoplastic 

effects in particular the treatment of lymphoma and bladder cancer and the anticancer activity 

can be enhanced by complexation to lipophilic ligands [5,6]. Promising anticancer 

gallium(III) compounds are the six-coordinate tris-ligand neutral complexes tris(3-hydroxy-2-

methyl-4H-pyran-4-onato)Ga(III) (Ga-maltolate) [1,7] and tris(8-quinolinolato)Ga(III) 

(KP46) which have reached clinical trials [8,9]. Their solution stability differs significantly 

and as a consequence of the ca. 8 orders of magnitude higher stability constant of KP46 [10], 

it is able to preserve its original entity without decomposition [11], suggesting a transferrin 

(Tf)-independent gallium uptake mechanism. However, a preference of KP46 for Tf over 

human serum albumin (HSA) was suggested based on capillary electrophoresis-mass 

spectrometry studies at physiological HSA:Tf:Ga(III):Fe(III) ratios [12]. On the other hand, 

Tf is able to displace maltol significantly from its Ga(III) complex in the blood serum, leading 

to Tf-receptor-mediated endocytosis pathway [1,7]. Besides these complexes, many Ga(III) 

compounds have been prepared and tested in vitro and in vivo such as complexes of 

thiosemicarbazones and pyridoxal isonicotinyl hydrazones [1,7]. The supposed mode of 

action of these iron-targeting Ga(III) complexes, except to KP46, corresponds to the similarity 

of Ga(III) to Fe(III) in terms of charge, ionic radius, electronegativity, electron affinity and 

coordination geometry. However, Ga(III) is redox inactive, thus it can interfere with the 

cellular iron metabolism. 

Hydroxypyridinone-based chelators have been extensively studied for Fe(III) 

sequestration, especially in iron overload diseases [13,14]. Compounds from this family have 

also been investigated as potential Ga(III) binders for molecular imaging in positron emission 

tomography using 68Ga or for scintigraphic studies with 67Ga-labeled species [13,15,16]. In 

our previous work [17,18], a series of half-sandwich Ru(II)(6-p-cymene) complexes of 

alkoxycarbonylmethyl-3-hydroxy-2(1H)-pyridinone ligands with an (O,O) bidentate donor set 

was prepared, and characterized in solution and solid state. The anticancer activity of these 

complexes was evaluated in CH1 adenocarcinoma human cells representing moderate 

cytotoxicity (IC50 = 232-240 M). In this work, complex formation equilibrium processes of 

two representative ligands of this series, namely N-[(ethoxycarbonyl)methyl]-3-hydroxy-2-
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(1H)-pyridinone (EHP) and N-[(ethoxycarbonyl)methyl]-3-hydroxy-4-methyl-2-(1H)-

pyridinone (EHMP) (Chart 1), with Ga(III) and Fe(III) were studied. In addition to the 

aqueous solution studies, the in vitro cytotoxicity of the Ga(III) complexes in multidrug 

resistant and doxorubicin-sensitive human colon adenocarcinoma cell lines was studied. As 

complexation of Ga(III) and Fe(III) has been widely characterized with other 3-hydroxy-2-

pyridinone and 3-hydroxy-4-pyridinone type ligands in solution [16,19-23], stoichiometry and 

stability of EHP and EHMP complexes were compared to the analogous hydroxypyridinone 

complexes.
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Chart 1. Chemical structures of compounds used in this study in their neutral HL forms, i.e., EHP = 

N-[(ethoxycarbonyl)methyl]-3-hydroxy-2-(1H)-pyridinone, and EHMP = N-

[(ethoxycarbonyl)methyl]-3-hydroxy-4-methyl-2-(1H)-pyridinone, as well as the structures of related 

compounds maltol, deferiprone and MH2P used for comparison and the NMR numbering scheme. 

Materials and Methods

Materials

The ligands EHP and EHMP (Chart 1) were prepared as described previously [18]. The 

purity and hydrolytic stability of the ligands was verified and the exact concentrations of the 

stock solutions prepared were determined using the software Hyperquad [24]. To prepare the 

Ga(III) and Fe(III) stock solutions, GaCl3 and FeCl3 were dissolved in known amounts of 

HCl. Their concentrations were determined by complexometry via the EDTA complexes. 

Accurate strong acid content of the metal stock solutions were determined by pH-

potentiometric titration. 

pH-potentiometry and cyclic voltammetry 
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The pH-metric measurements for determination of the protonation constants of the ligands 

and the overall stability constants of the metal complexes were carried out at 25.0 ± 0.1 ºC in 

water and at an ionic strength of 0.20 M (KCl, Sigma-Aldrich) in order to keep the activity 

coefficients constant. The titrations were performed with carbonate-free KOH solution 

(0.20 M). Both the base and the HCl used were Sigma-Aldrich products and their 

concentrations were determined by pH-potentiometric titrations. An Orion 710A pH-meter 

equipped with a Metrohm combined electrode (type 6.0234.100) and a Metrohm 665 Dosimat 

burette were used for the pH-metric measurements. The electrode system was calibrated to the 

pH = −log[H+] scale by means of blank titrations (strong acid vs. strong base: HCl vs. KOH), 

as suggested by Irving et al. [25]. The average water ionization constant, pKw, was 13.76 ± 

0.01 at 25.0 ºC, I = 0.20 M (KCl), which corresponds well to the literature data [26]. The 

reproducibility of the titration points included in the calculations was within 0.005 pH units. 

The pH-metric titrations were performed in the pH range 2.0−11.5. The initial volume of the 

samples was 10.0 cm3. The ligand concentration was 2−4 mM and metal-to-ligand ratios of 

1:1 – 1:10 were used. The samples were degassed by bubbling purified argon through them 

for ca. 10 min prior to the measurements and it was also passed over the solutions during the 

titrations.

 The protonation constants of the ligands were determined with the computer program 

Hyperquad [24]; and PSEQUAD [27] was utilized to establish the stoichiometry of the 

complexes and to calculate the stability constants.  MpLqHr is defined for the general 

equilibrium:

pM + qL + rH MpLqHr (Eq. 1)

(MpLqHr) = [MpLqHr]/[M]p[L]q[H]r (Eq. 2)

where M denotes the metal ion and L the deprotonated ligand. The log values of the Ga(III) 

([Ga(OH)]2+: -2.46; [Ga(OH)2]+: -5.92; [Ga(OH)3]: -10.63; [Ga(OH)4]-: -16.87) and Fe(III) 

([Fe(OH)]2+: -3.21; [Fe(OH)2]+: -6.73; [Fe2(OH)2]4+: -4.09; [Fe3(OH)4]5-: -7.58) hydroxido 

complexes were taken from the literature [28,29]. The calculations were always made from 

the experimental titration data measured in the absence of any precipitate.

Cyclic voltammograms of the iron(III) complexes of EHP and deferiprone (Sigma-

Aldrich) were measured at 25.0 ± 0.1 °C and at an ionic strength of 0.2 M (KCl) on samples 

containing 1.0 mM metal ion and 3 mM ligand at pH 7.4 in aqueous solution. Samples were 

purged for 15 min with argon before recording the cyclic voltammograms. Measurements 

were performed on a conventional three-electrode system under argon atmosphere and a PC 
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controlled Autolab-PGSTAT 204 potentiostat. Platinum working and auxiliary electrodes and 

an Ag/AgCl/KCl (3 M) reference electrode were used. The electrochemical measuring system 

was calibrated with K3[Fe(CN)3]. 

UV-Vis spectrophotometric and NMR spectroscopic titrations

A Hewlett Packard 8452A diode array spectrophotometer was used to record the UV-Vis 

spectra in the range of 200–800 nm. The path length was 1 cm. Stability constants were 

calculated with the computer program PSEQUAD [27]. The spectrophotometric titrations 

were performed on samples of the ligand alone or with Fe(III) or Ga(III); the concentration of 

ligand was 100 M and the metal-to-ligand ratios were 1:1, 1:2 and 1:3 over the pH range 

2.0–11.5 at an ionic strength of 0.20 M (KCl) and at 25.0 ± 0.2 ºC. Measurements for 

Ga(III)/Fe(III)–ligand systems at 1:1 metal-to-ligand ratio were also carried out by preparing 

individual samples in which KCl was partially or completely replaced by HCl and pH values, 

varying in the range ca. 1.0–2.0, were calculated from the HCl content. 
1H and 71Ga NMR spectroscopic studies were carried out on a Bruker Ultrashield 500 

Plus instrument. 4,4-Dimethyl-4-silapentane-1-sulfonic acid was used as a 1H NMR standard. 

To record the 1H NMR spectra, the ligands were dissolved in a 10% (v/v) D2O/H2O mixture 

in concentrations of 2−4 mM and were titrated in the absence or presence of Ga(III) at a 1:3 

metal-to-ligand ratio at I = 0.20 M (KCl). For the 71Ga NMR spectroscopic titrations, a GaCl3 

solution (3 mM) was prepared in 10% (v/v) D2O/H2O with or without 12 mM EHP.

Cell lines, culture conditions and cytotoxicity tests in cancer cell lines

The human colon adenocarcinoma cell lines Colo 205 (doxorubicin-sensitive; ATCC-CCL-

222) and Colo 320/MDR-LRP (multidrug resistant overexpressing ABCB1 (MDR1)-LRP; 

ATCC-CCL-220.1) were purchased from LGC Promochem, Teddington, UK. The cells were 

cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum 

(FBS), 2 mM L-glutamine, 1 mM Na pyruvate and 100 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES). These cell lines were incubated at 37 C, in a 5% 

CO2, 95% air atmosphere. The semi-adherent human colon cancer cells were detached with 

Trypsin-Versene (EDTA) solution for 5 min at 37 C.

MRC-5 human embryonal lung fibroblast non-cancerous cell lines (ATCC CCL-171) 

were purchased from LGC Promochem, Teddington, UK. This cell line was cultured in 

Eagle’s Minimal Essential Medium (EMEM, containing 4.5 g/L glucose) supplemented with a 



  

7

non-essential amino acid mixture, a selection of vitamins and 10% heat-inactivated FBS. The 

cell lines were incubated at 37˚C, in a 5% CO2, 95% air atmosphere. 

MRC-5, Colo 205 and Colo 320 cells were used to determine the effect of EHP and a 

solution containing Ga(III) and EHP at a metal-to-ligand ratio of 1:3 at pH 7.4 in buffered 

aqueous solution on cell growth. The assay was performed with increasing concentrations of 

compounds in 96-well flat-bottomed microtiter plates. The compounds were diluted in 100 μL 

of medium.

The adherent human embryonal lung fibroblast cells were cultured in 96-well flat-

bottomed microtiter plates, using EMEM supplemented with 10% heat-inactivated FBS. The 

density of the cells was adjusted to 1×104 cells in 100 μL per well, the cells were seeded for 

24 h at 37 C, 5% CO2, then the medium was removed from the plates containing the cells, 

and the dilutions of compounds previously made in a separate plate were added to the cells in 

100 μL.

In case of the adenocarcinoma cells, two-fold serial dilutions of compounds were 

prepared in 100 μL of RPMI1640. The semi-adherent cells were treated with Trypsin-Versene 

(EDTA) solution. They were adjusted to a density of 6×103 cells in 100 μL of RPMI1640 

medium, and were added to each well, with the exception of the medium control wells. The 

final volume of the wells containing compounds and cells was 200 μL. 

The culture plates were incubated at 37 °C for 72 h. At the end of the incubation 

period, 20 μL of MTT (thiazolyl blue tetrazolium bromide, Sigma) solution (from a stock 

solution of 5 mg/mL) were added to each well. After incubation at 37 °C for 4 h, 100 μL of 

sodium dodecyl sulfate (SDS; Sigma) solution (10% in 0.01 M HCI) were added to each well 

and the plates were further incubated at 37 °C overnight. Cell growth was determined by 

measuring the optical density (OD) at 540/630 nm with a Multiscan EX ELISA reader 

(Thermo Labsystems, Cheshire, WA, USA). Inhibition of the cell growth was determined 

according to the formula below:

IC50  =  (Eq. 3)100100 












controlmediumODcontrolcellOD
controlmediumODsampleOD

Results are expressed in terms of IC50 values, defined as the inhibitory dose that reduces the 

growth of the cells exposed to the tested compounds by 50%. 

Results and discussion
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Solution equilibria of Fe(III) and Ga(III) complexes of EHP and EHMP

For the complete description of the equilibrium processes in the metal ion‒ligand systems the 

proton dissociation constants of the ligands are needed. The proton dissociation processes of 

EHP and EHMP (Chart 1) in aqueous solution were already studied previously with pH-

potentiometric, UV spectrophotometric and 1H NMR spectroscopic titrations [18]. These 

alkoxycarbonylmethyl-3-hydroxy-2(1H)-pyridinone ligands feature ester linkages, which 

however, were found to be stable against hydrolysis in the pH range 2.0−10.4 in aqueous 

solution. pKa values were determined and found to be similar as published earlier [18]. The 

proton dissociation constants are attributed to the deprotonation of the hydroxyl functional 

group, showing the higher basicity of the methylated derivative. 

Table 1. pKa values and overall stability constants (log) of the Ga(III) and Fe(III) complexes of 

EHP, EHMP and MH2P for comparison (T = 25.0 ºC, I = 0.20 M (KCl)). Based on the listed 

constants, pGa and pFe values were calculated at cM = 1 M; M:L = 1:10; pH = 7.4. 

EHP EHMP MH2P a

pKa 8.60b 9.20b 8.89

log  [GaL]2+ c 10.31 ± 0.09 11.05 ± 0.07 11.20

log  [GaL2]+ 19.39 ± 0.06 20.89 ± 0.02 21.10

log  [GaL3] 27.52 ± 0.03 29.55 ± 0.02 29.66

pGad 18.76 18.76 18.76

log  [FeL]2+ c 11.22 ± 0.05 12.09 ± 0.06 11.80

log  [FeL2]+ 20.26 ± 0.02 21.76 ± 0.03 21.63

log  [FeL3] 27.93 ± 0.03 29.80 ± 0.08 29.99

pFe e 14.95 15.06 16.03
a Data taken from ref. [30]. b Data taken from ref. [18]. 
c Determined by UV-Vis spectrophotometric measurements (pH = 
1.0−2.5). d pGa (deferiprone) = 17.8 [30], 19.40 calculated with 
log-s taken from ref. [31]; pGa (maltol) = 18.76 [10], pGa (Tf) = 
20.3 [19]. e pFe (deferiprone) = 20.5 [20], 19.31 calculated with 
log-s taken from ref. [31]; pFe (maltol) = 16.98 [23], pFe (Tf) = 
20.3 [21].

The complex formation processes of the ligands with Ga(III) and Fe(III) ions were 

studied primarily by pH-potentiometric titrations in aqueous solution. The coordination of 

EHP and EHMP starts already at pH < 2 in case of both metal ions; therefore the overall 

formation constants of the complexes of the type [ML]2+ (M = Ga, Fe; L = EHP, EHMP) 

formed at low pH were determined by UV-Vis spectrophotometry on individual samples 
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following the changes of the ligand bands (Ga(III)) or the charge-transfer bands (Fe(III)). KCl 

was partially or completely replaced by HCl in order to adjust the pH and keep the ionic 

strength constant in the samples. The stability constants for [ML]2+ complexes (see Table 1) 

was calculated by fitting the spectra recorded between pH 1.0 and 2.0 for Fe(III) and 2.5 for 

Ga(III). After keeping these log [ML]2+ values constant, the overall stability constants of the 

[ML2]+ and [ML3] species were determined by pH-potentiometry at pH < 9 or 8 in the case of 

Ga(III) or Fe(III), respectively. Data collected at pH > 9 was neglected due to the probable 

hydrolysis of the ester bond in the ligands and formation of precipitate in the Fe(III)–ligand 

systems. The stoichiometries of the metal complexes and the overall stability constants 

furnishing the best fits to the experimental data are listed in Table 1. In the [ML]2+, [ML2]+ 

and [ML3] complexes the bidentate (O,O) coordination mode is the most feasible, similar to 

other hydroxypyridinone compounds [19-21]. 
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Fig. 1. Concentration distribution curves for the Ga(III)–EHMP system calculated on the basis of the 

stability constants together with the pH-dependence of the absorbance values at 312 nm (●) and for the 

ligand alone (×). (cEHMP = 100 M; Ga:L = 1:3; T = 25.0 °C, I = 0.20 M (KCl))

In order to confirm the speciation models obtained by pH-potentiometry, UV 

spectrophotometric, 1H and 71Ga NMR spectroscopic titrations were applied for the Ga(III) 

containing systems. The pH-dependent UV spectral changes were significantly different in the 

acidic pH-range (pH ~2−7) in the presence of Ga(III) compared with the absence of the metal 

ion as shown for EHMP complexes in Fig. 1. This finding corresponds well with the complex 

formation processes predicted on the basis of the stability constants obtained by pH-

potentiometry. At pH > ~9, however, similar spectra with those of the ligands alone were 

observed owing to complex dissociation resulting in the release of the ligands and formation 

of [Ga(OH)4]−. 
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Peaks belonging to the free and Ga-bound ligands were distinguishable in the 1H NMR 

spectra due to the slow exchange processes on the NMR time-scale (Fig. 2 for EHP). The 

coordination to Ga(III) is accompanied by significant electronic shielding effects as compared 

with the HL ligand forms (Fig. 2 and Table 2). Upfield shifts of the aromatic ring, CH3(4), 

side chain CH2(q) and CH3(t) protons are observed except to CH(5) of EHP and CH(6) of 

EHMP in meta and ortho position to the pyridine-N atom, respectively. These latter protons 

appear at higher ppm by ~0.2 units in case of coordination to Ga(III). It is also worth to 

mention that the proton dissociation processes practically do not affect the chemical shifts of 

the side chain CH2(q) and CH3(t) protons of the ligands alone [18], although significant 

upfield shifts (0.15–0.19 ppm) are seen when the ligands are bound to the metal. 
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Fig. 2. Low (a) and high (b) field regions of the 1H NMR spectra of the Ga(III)–EHP system recorded 

at the indicated pH values. Grey boxes indicate signals assigned to the non-bound ligand, and the 

signals for the hydrolysis product ethanol and carboxylate are marked by stars (cEHP = 4 mM; Ga:L = 

1:3; T = 25.0 °C, I = 0.20 M (KCl), 10% D2O).
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Table 2. 1H NMR chemical shift (ppm) values of the peaks of ligands EHP and EHMP in their 

[GaL3] complexes and values of the free ligands for comparison (T = 25.0 ºC, I = 0.20 M (KCl), 10% 

D2O).

EHP EHMP

 / ppma [GaL3] HLb L− b [GaL3] HLb L− b

CH(4) (d) 7.070 7.179 6.767 − − −

CH3(4) (s) − − − 2.177 2.187 2.087

CH(5)c 6.685 6.440 6.313 6.983 7.112 6.725

CH(6) (d) 6.954 7.086 6.562 6.615 6.403 6.316

CH2 (q)d 4.088 4.264 4.250 4.062 4.256 4.242

CH3 (t)d 1.124 1.271 1.271 1.115 1.266 1.266
a The signal of -CH2C=O (s) was underneath the water peak.
b Data taken from ref. [18].
c CH(5) EHP: (d/d), EHMP: (d).
d Data of ethanol for comparison: CH2 (q) = 3.65 ppm; CH3 (t) = 1.17 ppm.

Based on these data it can be assumed that the [GaL3] complexes predominate in the 

pH range 5.5−7.0 in the millimolar concentration range, while considerable dissociation is 

observed at higher pH values. Integrated areas of the 1H NMR signals of all corresponding 

protons of the pH-dependent non-bound ligand peaks and those of the complexes (non pH-

dependent) were collected and are depicted for EHP in Fig. 3 together with the summed 

concentration distribution curves calculated with the help of the stability constants. Strong 

correlation between the data of the two independent methods was found at pH < 9. Most 

probably the partial hydrolysis of the ester of the ligand becomes significant at pH > 9 as the 

signals of the hydrolysis product ethanol appear undoubtedly in the spectra with increasing 

intensity (Fig. 2). 
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Fig. 3. Summed concentration distribution curves for the Ga(III)-bound (black line) and free ligand 

(grey line) species in the Ga(III)–EHP system calculated on the basis of the stability constants and 1H 

NMR peak integrals of the CH3(t) peaks: bound (×), free (●) ligand and ethanol (○). The grey 

background shows the pH range where the hydrolysis of the ligand is already considerable (cEHP = 

4 mM; Ga:L = 1:3; T = 25.0 °C, I = 0.20 M (KCl), 10% D2O). 

The complex formation of EHP with Ga(III) ions was also monitored by 71Ga NMR 

spectroscopic titrations (Fig. S1). Among the various Ga(III)-hydroxido species only the 

octahedral [Ga(H2O)6]3+ and the tetrahedral [Ga(OH)4]‒ can be detected by 71Ga NMR, 

because of their highly symmetric local environment around the metal center [32]. While a 

peak attributed to [Ga(H2O)6]3+ was seen in the acidic pH range in case of GaCl3, in the 

presence of EHP practically no signals were detectable due to complexation, as it was 

expected under the given conditions (Fig. S2). The extent of the formation of gallate in the 

basic pH range was somewhat lower due to complex formation, although the peak integrals 

could not be used for quantifications.     

In order to clarify the hydrolytic stability of the tris-ligand Ga(III) complexes [GaL3], 
1H NMR spectra were recorded over 168 h at pH 7.4 and found to be practically unchanged 

(Fig. S3).

The formation of the Fe(III) complexes with the ligands EHP and EHMP was 

accompanied by the appearance of an intense purple color, which was already observed at pH 

~1. Therefore, complexation could be followed by UV-Vis spectrophotometric titrations and 

the development of characteristic CT bands was seen in the visible wavelength range. The 

position of the max values shows strong pH dependence due to the changes of the 

coordination environment of the metal ion. max was at 594 nm and a shoulder appeared at 

412 nm in case of EHP and at 602 and 408 nm, respectively, for EHMP in a strongly acidic 

environment. Bands belonging to the complex [FeL]2+ at low pH values shifted with increased 
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pH at 1:3 metal-to-ligand ratio and were located at 508 and 416 nm for EHP and at 506 and 

414 nm for EHMP (Fig. 4a). These bands reach maxima at pH 6.4−7.4 above which a sudden 

decrease in the absorbance values occurs, most probably as a consequence of precipitation. 

During the pH-potentiometric titrations, precipitation also occurred in the samples 

independent of the applied metal-to-ligand ratios at pH > ~8.5. Therefore, log values of the 

[FeL2]+ and [FeL3] complexes were calculated for the data collected below this pH (Table 1). 
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Fig. 4. (a) UV-Vis spectra of the Fe(III)–EHP system at various pH values. (b) Concentration 

distribution curves for the Fe(III)–EHP system calculated on the basis of the stability constants 

together with the pH dependence of the absorbance values at 508 nm (×). The grey box shows the pH 

range where the hydrolysis of the ligand is already considerable (cEHP = 0.10 mM; Fe:L = 1:3; T = 

25.0 °C, I = 0.20 M (KCl)).

Based on the overall stability constants, concentration distribution curves were 

calculated for the conditions used in the UV-Vis spectrophotometric titrations, as illustrated 

for the Fe(III)–EHP system in Fig. 4b, and the pH-dependent absorbance values at a chosen 

wavelength are shown. The development of the charge transfer bands corresponds well to the 

calculated speciation up to pH ~ 8. At higher pH values, the absorbance decreased possibly 

due to the increasing concentration of neutral [FeL3] (or a mixed hydroxido [FeL2(OH)2]), 

which has limited water solubility. The rate of this process shows pH-dependence and 

becomes faster at higher pH values (Fig. S4).

Cyclic voltammograms (Fig. 5) indicate quasi-reversible electrochemical processes for 

the iron complexes of EHP (E = 104 mV) and deferiprone (E = 149 mV). The redox 

potential determined for the iron complexes of EHP (E1/2 = ‒0.597 ± 0.019 V vs. NHE) at 

physiological pH is similar to that of deferiprone (E1/2 = ‒0.627 ± 0.004 V vs. NHE; ‒0.620 V 

[22]). This relatively negative redox potential of the EHP–Fe(III/II) redox couple suggests a 
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preference of the 3-hydroxy-2-pyridinone-type ligand towards Fe(III) over Fe(II), similarly to 

other (O,O) donor iron chelators [20,22]. Therefore, the redox cycling of the iron–EHP 

complexes is unlikely to occur under aerobic condition. 

-600

-400
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200

-1.0 -0.8 -0.6 -0.4

I/
 

A

E vs. NHE/ V

Fig. 5. Cyclic voltammogram for the iron complexes of EHP (solid line) and deferiprone (dashed line) 

at pH 7.4 (cligand = 3 mM; Fe:L = 1:3; T = 25.0 °C, I = 0.20 M (KCl); scan rate: 10 mV/s).

Comparison of the stability of complexes of EHP and EHMP with other related ligands

Direct comparison of the stability constants of the Ga(III) and Fe(III) complexes 

formed with EHP and EHMP (Table 1) reveals that the presence of the extra electron-

donating methyl group located adjacent to the coordination site results in higher log values. 

It suggests a slightly higher metal binding ability of EHMP, although the pKa of EHMP is 

also higher. In order to compare the ligand preferences logK*-derived constants were 

calculated for the neutral [ML3]-type species, which predominate at physiological pH. To 

obtain the logK* values, the overall stability constants of the [ML3] species were corrected by 

the different ligand basicities according to the following competition reaction:

M3+ + 3 HL [ML3] + 3 H+ (Eq. 4)

logK* = logβ([ML3]) – 3 × pKa(HL) (Eq. 5)

The logK* values can provide information about the chelate stability in the [ML3] complexes 

(Fig. 6). A higher logK* implies more favored metal complex formation over the protonation. 

The logK* values were compared to those of the related model compound 3-hydroxy-1-
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methyl-2(1H)-pyridinone (MH2P [30]; see stability constants in Table 1), deferiprone as a 

prominent representative of the 3-hydroxy-4-pyridinones [20,30], and maltol [10,23] as a 3-

hydroxy-4-pyrone. Consequently, the chelate stability order for both Fe(III) and Ga(III) is the 

following: EHP < EHMP < MH2P < maltol < deferiprone. Thus it can be concluded that 

EHP and EHMP possess only moderate binding ability towards the selected metal ions, 

revealing higher stability for Fe(III) than Ga(III). 

Another way frequently used to compare the relative affinities of ligands towards a 

given metal ion is the calculation of pM value introduced by Raymond et al. [33], which is 

defined as the negative logarithm of the equilibrium concentrations of the unbound metal ion. 

Therefore, higher pM values reflect the stronger metal binding ability of the ligand under a 

given condition, but are comparable only in the case of a given metal ion. The pM values 

obtained at pH 7.4 (Table 1) show the same ligand trend as it was seen for the logK* values. 

Notably, pFe for EHP and EHMP are significantly lower compared to those of the well-

known iron binders deferiprone (20.5 [20], 19.31 [31]) and transferrin (20.3 [21,34]). While 

the similar pGa values computed for EHP, EHMP, MH2P and maltol show that all the metal 

ions are in the unbound fraction under the conditions applied (cGa = 1 M; Ga:L = 1:10, pH = 

7.4). All these results fit within the generally accepted stability trend, namely the higher 

ligand effectiveness of the 3-hydroxy-4-pyridinones over the 3-hydroxy-2-pyridinones 

[19,20].
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Fig. 6. Derived stability constants (logK*) for the [ML3] complexes of Fe(III) and Ga(III) with EHP, 

EHMP, MH2P, deferiprone and maltol. Data for MH2P, deferiprone and maltol were taken from refs. 

[10,20,23,30]. 

In vitro cytotoxicity and interaction with medium components
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The in vitro cytotoxicity of EHP and its in situ formed Ga(III) complex using a 1:3 metal-to-

ligand ratio was measured in doxorubicin-sensitive (Colo 205) and multidrug resistant (Colo 

320) human colon adenocarcinoma cells using the thiazolyl blue tetrazolium bromide (MTT) 

method and compared to the activity in non-carcinogenic human embryonal lung fibroblast 

cells (MRC-5). Cisplatin was used as a positive control (IC50 values: 10.1 ± 0.3 M (Colo 

205); 4.78 ± 0.11 M (Colo 320); 2.61 ± 0.07 M (MRC-5)). The ligand and its Ga(III) 

complex did not show cytotoxic activity (IC50 > 100 μM) in the tested cell lines. In previous 

work on the Ru(II)(6-p-cymene) complexes of EHP and EHMP we observed weak 

cytotoxic activity for the complexes in CH1 human ovarian cancer cells (IC50 values of 232 

and 242 M, respectively), as well as for the ligands [17].

The Ga(III) complexes of hydroxypyrones and hydroxypyridinones often show 

moderate cytotoxicity [5,7,19], however, the complexes of maltol and deferiprone possess 

higher solution stability compared to those of EHP and EHMP as described in the section 

‘Comparison of the stability of complexes of EHP with EHMP and with other related 

ligands’. Therefore, the solution stability of the Ga(III) complex of EHP in the presence of 

cell culture medium components was monitored by 1H NMR spectroscopy. Cancer cells were 

grown in cell culture medium RPMI1640 supplemented with 10% heat-inactivated fetal 

bovine serum (FBS). This modified medium contains numerous inorganic salts, amino acids 

and various other small biomolecules (e.g. folic acid, L-glutamic acid) and various serum 

proteins (including transferrin) from FBS and some of them are considered as potential 

binders of Ga(III). The recorded 1H NMR spectra (Fig. 7a) show that ~9% of the EHP 

complex [GaL3] dissociates at the applied 1 mM concentration at pH 7.4 leading to the 

detection of a small portion of the unbound ligand. This was expected on the basis of the 

stability constants determined as the concentration distribution curves (Fig. 7b). The level of 

complex decomposition did not increase in either medium used, i.e., in RPMI1640 or 

RPMI1640+FBS (Fig. 7a), when using the same conditions as above. When the concentration 

of the complex was decreased a significant decomposition could be expected (Fig. 7b) which 

is also suggested to be responsible for the inactivity of the complex against the cancer cells. 

Notably complete binding of Ga(III) to transferrin is predicted in the blood serum based on 

the stability constants of the Ga(III)-transferrin [34] and Ga(III)-EHP complexes at 

concentration lower than 50 M.
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Fig. 7. 1H NMR spectra of the media used for the cytotoxicity test, EHP (3 mM) and its [GaL3] 

complex (1 mM) alone and in the media at pH 7.4 (a). Concentration distribution of the [GaL3] 

complex of EHP in the concentration range from 1 mM down to 10 M at pH 7.4 (b).

Conclusions
Solution equilibrium studies on Ga(III) and Fe(III) complexes of the (O,O) donor 3-hydroxy-

2-pyridinone derivatives EHP and EHMP were performed in aqueous solution by pH-

potentiometric and spectroscopic (UV-Vis: Fe(III); 1H NMR: Ga(III)) methods. These 

bidentate ligands form [ML]2+, [ML2]+ and [ML3] type species with Ga(III) and Fe(III) ions, 

and the neutral [ML3] complexes predominate at physiological pH. EHP and EHMP form 

complexes of higher stability with Fe(III) than with Ga(III), and the presence of the methyl 

substituent on the aromatic ring in EHMP results in a stronger metal binding ability 

compared to EHP. The studied 3-hydroxypyridin-2-one derivatives form lower stability 

complexes than deferiprone (as a representative of 3-hydroxy-4-pyridinone) and maltol (a 3-

hydroxy-4-pyrone) in all cases. The [GaL3] complex of EHP suffers 60% decomposition at 

100 M concentration based on the determined stability constants. This moderate stability 

probably contributes to the low cytotoxicity (IC50 > 100 μM) of the [GaL3] complex of EHP 

in doxorubicin-sensitive (Colo 205) and multidrug resistant (Colo 320) human colon 

adenocarcinoma cell lines. However, this complex does not show significant decomposition at 

1 mM concentration even in the cell culture medium supplemented with 10% fetal bovine 

serum. On the other hand the complex is predicted not to preserve its original entity under 

more diluted conditions and the coordinating ligand is supposed to be exchanged partly or 

completely by endogenous bioligands, such as human serum transferrin in the concentration 
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range lower than 50 M. The Fe(III) complexes of EHP and EHMP have lower solution 

stability than that of deferiprone, and the redox potentials show stronger preference towards 

Fe(III) than to Fe(II), as is seen in case of traditional (O,O) donor iron chelators.
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Graphical abstract

The solution speciation of Ga(III) and Fe(III) complexes of two (O,O) donor bearing 

alkoxycarbonylmethyl-3-hydroxy-2(1H)-pyridinone ligands was characterized. Moderate 

stabilities were observed with [ML3] complexes predominating at physiological pH. 

Significant decomposition of the Ga(III) complexes occurs at low concentration leading to 

negligible cytotoxic activity in human adenocarcinoma cells.   
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