
 International Journal of Engineering and Management Sciences (IJEMS) Vol. 4. (2019). No. 1  

DOI: 10.21791/IJEMS.2019.1.37. 

295 

 

Effects of TIG Reheating on Duplex Stainless Steel Weld 

Microstructure 

B. VARBAI1*, F. TOLNAI1, K. MÁJLINGER1 

1Budapest University of Technology and Economics, Department of Materials Science and Engineering,  

*varbai@eik.bme.hu 

Abstract. Duplex stainless steels (DSS) gaining their excellent mechanical properties and corrosion resistance due to 

their austenitic-ferritic microstructure, ideally in the same amount. However, to keep this ideal phase ratio during 

arc welding is very difficult. Generally, the arc welding processes will result in more ferritic microstructure in the 

weld metal and in the heat affected zone, due to the rapid cooling. The ferritic microstructure can cause chromium-

nitride precipitation, because the nitrogen solubility in ferrite phase is very low below 700 °C. These chromium-

nitride precipitations can cause loss of corrosion resistance and mechanical properties. However, during sub-

sequent reheating, the chromium-nitrides can dissolve and act as a secondary austenite nucleation site in the ferritic 

microstructure.  

In our research we welded DSS specimen autogenously, with tungsten inert gas welding using pure argon and 

94 % argon + 6 % nitrogen as shielding gasses. In the first case the sub-sequent solid-state reheating caused 20 % 

increase in the austenite fraction of the weld metal but with the use of mixed shielding gas only 5 % increase. 

Introduction 

Among high strength structural steels the duplex stainless steels (DSSs) gaining more attention 

recently [1–9]. DSSs gaining their excellent mechanical properties and corrosion resistance due to 

their two-phase austenite-ferrite microstructure [10–11]. The ideal 1:1 phase ratio of the 

austenite/ferrite phases can easily be shifted in either more austenitic or ferritic as a result of welding 

processes [12–14]. In case of the weld metal (WM) and/or the heat affected zone (HAZ) 

microstructure is significantly austenitic or ferritic, the corrosion resistance and the mechanical 

properties can deteriorate. The highly ferritic microstructure can cause decrease in the mechanical 

properties such as ductility [15–17], and the highly austenitic microstructure can cause loss of 

corrosion resistance against chloride rich environments [18–19], such as sea water desalination 

plants, where most of the DSSs are being used [20–21]. Generally, the arc welding processes, such as 

tungsten inert gas (TIG) welding will result in more ferritic microstructure in the WM and the HAZ 

[22–23]. The reason for this is the relatively high cooling rate. All of the DSSs solidify as pure delta-

ferrite and the ferrite-to-austenite transformation happens during the solid-state cooling. This 

transformation is driven by atomic nitrogen diffusion in the microstructure [24]. The high cooling rate 

will allow less time for this diffusion, resulting in significantly ferritic microstructure in the WM and 

HAZ.  In order to keep the ideal 1:1 phase ratio, nitrogen addition to the shielding gas is used in 

industrial applications in case of TIG welding of DSS [25–27]. The nitrogen addition to the shielding 
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gas will result in more austenite formation in the WM and in the HAZ as nitrogen is 30 times more 

potent austenite former, than for example nickel [10]. On the other hand, the subsequent thermal cycle 

on the WM and HAZ (modelling multi-pass welds) will also result in more austenitic weld metal [28–

33]. The reason for this, is the longer available diffusion time for nitrogen atoms, which ensures the 

austenite formation in the microstructure.  

In our paper we investigated the austenite/ferrite phase ratio in the WM of DSS TIG welding. First, we 

investigated the effects of 6 % nitrogen addition to the shielding gas. Secondly, after the single-pass 

bead on plate welding, the multi-pass welding was modelled by subsequent solid state TIG reheating 

of the welds. 

1. Materials and methods 

1.1 The used base material 

The used base material (BM) for the TIG welding and reheating was standard X2CrNiMoN22–5–3 (DSS 

2205) duplex stainless steel in 6 mm thick sheet form. The chemical composition can be found in Table 

1.  

Chemical composition from the manufacturers data sheet (wt.%) 
Cr Ni Mn Mo N C Si Cu Fe 

22.21 5.76 1.36 3.14 0.164 0.020 0.38 0.30 bal. 
Table 1. Chemical composition of the DSS 2205 BM in as-received condition. 

The initial nitrogen (N) content in the BM was measured by HORIBA EMGA 620-W analyser. The 0.164 

wt.% nitrogen content drives the ferrite-to-austenite transformation during solid-state cooling after 

welding. 

1.2 TIG welding and reheating processes 

The single pass bead-on-plate TIG welding was performed on 200×50×6 mm specimens, in PA position 

on a self-built Arc Specialties® equipment. This automatic arc voltage control ensures the constant arc 

energy (which is calculated as the heat input, taking the thermal efficiency as 1.0) during welding with 

different shielding gases. The used arc energy was constant 0.84 kJ/mm in case of both of the shielding 

gases: pure argon (Ar) and 94 % Ar + 6 % nitrogen (N2). The applied arc energy falls into the 

industrially advised 0.5 – 2.5 kJ/mm range [1]. The subsequent TIG reheating was performed on the 

bead-on-plate welds in PA position, using Ar shielding gas, and very low, 0.183 kJ/mm arc energy with 

direct current, sample positive polarity (DC-). This low arc energy ensured that, the specimens were 

staying in solid-state during the whole reheating process. The welds were reheating one time, along 

the whole length (modelling multi-pass welding). In both cases of the TIG welding and TIG reheating, 

the used tungsten electrode was 2 % thoriated in 3.2 mm diameter and ground to a 40° electrode 

angle. The arc length was kept at constant 2 mm. The shielding gas flow rate was 10 l/min in all cases.  

 



 International Journal of Engineering and Management Sciences (IJEMS) Vol. 4. (2019). No. 1  

DOI: 10.21791/IJEMS.2019.1.37. 

297 

 

1.3 Evaluation methods 

1.3.1 Cooling rate measurements 

The TIG welding process was recorded using FLIR® type thermal camera. The emissivity value was 

validated by K-type thermocouple temperature measurements (e.g. Figure 1.). The recorded videos of 

the TIG welding process can be evaluated, using the manufacturers software. In the software the 

measurement points can be placed anywhere freely and the temperature gradients can be obtained in 

a datasheet.  

1.3.2 Metallography and microstructure examination 

Standard metallography specimens were cut with diamond saw and constant cooling, from the cross 

section of the weldments, using constant cooling during the cutting process. The specimens were 

ground to 4000 grit sand paper and polished with 3 µm diamond suspension. After polishing the 

specimens were etched using double etching method and Berahas reagent, as described in our 

previous work [34]. The optimal etching method ensures high contrast between ferrite and austenite 

phases. On the images ferrite grains appear dark and austenite grains remain light (e.g. Figure 3.). For 

the detection of possible nitride precipitations electrochemical etching was done according to ISO 

17781:2017. The welded specimens were etched in 15 % oxalic-acid solution, using 10 V direct 

potential for 10 seconds. The metallographic images were taken using Olympus PMG3 optical 

microscope. The phase ratio was measured by Fischer type Feritscope® FMP30.  

2 Results and discussion 

2.1 Cooling rate results during TIG welding  

The 1200 °C to 800 °C (dT12/8) cooling rate is chosen for evaluation because, the cooling time in this 

temperature range is found to have the most effect on the ferrite-to-austenite phase transformation 

and thus the phase ratio [35–36].  An example image for the video recorded by the thermal camera can 

be seen in Figure 1., where the Sp are the measurement points. Sp1 point is placed in order to validate 

the temperature readings of the thermal camera by K-type thermocouples during the TIG welding.  

 

Figure 1. Temperature readings of the TIG welding by FLIR type thermal camera. 

thermocouple 

weld bead welding direction 
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In case of TIG welding with pure Ar shielding gas the measured average dT12/8 is 182 °C/s, in case of Ar 

+ 6 % N2 the average dT12/8 is 165 °C/s. The lower cooling rate is a result of the nitrogen addition to 

the arc plasma. The lower cooling rate also means that, more time is available for the solid-state 

ferrite-to-austenite transformation. The lower cooling rate and the nitrogen addition to the shielding 

gas are expected to give higher austenite fraction in the WM, compared to the pure argon TIG welded 

sample. 

2.2 Microstructure results after TIG welding 

The BMs initial average austenite fraction is 57.3 %. After TIG welding with pure argon shielding gas 

the austenite fraction in the WM decreased to average 29.9 %. The 6 % nitrogen addition to the 

shielding gas resulted in higher, 59.5 % austenite fraction in the WM. As it was expected, the lower 

dT12/8 cooling rate and the nitrogen addition to the shielding gas (as nitrogen is a very potent austenite 

former) resulted in higher austenite fraction in the WM. For possible chromium-nitride precipitation 

identification the electrochemical etching on the argon welded specimen was done, as described in the 

section 1.1.2.  As the nitrogen solubility in the ferrites bcc lattice is significantly decreasing below 

700 °C [37] only the argon TIG welded sample was evaluated with the chemical etching method. In 

Figure 2. the possible chromium-nitride precipitations are highlighted in the highly ferritic WM.  

 
Figure 2. Chromium-nitride precipitations (Cr2N) inside the ferrite grain a) and on the austenite-ferrite grain 

boundary b). 

The chromium-nitride precipitation decreases the corrosion resistance [38–39] and the mechanical 

properties such as impact and fatigue strength [40–41]. On the other hand, as these chromium-nitride 

precipitations can dissolve in higher temperatures [42] they can act as secondary austenite formation 

nucleation sites [33]. During sub-sequent reheating, simulating multi-pass welds, the secondary 

austenite formation can highly increase the WMs austenite fraction.  
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2.3 Microstructure results after solid-state reheating 

The austenite fraction in the WM in case of argon welded sample increased from 29.9 % to 48.7 %. In 

case of the argon + 6 % nitrogen welded sample the austenite fraction in the WM increased from 

59.5 % to 64.5 %. In Figure 3. the microstructural images after the single pass reheating and the 

subsequent reheating can be seen in case of the argon welded sample. After the reheating the 

austenitic areas increased inside the ferrite grains. It means that, during the reheating the chromium-

nitride precipitations dissolved and the high nitrogen content acted as a nucleation site for the 

secondary austenite formation. The higher amount of austenite fraction increase (~ 20 %) in case of 

argon welded sample is a result of the high number of chromium-nitride precipitations. As the argon + 

6 % nitrogen welded sample originally had 59.5 % austenite fraction, less chromium-nitride 

precipitated (because austenite has much higher solubility of nitrogen than ferrite [37]), thus the 

reheating caused only 5 % increase in the austenite fraction. 

 
Figure 3. Weld metal microstructure of the argon welded sample,  after TIG welding a) and after solid-state 

reheating b) 

Conclusions 

From our current research the following conclusions can be drawn.  

 The autogenously tungsten inert gas welding of 6 mm thick DSS 2205 duplex stainless steel sheets 
with 0.84 kJ/mm arc energy and with argon + 6 % nitrogen shielding gas resulted in lower 1200 °C 
to 800 °C cooling rate, than the pure argon welded sample. 

 After tungsten inert gas welding with pure argon shielding gas the austenite fraction in the weld 
metal decreased to average 29.9 % (from the initial 57.3 %). The 6 % nitrogen addition to the 
shielding gas resulted in higher, 59.5 % austenite fraction in the weld metal. 

 The electrochemical etching in 15 % oxalic-acid solution, using 10 V direct potential for 10 seconds 
is suitable for chromium-nitride precipitation detection in DSS 2205. 

 The sub-sequent tungsten inert gas solid-state reheating (simulating multi pass welding) caused 
increase in the austenite fraction in the weld metal in both cases. The argon welded samples 
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austenite fraction of the argon welded and argon + 6 % nitrogen welded samples increased by 
+ 20 % and + 5 %, respectively. 
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