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Waterlogging stress frequently affects wheat production in the current conditions. The 
aim of this work was to evaluate the effect of waterlogging during grain filling on grain yield 
components, nitrogen uptake and partitioning and gluten composition and quality in bread 
wheat. Two greenhouse experiments were conducted under contrasting environmental condi-
tions in Azul, Buenos Aires, in a completely randomized design with three replicates. The 
cultivar chosen was Klein León and the waterlogging treatment was imposed from 5 days 
after anthesis to maturity. The effects of waterlogging during grain filling in wheat depended 
on explored environmental conditions: early sowing vs. late sowing. Waterlogging had not 
significant effects on the most variables at early sowing conditions. However, the delaying 
in sowing date (higher temperature and radiation) enhance the effects of waterlogging: i) 
reducing grain weight by 41% and total nitrogen uptake by 51%; ii) reducing the ratio 
between the contents of high and low molecular weight glutenin subunits, affecting gluten 
composition; and iii) increasing the sodium dodecyl sulfate test from 79 to 108 mm, which 
correlates positively with the gluten strength. Reductions in grain weight due to waterlog-
ging during grain filling affect the milling quality, although changes in protein composition 
may increase or maintain the gluten strength (SDSS) under particular conditions.
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Introduction

Regarding climate change, waterlogging is one of the abiotic factors whose occurrence 
will further increase due to the increase in rainfalls (Parry et al. 2007). Water-saturated 
soil implies negative effects on the root with consequences on the shoot physiology pro-
ducing several damages in crop production. Under waterlogging conditions, ethylene rap-
idly increases inside the plant as a primary signal for adaptation to this condition. Moreo-
ver, this stress results in anoxic soils (absence of O2) changing from aerobic to anaerobic 
conditions. Therefore, oxygen deficiency increases leaf senescence, reduces root growth 
and tillering and affects grain yield by reducing the kernel number and weight depending 
on the duration of waterlogging events, the development stage of crop upon the last and 
the capacity of the cultivar to adapt to this condition (De San Celedonio et al. 2014;  
Arduini et al. 2016). Waterlogging during grain filling stages reduces grain yield by re-
duction in dry matter accumulation and nitrogen uptake in the shoot, redistribution of 
stored photosynthates to the grain and the conversion capacity from carbohydrate to 
starch (Jiang et al. 2008). As a strategy for adapting to waterlogging, several roots form 
aerenchyma in the cortex which facilitates the O2 diffusion upon this condition (Herzog 
et al. 2016; Loreti et al. 2016).

The most important protein fractions, the gliadins (GLI) and glutenins (GLU) are the 
primary determinant of bread-making quality. Glutenins are multimeric aggregates of 
high molecular weight (HMW-GS) and low molecular weight (LMW-GS) subunits. 
HMW-GS are encoded by Glu-A1, Glu-B1 and Glu-D1 loci and determine the formation 
and amount of glutenin macropolymer (GMP) which is closely correlated with baking 
quality (Yue et al. 2007). Gliadins are mainly monomeric proteins and are divided into 
four structural types called α-, β-, γ- and ω-gliadins. Different alleles of these loci and the 
proportions of each protein fraction also affect grain quality of wheat (Payne et al. 1987; 
Wieser, 2007). Several researchers have observed that the grain protein content and par-
ticularly HMW-GS were affected upon waterlogging treatments (Jiang et al. 2008).

The industrial quality of bread wheat is a multidimensional attribute determined by 
genotypic characteristics, structural of the grain and of the reserves stored in the en-
dosperm, especially starch and proteins (Peña et al. 2002). Sodium dodecyl sulfate sedi-
mentation test (SDSS) stands out among the predictive parameters of quality that require 
little amount of sample, since it correlates closely with the gluten strength (Dick and 
Quick 1983; Lerner et al. 2004, 2006). In addition, previous reports showed a relation 
between the nitrogen harvest index (nitrogen partitioning) and some parameters of indus-
trial quality in bread wheat (Lerner et al. 2016). This justifies the integrated study of these 
variables at conditions of waterlogging stress. On the other hand, the waterlogging-in-
duced effects on wheat grain composition and quality have so far been examined in very 
few studies, whereby it is not yet possible to draw sound inferences on these effects 
(Ashraf 2014).

The aim of this work was to evaluate the effect of waterlogging during grain filling on 
grain yield components, nitrogen uptake and their partitioning and gluten composition 
and quality in bread wheat.
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Materials and Methods

Plant material and growing conditions

Two greenhouse experiments were conducted during 2015 (E1) and 2016 (E2) at the 
Facultad de Agronomía (36°41′S, 59°48′O), Universidad Nacional del Centro de la Pro-
vincia de Buenos Aires. In order to use a cultivar unstable in terms of grain quality, Klein 
León was selected based on short cycle length, high yield potential, lodging resistance 
and poor baking quality. In previous field experiments (Lerner et al. 2016), this cultivar 
showed yield means of 4680 and 5420 kg/ha (dry basis) for unfertilized and nitrogen 
fertilized treatments, respectively. At the same conditions, protein content varied between 
10.6 and 13.2%, while baking strength varied between 143 and 198 J 10–4. Also, Klein 
Leon was classified in Quality group 3 (lowest baking quality), which is established by 
the national organism for seed registration (INASE, Argentina) based on phenotypic  
attributes.

The plants were grown in 7 L pots containing 4.8 kg of clay loam soil with the follow-
ing characteristics: pH = 6.9 (1:2.5 in water), N-nitrate = 18.62 kg N/ha (by reflectome-
try), S-sulfate = 17 ppm (by turbidimetry), available P = 13.84 ppm (Bray and Kurtz 
1945) and organic matter = 3.51% (Walkley and Black 1934). Ten seeds previously treat-
ed with Tenacius® (difenoconazole + metalaxil-M + tiametoxam) were sowed per pot. 
The sowing date was 3rd September 2015 for E1 and 1st April 2016 for E2. Plants were 
fertilized with 0.4 g of PDA at sowing, 0.9 g of urea and 0.2 g of Ca2SO4 in split doses at 
Z1.2 and Z2.3 (Zadoks et al. 1974). The anthesis (Z6.5) date was 29th October 2015 for 
E1 and 7th June 2016 for E2. The maturity (Z9.9) date was 4th December 2015 for E1 and 
24th July 2016 for E2. During crop cycle, fungicide (Orquesta® Ultra: fluxapyroxad + 
epoxyconazole + pyraclostrobin) and insecticide (cypermethrin) were applied in both 
years and weeds were removed by hand. Mean temperature and global radiation data 
were registered (Table 1).

Waterlogging treatment

Experimental design was completely randomized with three replicates. The waterlogging 
treatment (W treatment) was imposed from 5 days after anthesis to maturity placing pots 
into containers with 1 cm layer of free water above the surface. Control pots (T treatment) 

Table 1. Period duration, mean temperature and mean radiation for the sowing-anthesis phase and the 
anthesis-maturity phase in experiment 1 (E1) and experiment 2 (E2)

Experiment Sowing-anthesis Anthesis-maturity

Period duration (days) E1 56 36
E2 68 47

Mean temperature (°C) E1 21.9 24.9
E2 20.8 20.3

Mean radiation (MJ m–2 d–1) E1 6.7 10.4
E2 3.5 3.1
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from sowing to maturity and waterlogging pots from sowing to 5 days after anthesis were 
daily irrigated as needed and well drained.

Measurements

Regarding yield components, grain yield per shoot (GY), grains per spike (GS), grain 
weight (GW), above ground biomass per shoot (AB), harvest index (HI = GY/AB), spike 
weight (SW), shoot and leaf weight (SL) and spike fertility coefficient (SF = GY/SW) were 
measured. Harvested samples were dried in stove at 50 °C for 72 h and then were milled. 
Nitrogen concentration was determined in grain (GN%) and stover (SN%) by microKjel-
dahl. Nitrogen uptake in grain (GN = GY*GN%/100), in stover [SN = (AB-GY)*SN%/100] 
and total (TN = GN+SN) and nitrogen harvest index (NHI = GN/TN) were calculated. Pro-
tein content (Pro%) was calculated by multiplicating GN% by 5.75 factor. Sodium dodecyl 
sulfate sedimentation test was used to predict the gluten strength (SDSS; Dick and Quick 
1983). Specific SDSS (SDSS/Pro) was calculated by dividing SDSS by Pro%. Glutenin and 
gliadin proteins were extracted by sequential extraction method according to Gupta and 
MacRitchie (1991) and were separated by SDS-PAGE (T = 13.5%). The gel was stained 
with 0.05% Coomassie Brilliant Blue R250 for 24 h and discolored in TCA 12% for 48 h 
and finally in distilled water for 24 h. The resulting gels were scanned and analyzed by us-
ing TotalLab v1.10 demo software to measure the intensity of the pixel as an abundance 
indicator. Background subtraction was applied and the content of protein of each subunit or 
fraction was expressed as a relationship among fractions in order to avoid the variability due 
the staining process. Thus, the ratio between contents of gliadins and glutenins (GLI/GLU), 
the ratio between contents of high molecular weight and low molecular weight glutenin 
subunits (HMW-GS/LMW-GS), the contents of different glutenin subunits encoded by Glu-
1 loci relative to total high molecular weight glutenins (Glu-A1x/HMW, Glu-B1x/HMW, 
Glu-B1y/HMW, Glu-D1x/HMW, Glu-D1y/HMW) and the ratio between ω-gliadins and 
α-β-γ-gliadins (ω-gli/α-β-γ-gli) were determined.

Statistical analysis

ANOVA analyses were carried out and the levels of significance were established by us-
ing Tukey tests at p < 0.05. Infostat software was used (Di Rienzo et al. 2017).

Results
Yield components

The GY in E2 was higher compared to E1. Although the differences were not significant, 
the W treatment trended to reduce the GY especially in E1. The GS was affected by the 
experiment being E2 higher than E1. The W treatment reduced GW by 41% only in E1. 
Instead HI was not affected, AB showed the same behavior as GY. The SW was only  
affected by experiment being E1 higher than E2. The mean of SL in E2 was higher than 
E1 and the W treatment reduced SL by 21% on average. Finally, SF was not affected by 
factors (Table 2).
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Figure 1. Fractions of polyacrylamide gels revealing the glutenins (GLU) and gliadins (GLI) band patterns for 
control treatment (T) and waterlogging treatment (W) in experiment 1 (E1) and densitometry of each fraction. 

The pixel intensity indicates the abundance of each protein subunit
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Nitrogen uptake and partitioning

Instead GN% was not affected by factors, the W treatment reduced SN% by 46% only in 
E1. The mean of GN in E2 was 69% higher than in E1 and the W treatment reduced SN 
by 62% only in E1. Thus, the mean of TN in E2 was 57% higher than in E1 and the W 
treatment reduced this parameter by 30% on average. Although the differences were not 
significant, the W treatment trended to increase the NHI especially in E1 (Table 3).

Grain composition and quality

The HMW-GS allelic composition was: 2* for Glu-A1, 7 + 9 for Glu-B1 and 2 + 12 for 
Glu-D1 (Fig. 1). The W treatment reduced by 12% the GLI/GLU ratio without differ-
ences among experiments (Fig. 2a). In E1 the HMW-GS/LMW-GS ratio in W treatment 

Figure 2. Changes in GLI/GLU ratio (a), HMW-GS/LMW-GS ratio (b), ω-gli/α-β-γ-gli ratio (c), SDS sedimen-
tation (d), protein content (e) and specific SDSS (f) of the control treatment (T) and the waterlogging treatment 
(W). Means with different letter differ statistically (p<0.05 Tukey Test). E1: experiment 1; E2: experiment 2
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was lower (25%) than control while in E2 differences were not significant (Fig. 2b;  
Fig. 1). Regarding GLI, the W treatment reduced in 14% the ω-gli/α-β-γ-gli on average in 
both experiments (Fig. 2c). The proportion of each HMW-GS (Glu-A1x/HMW, Glu-B1x/
HMW, Glu-B1y/HMW, Glu-D1x/HMW, Glu-D1y/HMW) did not show differences be-
tween treatments and experiments (data not shown; Fig. 1). In E1, the SDSS increased by 
37% in W treatment compared to control while in E2 differences were not significant 
(Fig. 2d). The Pro% was not significantly affected by treatment and experiment (Fig. 2e), 
while the W treatment increased by 46% the SDSS/Pro only in E1 (Fig. 2f).

Discussion

Several authors have evaluated the effect of waterlogging in crops but few showed a si-
multaneous analysis of yield components, nitrogen partitioning and grain quality in bread 
wheat. This work analyzed the post-anthesis waterlogging effects on a high yielding and 
short-season bread wheat cultivar from Argentina in two contrasting environments under 
greenhouse conditions. One of them (E1) was carried out in a late sowing date with 
higher mean temperature and radiation, especially during grain filling, resulting in a 
shorter cycle length. On the other hand, the other experiment (E2) was carried out in an 
early sowing date with lower mean temperature and radiation, resulting in a longer cycle 
length.

AB, GY, GS and SW were significantly higher in E2 than in E1, while no changes were 
observed in HI and SF. This could be explained by the lower mean temperature and con-
sequently longer duration of the pre- and post-anthesis stages in E2. Waterlogging treat-
ment trended to reduce GY due to a significant reduction of GW under conditions of high 
temperature and radiation (E1). De San Celedonio et al. (2014) reported that the time 
around anthesis was the most susceptible period to waterlogging in wheat and barley. In 
the same way, these authors observed that exposing the crop to more stressful conditions, 
e.g. delaying sowing date, magnified the negative responses to waterlogging. On the oth-
er hand, Arduini et al. (2016) reported that waterlogging during tillering stage in wheat 
reduced grain yield due to a reduction in grain number without changes in grain weight, 
while Arguello et al. (2016) observed decreases in both components.

The experiment conditions modified the waterlogging effects on N parameters. Thus, 
W treatment decreased %SN only in E1, while %GN was not affected. Also, this stress 
reduced TN (–52%) in E1 due to a reduction more proportional in SN (–62%) than in GN 
(–41%). Therefore, the W treatment trended to increase N partitioning to grain. Similarly, 
Jiang et al. (2008) reported that post-anthesis waterlogging depressed carbon accumula-
tion and N uptake in shoot. This could be explained by a decrease in the root hydraulic 
conductivity which alters the water balance of shoots of plants under waterlogging condi-
tions. In addition, arrest in root elongation upon a pronounced waterlogging (like in this 
experiment), thereby leading to a reduced soil exploration and reduced surface area for 
uptake of nutrients (Herzog et al. 2016).

The Glu-1 quality score (Payne et al. 1987) for the HMW-GS composition of Klein 
Leon was 7, showing poor bread making quality. The presence of HMW-GS associated 



 Arata et al.: Waterlogging Effect on Grain Quality in Bread Wheat 51

Cereal Research Communications 47, 2019

with dough weakness (as 2 + 12 in Leon) appears to confer minor tolerance to heat stress. 
This is related to the fact that lines possesing this subunit type start accumulating large 
polymers several days later than lines with HMW-GS related to dough strength (as 5 + 10) 
(Naeem et al. 2012). Therefore, the study of post-anthesis waterlogging effects on quality 
parameters in this type of unstable cultivars result of special interest.

Waterlogging altered gluten composition in both experiment conditions, showing re-
ductions in GLI/GLU and ω-gli/α-β-γ-gli. Also, this stress decreased HMW-GS/LMW-
GS only under high temperature and radiation conditions during grain filling (E1), while 
the proportion of each HMW-GS was not affected. Similarly, Jiang et al. (2009) reported 
that post-anthesis waterlogging reduced the accumulation of HMW-GS during the whole 
grain filling phase.

Changes in gluten composition due to W treatment coincided with an increase in glu-
ten strength (SDSS) in E1 conditions, while no variation were observed in Pro%. This 
generated an increase in specific SDSS, indicating an improvement in protein quality. 
Other authors reported that grain protein content and glutenin macropolymers were lower 
under waterlogging compared to the control, but quality predictor studies such as SDSS 
were not carried out (Jiang et al. 2009). In particular, Olgun et al. (2008) observed that 
protein content only was reduced when waterlogging remained more than 20 days after 
flowering in wheat. Reductions in grain weight due to waterlogging during grain filling 
affect the milling quality, although changes in protein composition may increase or main-
tain the gluten strength (SDSS) under particular conditions.

Conclusion

Our results show that the effects of waterlogging during grain filling in wheat depend on 
explored environment under greenhouse conditions. Thus, waterlogging under late sow-
ing conditions: i) reduces grain weight and total nitrogen uptake; ii) reduces HMW-GS/
LMW-GS, affecting gluten composition; and iii) increases gluten strength and specific 
SDSS.
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