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1. Introduction 

Time constraint appears almost everywhere in biology, 
e.g., in different stages of ontogeny (such as offspring care, 
insect metamorphosis), territorial defense, fighting and sleep-
ing, etc. In the review, I concentrate on the time constraint of 
feeding. The main point is that handling time can decrease 
the predation press on the prey population, since handling 
time decreases the number of active predators in the popula-
tion. The aim of this technical review is to survey the dif-
ferent mathematical methods of the derivation of functional 
responses, mainly focusing on the effect of time constraints 
and the behavior of prey and predator. Consequently, this re-
view does not intend to collect all functional responses that 
have been proposed (cf. Jeschke et al. 2002). Furthermore 
the question is not considered whether an already proposed 
functional response is viewed as reasonable from a biologi-
cal viewpoint (see e.g., Fenlon and Faddy 2006, Jost and 
Ellner 2000). For instance, how to incorporate exactly the ef-
fect of predator density on the functional response remains 
somewhat controversial (e.g., Abrams 2014, Arditi et al. 
1991, Arditi and Ginzburg 2012, Hossie and Murray 2016, 
Kalinoski and DeLong 2016, Kratina et al. 2009). Moreover, 

this review does not discuss the problem of conditions under 
which existing functional response can be applied to concrete 
biological cases (e.g., Tellez et al. 2009). 

In the introduction, the following questions are consid-
ered: firstly, why is functional response one of the major is-
sues in ecology? Secondly, why is the behavior of predator 
and prey crucial in the functional response, and what is the 
relationship between the functional response and optimiza-
tion theory and/or game theory? Finally, a simple description 
of predation process is also given, which is the starting point 
of most derivation methods of functional responses.

1.1. Why is behavior-dependent functional response  
important? 

Functional response (Solomon 1949) is the average num-
ber of food prey eaten by an arbitrary predator individual per 
unit time. In the broadest sense, the term “predator” means 
“forager”, i.e., carnivore, omnivore, herbivore, parasites or 
parasitoids. In this paper, I will use the term predators in 
this sense. Similarly, in this general sense, prey will mean 
the food of the considered predator. Clearly, the functional 
response measures the negative effect of the predator species 
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on the prey species. The numerical response (Solomon 1949) 
is the number of offspring (e.g., newborn, eggs or biomass 
growth rate) of a single predator per unit time. The numerical 
response depends on the prey eaten by a single predator. Thus 
it is a function of the functional response (cf. Garay et al. 
2012, 2018). Consequently, functional response is the most 
essential component in trophic interactions, since it describes 
the intensity of the trophic connections. 

Functional response is an important component in the fol-
lowing basic questions of theoretical ecology: when do troph-
ically linked species coexist? Since all food webs are formed 
by trophically linked species, the question arises: when is a 
food web stable (Uchida et al. 2007, Valdovinos et al. 2010)? 
Now this question also arises: why are the behaviors of the 
prey and the predator important in this issue? In theoretical 
ecology, one of the possible mechanisms for maintaining di-
versity is negative frequency-dependent selection, i.e., rare 
prey experience higher survival than more common types 
(see e.g., Merilaita 2006, Punzalan et al. 2005). Clearly, in 
the predation process, predators’ prey preference (cf. switch-
ing in the optimal foraging theory, Stephens and Krebs 1986, 
Krivan and Sikder 1999, and see Murdoch et al. 1975, van 
Baalen et al. 2001) implies negative frequency-dependent se-
lection. Thus, the question arises: can the adaptive behavior 
of prey or predator stabilize the trophic interaction (Kondoh 
2003, 2006, Valdovinos et al. 2010)? For an answer to the 
latter question, first we have to understand the effect of the 
adaptive behavior of prey or predator on functional response. 
For instance: What kind of prey preference maximizes the 
numerical response of a predator (see optimal foraging theo-
ry, Stephens and Krebs 1986)? Moreover, can the antipreda-
tor behavior of prey stabilize the food web (Kondoh 2007)? 
When is density dependent mutualism stable (Holland et al. 
2002, Holland and DeAngelis 2010)? The above listed ques-
tions call the attention to the importance of the behavior de-
pendent functional responses. 

Moreover, the functional response is an important issue 
also from the view point of biological pest control. Does a 
given agent (predator, parasite species) effectively control the 
density of a given pest? (See e.g., Cabello et al. 2007, Lester 
and Harmsen 2002.) In biological pest control, the tempera-
ture dependence of the functional response is also important 
(Garcia-Martín et al. 2008), and the functional response of a 
given predator also depends on the prey types (Tellez et al. 
2009). 

In summary, the functional response is important in both 
theoretical and applied ecology. 

1.2. Aspects of a possible classification of functional  
responses

Holling has already classified the functional responses 
according to the different linear and non-linear dependence 
on the density of a single prey species. The corresponding 
Holling types I-IV functional responses are well known (see 
Section 3.3). 

This classification is based on the shape of the functional 
response. However, the predation process is not a simple one, 
thus the classification of the existing functional responses is 
not an easy task. For instance, Jeschke et al. (2002) classify 
and give the family tree of different 34 functional responses. 
Although the classification of all functional responses is not 
the aim of the present paper, I call attention to two aspects 
of functional responses. The main point is that functional re-
sponse depends on the density and the behavior of prey and 
predator, simultaneously. Thus, from the point of view of the 
present paper, there are at least two basic aspects of a possible 
classification of functional responses:
Aspect 1. The density of how many species has effect on the 
given functional response (see e.g., Abrams and Ginzburg 
(2000): 1. The functional response is single prey depend-
ent, when prey density alone determines the response (e.g., 
Holling I, II and III functional response, see Section 3.3). 2. 
The functional response is prey-predator dependent, when 
both predator and prey populations density affect the re-
sponse (e.g., Beddington –DeAngelis functional response). 3. 
The functional response is multispecies dependent, when spe-
cies other than the focal predator and its prey species influ-
ence the functional response. In this paper we do not consider 
this case when a third species, namely parasite, modifies the 
functional response (Toscano 2014). 
Aspect 2. Do the behaviors of interacting species have an 
effect on the given functional responses? The importance of 
Aspect 2 is that the theoretical models taking account of the 
behaviors of predators and prey have to use quite different 
mathematical tools to find the optimal behavior of predator 
and/or prey. Here there are four main possibilities. 
2.1 No behavior effect. The behaviors of interacting species 
have no effect on functional response (see e.g., Holling II 
type in Section 2.1). This is the simplest case, there is no op-
timization problem and the functional response depends only 
on the density of prey.
2.2 Only predator’s behavior has effect on its functional re-
sponse without interference between predators. If there is no 
interaction between predators during the foraging process, 
and each predator has two different prey species, then the prey 
preference of the predator determines the functional respons-
es (Stephens and Krebs 1986). The most studied problem in 
this case is how the predator’s preference maximizes its nu-
merical response. Optimal-foraging theory postulates that the 
forager maximizes its average net energy intake per unit time 
(Andersson 1981, Charnov 1976, Stephens and Krebs 1986, 
Turelli et al. 1982). The well-known zero-one rule of optimal 
foraging theory (either always attack or always ignore a prey 
type in the diet according to the actual density of different 
prey types) is one of the best examples for the way that preda-
tor behavior affects the functional response (Charnov 1976). 
A consequence of the zero-one rule is the negative frequency-
dependent selection, since the more abundant but less valu-
able prey type is attacked by the predator, if the density of the 
more valuable prey is low, so the predation pressure on the 
rare but more valuable prey type decreases. 
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2.3. Only the prey’s behavior has an effect on the predator's 
functional response. Clearly, the prey behavior can have an 
effect on the predator’s success. Such kind of antipredator be-
havior is refuge using (Cressman and Garay 2009, Hossie and 
Murray 2010, McNair 1987, Sih 1987), crypsis (Erichsen et 
al. 1980), mimicry (Real 1977), herd formation (Cosner et al. 
1999, Eshel 1978, Cressman and Garay 2011), habitat prefer-
ence (Cressman et al. 2004) and active defense (e.g., Hammill 
et al. 2010). For instance, elephants and buffalos can actively 
defend themselves and their young against lions, and they can 
kill lions (Hayward and Kerley 2005). 

It is important to point out here that there is an essential 
difference between the mathematical tools needed when the 
functional response exclusively depends on either prey or 
predator behavior. 

When the predator’s payoff does not depend on another 
predator’s strategy and the preys’ antipredator strategies, then 
the predator optimizes its foraging strategy (see classical op-
timal foraging theory, e.g., Stephens and Krebs 1986). When 
the prey use different antipredator strategies and the fixed 
predator’s prey preference determines the survival rate of 
different antipredator strategy, then the survival rate of each 
prey type depends on the antipredator strategies used by the 
whole prey population (independently of whether predator 
can change its foraging strategy). In other words, the survival 
rate of a given prey type depends on the strategies used by 
other prey (Garay et al. 2015b); in which case a population 
game (Broom and Rychtar 2013, Brown and Vincent 1992) 
has to be used for the prey population (Garay et al. 2015b). 
I note that this selection situation for the prey is similar to 
apparent competition (Holt and Bonsall 2017) when the in-
dividuals from different prey species have no direct com-
petition, but the common predator indirectly connects these 
species, since in one prey species the survival rate increases 
when the predator mainly consumes the other prey species. 
For an example of this kind of game, see Saleem et al. (2006) 
where, for a two predator one prey system, an evolutionar-
ily stable strategy for the prey’s defensive switching is given. 
Moreover, when Broom and Krivan (2018) surveyed the 
habitat selection game, they concentrated on functional re-
sponses of Holling types I and II. 
2.4 Only predator’s behavior has an effect on its function-
al response with interference between predators. If there is 
interaction between predators during the foraging process, 
then there are two cases. For the first case the Beddington-
DeAngelis functional response is a good example, where the 
interaction is not connected directly to the feeding, but the 
time constraint of the interaction decreases the total time du-
ration of foraging, consequently the interaction time decreas-
es the number of killed prey (see Section 3.3). For instance, 
the fight between predators clearly decreases the functional 
response (Garay at al. 2015a). In the second case, the inter-
actions are connected to feeding. For instance, Auger et al. 
(2002) started from the classical hawk and dove game, when 
predator individuals can use two behavioral tactics to dispute 
a prey when they meet, and used Holling type I functional 
response. In kleptoparasitism (Iyengar 2008), fighting for the 
killed prey takes time, thus kleptoparasitism also decreases 

the predation pressure on prey. In summary, in the first case 
the optimization models are used to find the optimal behavior 
of the predator, while in the second case a game theoretical 
model is needed (Broom and Rychtar 2013).
2.5. The preys’ and predators’ behavior together have effect 
on the functional response. Clearly, Aspects 1 and 2 take 
place at the same time. For instance, the evolution of mimicry 
is a multi-species problem, where the predator’s prey prefer-
ence and the phenotypic similarity between two prey species 
together determine the evolutionary success of the different 
phenotypes of different prey species and the predator, as well 
(e.g., Getty 1985, Sherratt 2002). Furthermore, in Serengeti a 
pride of lions are hunting on gregarious prey and this group 
formation has an effect on the functional response (Fryxell et 
al. 2007, Krivan et al. 2008). If the preys’ antipredator strat-
egy and predators’ prey preference have effect on the func-
tional responses simultaneously, then a multi species, density 
dependent population game can be given by the behavior and 
density dependent functional response (Cressman et al. 2004, 
Garay et al. 2015b), since the prey and predator behavior 
together determine the functional response. Now I mention 
some game theoretical models for predator-prey interactions. 
Group formation has an effect on the survival of prey and 
energy gain of predator (Cressman and Garay 2011, Lett et 
al. 2004). Habitat usage also determines the predator’s suc-
cess (Cressman et al. 2004, Hammond et al. 2007, Holt 1985, 
Hugie and Dill 1994). Prey refuge usage increases the sur-
vival rate of prey (Molla et al. 2018, van Baalen and Sabelis 
1993). Game theory is not only important in the predation 
process (e.g., Abrams et al. 1993, Brown et al. 1999, Vardi 
et al. 2017). For instance, in the plant-pollinator connection, 
the species are also counter-interested (e.g., Wang et al. 2012, 
Garay et al. 2003).

1.3. Time constraint and predation cycle 

For the sake of simplicity (e.g., for the simplest figures 
and equations), here we consider only 3 main stages of the 
predation cycle, but these stages can be subdivided into fur-
ther stages.
1.3.1. Search (traveling, encounter and recognition), when 
the predator is looking for its prey. This stage begins when 
the predator starts to look for food and ends when the preda-
tor finds its prey. Clearly, this stage includes the traveling, the 
local searching in a perception range and the recognition of 
prey type. 

The traveling by predator is determined by the habitat 
preference of prey (Garay et al. 2018). There are two main 
factors determining the ideal free distribution of prey: firstly, 
the habitats give different food supply (Fretwell and Lucas 
1970). Secondly, in different habitats the predation pressure 
is different according to the different properties of the habitat 
(Krivan and Schmitz 2003). 

The local searching in a perception range also depends on 
the phenotype of the prey and the behavior of the predators. 
For instance, when the prey is cryptic, the predator can use its 
search image (Garay et al. 2018, Tinbergen 1960).
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The recognition of a prey type also depends on the pheno-
type of the predator and its prey (Kotler and Mitchell 1995). 
For instance, during the evolution of mimicry, the recognition 
of the palatable prey is an important factor (MacDougall and 
Dawkins 1998). 

1.3.2. Attacks and killing. This stage starts when the predator 
attacks prey and ends when the predator has either killed or 
missed its prey. At this stage, the behaviors of the predator 
and its prey, together determine the success of the predator. 
Firstly, after the recognition of encountered prey, predator, 
according to its own prey preference, does or does not attack 
the prey. Secondly, the prey antipredator behavior has an ef-
fect on the success of the attack by the predator. For instance, 
refuge usage and gregarious behavior of the prey can also 
decrease the predator’s success, and in some cases the active 
defense against predator is also successful.

1.3.3. Handling. This stage starts with either chop up, trans-
port or eat and digest the food. During this stage the interac-
tion between predators, e.g., kleptoparasitism (Wittenberger 
and Hunt 1985) or scrounge game (Barta and Giraldeau 2000) 
may happen.

Observe that a predation turn of the predator may end 
with several events: when the handling stage ends, when the 
predator has found not preferred prey, when the predator has 
missed the prey so the attacked prey survives, etc. The com-
mon feature of these three stages is time constraint, namely 
each predator spends time in these stages. After the predator 
has finished its turn, it starts a new turn, and so on, during the 
predation time duration T. 

Based on the assumption that the different predator stages 
are mutually exclusive, the predation process form a preda-
tion cycle with different predation turns (see Fig. 1).

The structure of this paper is the following: Firstly, the 
heuristic derivation method is presented. Secondly, the sto-
chastic methods are overviewed. Thirdly, the deterministic 
mathematical tools are surveyed. In each section a few ap-
plications are delineated, but a total overview is impossible, 
since there are too many of them. Finally, a short discussion 
is presented. 

2. Heuristic time-budgeting argument 

Since Holling used a heuristic argument when he intro-
duced his functional response, I start with this derivation 
method. First, the original derivation of Holling is presented, 
then a more general heuristic reasoning is given. 

2.1. Holling’s discs equation 

First we briefly recall the original derivation of Holling 
type II functional response by Holling (1959a,b). Consider 
a predator foraging during time duration T. The predator is 
either searching for a prey or handling a prey. Holling used 
the following assumptions:

A) The searching and handling exclude each other, and 
both need time: Let τh denote the average handling time of 
one prey individual. Then during T we have two time dura-
tions: Ts and Th the total time duration of searching and han-
dling, respectively, so Ts + Th =T. 

B) Assume that during T the finding rate of a prey does 
not change, let us denote it by a. We note that this assumption 
is valid if during T the density of prey (denoted by x) is not 
changed by the predator. 

C) There is a linear relationship between finding a prey 
and the prey density, i.e., if the prey density is doubled, the 
killing probability is also doubled. Formally, px is the killing 
rate if the prey density equals x during T. We note that px is 
the average number of killings per time unit, and this is the 
reason why Holling’s original derivation does not include the 
searching time. 

Denoting the consumed prey by y, based on Assumption 
C, we have 
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Indeed, since px is the average killing per unit time, during 
Ts the number of killed prey is pxTs. Moreover, since the han-
dling time of a single prey, th determines the searching time, 
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Although Holling (1959a) originally considered an artificial 
“predator-prey system”: a human “predator” is searching for 
paper discs on the table, for the perspective of model build-
ing, in terms of the usual predation, Holling’s model has the 
following important assumptions: 
1.	 The predator’s stages exclude each other, e.g., at a par-

ticular time each predator is either searching or handling 
but cannot do these two activities simultaneously. 

Figure 1. One turn of predation cycle, from starting a search to 
starting a next search, can be described by this tree. The search-
ing and handling stages of the predator take time τs and τh, re-
spectively. More details of predation process are given in Lima 
and Dill (1990). 
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2.	 There is a time constraint, i.e., each disjoint action of 
predator needs time. 

3.	 The killing rate depends on the density of prey. 
4.	 During the investigated time period T, the density of 

prey does not change. 
Although Holling’s model is the simplest description of 

the problem, these motives of Holling’s model are the basis 
of all mathematical derivation tools of functional response, 
reviewed below. 

2.2 Heuristic argument for fixed prey density

There are three different time scales in the problem of pre-
dation. The first one is the longest one, the population growth 
time scale, which measures the densities change of predator 
and prey populations. This population dynamical time scale 
is significantly longer than that over which the functional 
response is measured (Abrams and Ginzburg 2000, Krivan 
and Cressman 2009). The second time scale, a smaller one is 
the time duration of predation cycles T. During T the density 
change by predator can be neglected. The third time scale, the 
shortest one is the time unit for measuring the different time 
duration of different stages of the predation cycles. In most 
derivation methods of functional response, the population dy-
namics time scale does not take place. 
Basic assumption: The following heuristic argument is strict-
ly based on the widely used assumption that during T, the 
predator's behavior and the preys’ density and the preys’ be-
havior do not change (see later in Section 3). The definition 
of functional response (i.e., the average number of food prey 
eaten by an arbitrary predator individual per unit time), reads 
as 
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What is the average number of killed i-th prey during T? For 
an answer to this question, let us consider what an observer 
can see? During T, each focal predator has a random sequence 
of predation turns and kills i-th prey in only part of these pre-
dation turns. Thus, the first question arises: what is the aver-
age number G of different predation turns of a focal predator 
during T? For an answer to this question, let us calculate the 
average time duration of a predation turn (denote it by E(τ), 
which depends on the time duration of predation stages). In 
terms of E(τ), for G we have
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Now the second question arises: What is the probability pi 
that, in an arbitrary predation turn, the predator kills an i-th 
prey? Clearly, the average number of killed i-th prey during 
time T equals Gpi, thus
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Observe that this heuristic derivation is strictly based on the 
assumption that during T, all parameters of the predation pro-
cess do not change, in other words, during T these parameters 
are time independent. Indeed, in the opposite case, for in-
stance when the prey density is radically decreased by preda-
tors during T, then the encounter probability also radically 
decreases, so firstly the average number of killed i-th prey is 
not equal to Gpi (since the encounter probability decreases), 
and secondly the average time duration of one predation turn 
will increase (since the searching time increases).

Now, without a complete overview, I mention some pa-
pers where this derivation method is used. Spalinger and 
Hobbs (1992) started from the traditional representations of 
predator functional response and, by considering the plants 
distribution and the speed of herbivores, introduced new 
functional responses. The Beddington-DeAngelis functional 
response takes into account predator-predator interactions 
which also mutually exclude the searching and handling 
stage. The Beddington-DeAngelis functional response was 
derived by Beddington (1975), who extended the heuristic 
derivation method of Holling, and independently proposed 
by DeAngelis et al. (1975) based on an empirical relation-
ship. Furthermore, Cosner et al. (1999), based on a time-
budgeting argument and the principle of mass action, gave 
a unified mechanistic approach for the derivation of various 
forms of functional responses (including the ratio-dependent 
one), taking account of the spatial distribution of predators. 
Rogers (1972), using time-budgeting for parasites, derived 
a functional response in which the functional response is an 
exponentially saturating function of the host density. Pawar 
et al. (2012) pointed out that the dimensionality of consum-
er search space is probably a major driver of functional re-
sponse, moreover, they also proposed functional responses 
for different foraging strategies (i.e., random active capture, 
sit-and-wait and grazing). Furthermore, Baker et al. (2010) 
and Smart et al. (2008) investigated the effect of vigilance 
on the functional response of granivorous prey. Anti-predator 
behaviors, including vigilance, are a major component of for-
aging (Treves 2000) and in some species it was shown that 
vigilance could become the major factor limiting feeding rate 
(e.g., Inger et al. 2006). 

3. Stochastic derivation methods

In this section we overview the stochastic methods used 
in the derivation of functional responses. 

3.1 Renewal theory

First, renewal theory was used to give proper mathemati-
cal foundations of functional responses (McNamara 1979, 
1985, McNamara et al. 2006, Johns and Miller 1963, Oaten 
1977, Oaten and Murdoch 1975, Pavlic and Passino 2011). 
Originally, the renewal process modeled the breakdown of 
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different machines, and the renewal times represented the 
time between two consecutive breakdowns. In general, re-
newal theory focuses on random events occurring at random 
times, and the renewal time is the random time that elapses 
between two consecutive events. In essence, the application 
of renewal theory for the derivation of functional responses is 
based on Holling’s assumption, namely, that during the pre-
dation time duration T, the density of prey does not change. 
Now a random event is that the predator kills a prey, and Ij=1 
is the reward for it (i=1,…,n) the i-th prey, and the random 
renewal time is the random time duration between two kills 
(denoted by τ1, τ2,…,τn). τi-s are supposed to be independent, 
identically (e.g., exponentially) distributed random variables, 
with finite mean, E(τ)<∞. Finally, the renewal process is that, 
after the kill the prey population “renewals”. I note that, from 
the perspective of mathematics, this model is fine, but from 
biological view point it means that after one prey has been 
killed, exactly either one prey immigrates to the home range 
of predator or one prey is born. In other words, this applica-
tion of renewal theory relies on the assumption that the pro-
cesses of decrease and increase of the prey population during 
T have the same effect on the local prey density. 

Formally, the total time duration of n killings is 
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The renewal function is defined as the expected number of 
jumps, mT, up to time T, i.e., 
   mT = E(XT),
where XT is the number of events (rewards) up to time T, XT 
= sup{n: Tn≤T}. 

The basic theorem of the renewal theory claims that 
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which means that, if the total predation time duration T is 
large enough, then the time average of a single killing deter-
mines the number of killings per unit time. 

Moreover, the expected total reward during the predation 
time duration T, (in other words the reward function) is de-
fined as
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where Ii denotes the indicator variable of the i-th event (in 
other words, obtained reward). The functional response (the 
number of killings during unit time) satisfies
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Finally I note that the renewal theorem used here assumes 
that the time horizon is infinite. 

Functional responses are often generated in optimal 
foraging theory using renewal theory (e.g., Andrews 1968, 
Cressman et al. 2014, Hassell 1978, Holling 1966, Houston 
and McNamara 1985, 1999, McNamara et al. 2006, Stephens 

and Krebs 1986, Yearsley 2003). Recently, Billiard et al. 
(2018) developed a bottom-up stochastic framework ground-
ed in renewal theory showing how functional responses de-
pend on the relative density of the individuals through the 
decomposition of interactions into different activities. They 
have derived the stochastic versions of classical functional re-
sponses: Holling’s I, II and III. Furthermore, they demonstrat-
ed how the functional response depends on the dimension of 
foraging space, and body mass of prey. Finally, they also give 
the functional response when the prey have antipredator be-
havior, namely vigilance.  

3.2 Markov chains

Markov chains have a wide range of applications in sci-
ence, from physics to biology. Markov chain is "a stochastic 
model describing a sequence of possible events in which the 
probability of each event depends only on the state attained in 
the previous event" (Gagniuc 2017). In other words, Markov 
chain is “memoryless”, i.e., the conditional probability dis-
tribution of future states of the process (conditional on both 
past and present states) depends only on the present state, not 
on the sequence of events that preceded it. This property of 
Markov chains is also called Markov property. Clearly, the 
basic assumption of Holling (see Section 2.1) that during the 
considered time period T, the density of prey does not change, 
gives a possibility for the application of Markov chains in 
predation processes as well. 

A discrete-time Markov chain is a special sequence of 
random variables X1, X2, X3,... The possible states of these 
random variables are the outcomes of a random phenomenon 
and run on a discrete set, so the possible values of Xi form a 
finite set S of K elements (or more generally, a countable set). 
S is called the state space of the chain. The above Markov 
property, namely that the probability of moving to the next 
state depends only on the present state and not on the previ-
ous states, for the discrete time case can be written as follows: 
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For the transition probability from i-th state to j-th state in-
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the so-called transition matrix M can be defined:
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Since the total transition probability from i-th state to all other 
states (including the i-th state) must be 1, we have
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(In other words, M is a stochastic matrix). The main property 
of Markov chains is the existence of a stationary distribution 
x*, given by a probability row vector, which does not change 
under the application of the transition matrix M. In other 
words, it is a left eigenvector of matrix M associated with the 
eigenvalue 1, i.e., 
x*M = x. 
For the existence of a stationary distribution the notion of ir-
reducibility is critical. We say that a Markov chain is irreduc-
ible if the probability of transition (even if in more than one 
step) from any state to any other state is not zero. Based on 
the theory of positive matrices (i.e., Perron-Frobenius theo-
rem), it can be proved that every irreducible Markov chain 
has a unique stationary distribution. 

Above we shortly summarized the basics of discrete 
Markov chains. However, the continuous time Markov 
chains are also widely used in applications. The main point 
is that, if all time durations are exponentially distributed, 
the state space is finite and the system is irreducible, then 
there always exists a unique stationary distribution (for the 
general proof see e.g., Garay et al. 2016). For the functional 
response, the predation state space is finite and the system is 
irreducible. Although the assumption that all time durations 
are exponentially distributed may be questionable, from the 
theoretical point of view this assumption can be considered 
as a simplifying one (e.g., Ruxton and Gurney 1994). I note 
that Kohlmann et al. (1999) fitted gamma distribution to the 
handling time for the herbivore (cf. Colombo 2013). 

Van der Meer and Smallegange (2009), using a continu-
ous time Markov model, derived a Beddington-DeAngelis-
like functional response taking into account agonistic inter-
actions. Casas et al. (1993) used a Markov model for para-
sitoids. McCoy et al. (2011) introduced prey size dependent 
functional responses. Baudrot et al. (2016) for a generalist 
optimal forager investigated a multi‐species functional re-
sponse. Kannan (1983) used Markov chains for the preda-
tor’s learning. 

Finally I note the Markov chain is an essential mathemat-
ical tool in the time constrained evolutionary games (Broom 
et al. 2010, Garay at al. 2016) as well.

3.3 Functional response based on Wald’s equality

Let us consider one predator and k different prey types, 
and start from the assumption that during the predation time 
T, the densities of prey are constant, thus the probabilities 
of killing do not change during T. Let τj be the net predation 
time of j-th prey. Let the successive predation periods (times 
between consecutive kills) be X₁, X₂,…; they are supposed to 
be independent, identically distributed, nonnegative random 
variables, with P(X1 = τj) = pj, 1 ≤  j ≤  k. That is, pj denotes 

the probability that the predator kills a prey of type j. Let us 
fix a positive T. We are interested in the (random) number Zj 
of predation periods, beginning before time T, when the prey 
is of type j. The following estimate for the expectation E(Zj) 
has been proved in Garay and Móri (2010)
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where τm =max{τ1,…,τk}.
If T is much greater than τm, our formula (8) says that the 

average number of type j killed per unit time is approximately 
equal to , 
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which is heuristically quite clear: During a long time T the 
number of predation periods is approximately equal to T di-
vided by the mean time of one such period; and the number 
of periods where type j prey is killed is proportional to the 
probability pj. Such a heuristic reasoning can be very useful 
for getting an insight, but leaves uncertainty about the good-
ness of the approximation. The significance of estimate (8) is 
that it attributes exact mathematical meaning to heuristic con-
siderations. The proof of the above results is based on Wald 
(1944) equality (see Garay and Móri 2010).

For harmony with the already proposed functional re-
sponses, we assume that τm / T is small enough. Then formula 
(8) becomes 

 4

)(
)(

)(
)( 11 XE

Tp
ZE

XE
Tp mj

j
j 

 ,   (8) 1 

killed per unit time is approximately equal to 
)( 1XE

pj ,        which is  2 

)(
)(

1XE
Tp

ZE j
j  ,     (9) 3 

 4 

)(E
p

F j
j  ,        (10) 5 

 6 

 7 

prey with probability 
H
xxf )( ,       where x is the number of prey. Clearly 8 

x<H is needed. Denote the probability of successful attacks by k. Then we can assume 9 

that k
H
xp         . Now, formula (10) reads as Holling type II functional 10 

response: 11 

xkH
xk

H
kx

H
kx

F
hs

hs
 




 .  12 

 13 

				    (9)

so the general formula for functional response is obtained (for 
the mathematical details see Garay and Móri 2010)
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which is the same as formula (7). The main point is that using 
Wald’s equality we have a mathematical proof for the formula 
(7) under the assumption that, during T the parameters of the 
predation cycle do not change.  

I note that the main difference between renewal theory 
and Wald’s equality based methods is that the first one con-
siders infinite time horizon, while the second one considers 
finite time horizon. Furthermore, the second one gives an 
approximation of the functional response, see equation (8). 
Moreover, using Wald’s method, Garay and Móri (2010) 
pointed out that prey preference is optimal whenever the ad-
vantage of a proper prey preference is larger than the average 
cost of missed prey preference.

To demonstrate the usefulness of our formula (10), we 
consider the following simplest predation cycle, where there 
is no behavior effect, thus the functional response depends 
only on the density of prey and the predator can kill only one 
prey at a given time (see Fig. 2). 
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Let p be the probability that the predator kills its prey, and 
τs and τh be the searching and the handling time, respectively. 
For the application of formula (10), we have to give probabil-
ity p. Clearly, p depends on the accessibility of prey (which 
depends on the density of prey, the territorial structure of the 
predators, etc.) and the success of predation attacks at least. In 
the following, five applications are presented. 
Application 1. Holling type II. Predator can observe one prey 
individual at most and prey are independently and uniformly 
distributed in perception ranges. Denote by H the number of 
perception ranges, then a uniformly random searcher predator 
encounters its prey with probability
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Application 2. Holling type III. Now we will consider a theo-
retical case when predator perception is “preys' density” 
dependent: predator can observe a prey if there are two in-
dividuals at the same time in its search patch. If prey are inde-
pendently and uniformly distributed in perception ranges and 

each predator can find a perception range with two prey, then 
the encounter probability is

 5

H
kxE hs  )( .        1 

 2 

prey, then the encounter probability is 
2

)( 







H
xxf .       Therefore now 3 

k
H
xp

2







       . Hence formula (10) results in the Holling type III 4 

function response:  5 

k
H
x

k
H
x

F

hs

2

2





















                .  6 

 7 

Application 3. Holling type IV  8 

2

1 







H
x

H
x ,     

H
x  and 

2









H
x

,  9 

     …  10 

 11 

 Under this condition the probability of killing is 
H
xp  ,       and the average 12 

time duration is 13 

Therefore now

 5

H
kxE hs  )( .        1 

 2 

prey, then the encounter probability is 
2

)( 







H
xxf .       Therefore now 3 

k
H
xp

2







       . Hence formula (10) results in the Holling type III 4 

function response:  5 

k
H
x

k
H
x

F

hs

2

2





















                .  6 

 7 

Application 3. Holling type IV  8 

2

1 







H
x

H
x ,     

H
x  and 

2









H
x

,  9 

     …  10 

 11 

 Under this condition the probability of killing is 
H
xp  ,       and the average 12 

time duration is 13 

.

Hence, formula (10) results in the Holling type III function 
response: 

 5

H
kxE hs  )( .        1 

 2 

prey, then the encounter probability is 
2

)( 







H
xxf .       Therefore now 3 

k
H
xp

2







       . Hence formula (10) results in the Holling type III 4 

function response:  5 

k
H
x

k
H
x

F

hs

2

2





















                .  6 

 7 

Application 3. Holling type IV  8 

2

1 







H
x

H
x ,     

H
x  and 

2









H
x

,  9 

     …  10 

 11 

 Under this condition the probability of killing is 
H
xp  ,       and the average 12 

time duration is 13 

.

Application 3. Holling type IV. Now, assume that prey is not 
randomly distributed in the perception ranges, namely in a 
perception range there are 0, 1 and 2 prey with probabilities
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respectively. Moreover, assume that the predator can kill its 
prey with probability 1, if there is only one prey in perception 
range. In other words, two prey either can observe the stalker 
predator in time to flee, or two prey can successfully defend 
against predator. Furthermore, when the predator has found 
two prey in perception range then it needs an extra time de-
noted by τ2, and it cannot kill any prey. Under this condition 
the probability of killing is
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Now, formula (10) reads as the Holling type IV functional re-
sponse (Andrews 1968, Boon and Landelout 1962, Edwards 
1970). Indeed
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Application 4. Ratio dependent functional response. The ratio 
dependent functional response was introduced by Arditi and 
Ginzburg (1989), and there are evidences that the functional 
response in the wolf-moose system is ratio dependent (Jost 
et al. 2005, Vuchetich et al. 2002). Now, let us consider y 
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number of perception ranges, then a uniformly random searcher predator encounters its 16 

prey with probability 
H
xxf )( , where x is the number of prey. Clearly x<H is needed. 17 

Figure 2. The density dependent encounter probability with prey 
is denoted by f(x). The probability of a successful attack is de-
noted by k. If the encounter and attack are independent then the 
predator has killed its prey with probability p= f(x)k. The search-
ing and handling stages of the predator take times τs and τh, re-
spectively.
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territorial predators and its prey living in a huge herd moving 
across the territory of all predators, and spending the same 
time duration in each territory. Under these conditions, we 
can assume that if the encounter probability depends on the 
size of the herd, i.e.,
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Now, formula (10) provides the ratio dependent function re-
sponse:

 6

 1 

2

2

2

2

)()(11)(  



























 

H
x

H
x

H
x

H
x

H
x

H
xE hsshss .  2 

 3 

 4 

 5 

2

2

 









H
x

H
x

H
x

F

hs

. 6 

Application 4. Ratio dependent functional response.  7 

, i.e., 
Hy
xxf )( ,  then the probability of killing is k

Hy
xp  .     8 

Now, formula (10) provides the ratio dependent function response: 9 

 10 

 11 

hshs k
y
xH

k
y
x

k
Hy
x

k
Hy
x

F
 




 . 12 

 13 Application 5. Fighting predator. Let us suppose now that, 
if two predators encounter each other, then they fight. In this 
encounter, the fight does not only take time, but we can also 
assume that during fighting the occasional injury may hap-
pen, and during recovery the predators stop all other activi-
ties, including hunting (Garay et al. 2015a). Consider a prey 
and a predator species, and the following activity distribution: 
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(See Fig. 3. I emphasize that these probabilities do depend on 
the density of the prey and the predators, since their encoun-
ter probabilities depend on the densities.) Denote by ti  the 
average time duration of the above activities and let ts be the 
searching time, namely, t1 = ts, t2 = ts + tf, where tf  denotes 
the average fighting time, t3 = ts,  for the sake of simplicity, 
assume the attacks do not take time, t4 = ts + th, where  th  
denotes handling time. Now, formula (10) reads
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I note that the Beddington-De Angelis functional response 
for fighting predator was obtained by using the Wald’s equal-
ity based method (Garay and Móri 2010). Furthermore, using 
Wald’s equality based method for omnivore (Garay et al. 2012), 
Holling type II and III functional responses were obtained. 

At first glance, the reader may think that this method is not 
quite new, since renewal theory (Johns and Miller 1963) and 
the heuristic time-budgeting argument give the same result: 
functional response is the amount of food items consumed 
on average, divided by the average duration time (see e.g., 
Houston and McNamara 1999, and the references therein). 
However, there are two main differences: the first one is rath-
er technical; we used Wald’s equality, which is a ‘‘vertical’’ 
description in time (considering a given time period in which 
the density change of prey can be neglected); unlike renewal 
theory, which is a ‘‘horizontal’’ description in time (assuming 
that time duration tends to infinity, and the prey density does 
not change, since it renews). Other authors consider renewal 
cycles with short renewal time period (e.g., McNamara 1985, 
McNamara and Houston 1999). However, if the prey popu-
lation is quickly renewed (e.g., renewal time is shorter than 
searching time), then the predator will optimize energy intake 
by staying in the richest patch type once one is encountered 
and so obtain an expected payoff greater than random search 
by also decreasing the total searching time during T. I also 
note that if the predator never visits the same patch twice, 
then the basic condition of Wald’s methods holds: if the prey 
is randomly distributed in the home range of predator, then 
the proportions of patch types among visited and non-visited 
patches are the same and are also unchanged during T. The 
second difference is more important in the derivation method 
based on Wald: although the i-th activity probability (pi) is 
fixed, it is not specified during the derivation. This gives a 
freedom for us to take account of the biological details of the 
considered situation, as we will see in the next section. 

3.4. Decision tree method

In this subsection, we continue to use the assumption that 
during the predation time T, the densities of prey are con-
stant, thus the probabilities of killing do not change during 
T. Now, we slightly generalize the model of Section 3.2. Let 
us consider k different predation turns of a predation cycle. A 
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the functional response. Average activity time durations τi are de-
scribed in the main text.
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predation turn starts with searching for prey, then continues 
with killing prey and ends with handling prey, etc., see Figure 
1. Let the net time of j-th predation turn be denoted by Tj. Let 
the times between consecutive predation turns be X₁, X₂,…; 
they are supposed to be independent, identically distributed, 
nonnegative random variables, with P(X1=Tj)=pj, 1 ≤ j ≤ k. 
In this slightly generalized model, formulas (8) and (10) are 
also valid.  

The decision tree method (Cressman et al. 2014) gives 
a simpler step-by-step “recipe” how we can take account of 
the details of the predation process like predator and prey be-
haviors, during the derivation of functional responses. There 
are three main successive steps of the predation cycle: the 
first stage is encounter, after which the predator does or does 
not attack its prey found, then killing and finally handling. 
Observe that these steps form a conditional sequence, since 
an attack can only occur if the predator has encountered its 
prey and so on. Furthermore, at each step there is a probabil-
ity distribution, i.e., the encounters form a random process, 
moreover, if predator does not follow the 0-1 rule, it random-
ly attacks its actually found prey, finally, in general predator 
can also miss its attacked prey with a given probability.  

Decision trees for functional responses describe preda-
tor actions and prey behaviors at each decision point. When 
applied to functional responses, these trees must have three 
levels.

The first level describes the distribution of encounter 
events between predator and prey (cf. Fig. 4). In general, let 
us denote the different encounter events by Ei and the prob-
ability that Ei occurs by P(Ei). The main point is that encoun-
ter event Ei runs all situations where the predator has to make 
a decision. Since we also include events when the predator 
does not encounter any prey,
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The encounter depends on the density and behavior of prey 
(Cressman and Garay 2011, Garay et al. 2015b), furthermore 
on whether the predator does or doesn’t use search image 
(Dawkins 1971, Garay et al. 2015b). We note that during 
search, predator may have encountered another predator as 
well. 

The second level describes the predator preference, let αk 
give the predator’s possible actions (i.e., what the predator 
does) in encounter Ei and s(ak|Ei) be the predator’s condi-
tional strategy of using action αk when in encounter Ei (see 
Fig. 4). We stress here that actions αk are specific for each en-
counter event Ei and so are more formally denoted by αki. To 
simplify notation, the second index is omitted throughout this 
subsection. Then, for each i, P[s(ak|Ei)] ≥ 0  and  SkP[s(ak|Ei)] 
= 1 where P[s(ak|Ei)]  is the probability of using conditional 
strategy s(ak|Ei) in event Ei. 

The third level describes the predator’s success at killing 
its prey and may also depend on the encounter event Ei and on 
its action αk (see Fig. 4). Let k(ak|Ei) denote the probability 
that the predator is successful, which is 0 if αk is an action 

that does not attack a prey and is a number between 0 and 1 
otherwise. 

For the general modeling approach, the “activity distribu-
tion” of the predator is introduced. An activity event Aℓ is 
given by an encounter event Ei, an event specific action αk and 
whether or not the predator kills its target (i.e., Aℓ = {Ei , αk, 
κ(αk | Ei)}). Taken together, all such events form a partition of 
the total event set. That is, every activity event is included in 
the union of the Aℓ and two different Aℓ and A’ℓ are mutually 
exclusive. The activity distribution answers the three ques-
tions posed at each stage of the predation process: encounter, 
predator’s decision, predator’s success. The probability Pℓ of 
activity event Aℓ is given through the information above. For 
example, if Aℓ is the encounter event E1 combined with action 
α1 and the predator kills the prey, then Pℓ = P (E1) P[s(α1 | 
E1)]κ(α1 | E1). Since the functional response is based on the 
number of prey killed by the predator per unit time, we must 
also consider the duration τℓ of each activity event Aℓ. 

Observe that the decision tree, by taking account of the 
sequences of conditional events, generates the distribution of 
activity (in other words predation turns) of a predator (see 
e.g., Garay et al. 2015b), and each activity has time duration 
(see Fig. 4). Suppose that the activity distribution is constant 
over a given time interval T. Then by applying formula (10) 
the average number of Aℓ0 activity events per unit time, Fℓ0 , 
is given by

 

  Fℓ = Pℓ / (∑τℓPℓ).

Application 6. Two types of prey. The decision tree based 
game-theoretical approach (Cressman et al. 2014) was de-
veloped for constructing functional responses in multi-prey 
environments and for finding the corresponding optimal for-
aging strategies. Let us consider two different prey types X 
and Y with densities x and y, respectively, and suppose that 
the different prey types do not aggregate, thus predator finds 
either X or Y prey, but never find an XY pair of prey. Assume 
that the encounter probability with X and Y prey is x/H and 
y/H, respectively. If the predator has found prey X and Y, it 
either attacks its prey with probabilities p and q, or ignores its 
prey with probabilities 1-p and 1-q, respectively. For simplic-
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Figure 4. Predator decision tree for two types of prey. The first level describes the 2 
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Figure 4. Predator decision tree for two types of prey. The first 
level describes the encounter events, the second level gives the 
predator’s prey preference.
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ity, we assume the predator is always successful and there are 
no recognition and missed attack times. The handling times 
of prey X and Y are denoted by thX  and thY , respectively. This 
situation is described in Figure 4. 

Based on Figure 4, now the functional responses for prey 
X and Y are

 8
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Application 7. Prey refuge.1 Consider one prey and one pred-
ator species, and assume that there is no interaction between 
predators, and the encounter probability depends on prey 
density denoted by x again. (As in Application 1, let x/H be 
the encounter probability, where H is the number of percep-
tion ranges.) Now, the prey individuals use an absolutely safe 
refuge, namely, each prey individual spends a proportion s of 
its time in the open and 1-s in the refuge. When the predator 
has arrived, the prey is in its refuge, then the predator starts 
a new search, since the refuge is absolutely safe. When the 
predator has arrived and the prey is in the open area, then the 
predator always attacks its prey, and kills it with probability 
k. All these activities need time tk = ts + th, where ts  denotes 
the searching time, and th is the handling. Here, for simplic-
ity, we assume that the attack does not take time (see Fig. 5). 
Now the functional response is
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In the next application, I call the attention to the fact that 
the decision tree method is appropriate to take into account 
the behavior of the prey (not only predator’s prey preference), 
so this method is apt to provide a behavior dependent func-
tional response. However, when prey and predator behavior 
together determine the functional response, then the term 
“game tree” is more suitable than the decision tree. 
Application 8. Dispersal-foraging game. This game is a com-
bination of prey habitat selection between two patch types 
and optimal foraging approaches (Garay et al. 2015b). Prey’s 
patch preference and predator’s behavior determine the 
prey’s survival rate. The predator’s energy gain depends on 
local prey density in both types of exhaustible patches and on 
leaving time of the predator. In this situation, the decision tree 
can be considered as a game tree, since at fixed strategies of 
predator and prey population, the decision tree gives the pay-
off functions (survival rate for prey, and functional response 
for predator, see Fig. 6). In the one prey-one predator system, 
for the simplicity we assume that there are two types of well 
mixed habitats with different local prey densities, x1(s) and 
x2(s), where s describes the strategy of habitat use of prey. 
These habitats are denoted by A-H and B-H, respectively. 
Denote by d1(s) and d2(s) the relative frequencies of these 
types of habitat. We can assume that the random predator 

can find these habitats with respective probabilities d1(s) and 

d2(s), since the habitats are well-mixed. If predator has found 

A-H and B-H, it either attacks its prey with probabilities p 

and q, or ignores its prey with probabilities 1-p and 1-q, re-

spectively. The handling times of prey in A-H and B-H are 

denoted by τhA and τhB, respectively. 

Now the prey and predator dependent functional re-

sponse is
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1 I note that this example is motivated by the paper of Cressman and Garay (2009). 
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Figure 5. Now the antipredator behavior is refuge usage. When the predator has arrived 2 
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 18 Figure 6. For simplicity, now we assume that all perception 
ranges are occupied by prey, i.e., there is no empty perception 
range. Now the antipredator behavior of prey is habitat use. 
Before the predator has arrived, prey have occupied the dif-
ferent habitats, so the encounter probabilities are determined 
by the prey. 
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4. Deterministic derivation methods

In this section we overview the deterministic methods 
used for the derivation of functional responses. 

4.1. Deterministic method for the stage of predator with 
fixed prey density and time constraint

Consider, now an infinitely large predator population, 
where each predator has k different stages. The transition 
rate between stages is given by the assumption of infinitely 
large population, the rule of mass action (Van der Meer and 
Smallegange 2009) as in chemical systems (Huisman and 
de Boer 1997, Real 1977). Thus, the encounter rate between 
predators and prey is proportional to the product of the num-
ber of predator in searching stage and the density of prey. 
The transition rate from handling stage to searching stage 
is constant and inversely proportional to the handling time. 
From mathematical point of view, the latter idea relies on the 
assumption that the distribution of handling time is exponen-
tial, thus the average time duration of each handling period of 
each predator individual is 1/th.  

To demonstrate this deterministic derivation method, let 
us follow the original assumption of Holling (see Section 
2.1). Let us consider only two stages of predator, searching 
(S) and handling (H), which exclude each other and both need 
time, τs and τh, respectively. The number of predators (Y) does 
not change during time period of predation T, consequently

   S = Y – H,
where S and H are the numbers of predators at stages search-
ing and handling, respectively. Furthermore, during T the 
density of prey (x) and finding rate of a prey (a) do not change 
and predator always successfully kills its attacked prey, thus 
ax is the killing rate during T. 

Now we can give a differential equation model on the 
stages of all predators: 

 9

Application 7. Prey refuge.1  1 

All these activities need time hsk   ,    where s       2 

 3 

skxH
kxF

hs  
 .  4 

 5 

 6 

x
qxsdpxsdH

qsdpsdqpsF
hBhAs )()(
)()(),,(

21

21

 


 . 7 

 8 

 9 

predator individual is 
h

1 .  10 

 11 

 12 

HYS  , 13 

 14 

 15 

HSax
dt
dS

hS 
1

 . 16 

                                                        

1 I note that this example is motivated by the paper of Cressman and Garay (2009). 
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Indeed, as Figure 7 shows, the rate between searching 
and handling is ax/τs, since a predator has to finish its actual 
search (with probability 1/τs) and find its prey with probabil-
ity ax and kill its found prey with probability 1. Furthermore, 
at each time unit, the 1/τh  part of the handling predators finish 
the handling stage and start a new search. 

In the long run, there exists a mixed stable equilibrium, 
since if all predators are in the searching stage then a fraction 
of them will start handling stage, and contrarily, if all preda-
tors are in handling stage then a fraction of them will start 
searching stage. The equilibrium is given by 
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Finally, since the functional response considers a sin-
gle predator, in this way we also obtain the Holling type II 
functional response. For more mathematical details of pop-
ulation-level differential equation models, see e.g., Metz and 
Diekmann (1986).

This way of derivation of functional response was applied 
to a range of situations. For instance, Ruxton et al. (1992) 
and Van der Meer and Smallegange (2009) by using this deri-
vation method obtained a Beddington-DeAngelis-like func-
tional response for the case when predators fight with each 
other. Kooijman (2006), when a prey type is not edible, also 
derived a Beddington-DeAngelis-like functional response. 
Later, Geritz and Gyllenberg (2012) also found a Beddington 
- DeAngelis functional response involving prey refuges in-
stead of the usual interference between predators. For the 
plant-bees interaction, Fishman and Hadany (2010) found 
an analytical approximation of the Beddington –DeAngelis 
functional response. Furthermore, van Leeuwen et al. (2007), 
taking into account densities of two prey types, obtained 
Holling types II and III (Real 1977) functional responses

In ecological game theory, the above stage dynamic 
method is often used when the interaction takes time. For 
instance, this method is applied in a predator–prey system 
where predators fight for captured prey and fighting for prey 
is modelled by a hawk–dove game dynamics (Auger et al. 
2002, Kooi 2015). The adaptive dynamics approach as an 
evolutionary research line also uses this functional response 
derivation method in model building (Dercole 2016). 

I note that this deterministic mass action method is wide-
ly used in evolutionary game theory under time constraint 
(Broom and Rychtar 2013, Krivan and Cressman 2017) as 
well. 

4.2. Deterministic method for decreasing prey density  
without time constraint 

In this subsection, we recall some classical results re-
viewed by Royama (1971), see also Hassell (1978, Appendix 
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I). We will see how the exponential function arises in the 
study of functional response (e.g., Ivlev 1961, Nicholson and 
Bailey 1935, Royama 1971). Only in this subsection we as-
sume that during the predation period T the density x of prey 
is decreased by predators, but the predator density is constant, 
Y. Let us suppose that at prey density x, f(x) is the number of 
prey killed by a predator in unit time, considered as an “in-
stantaneous functional response” in the sense that the implied 
time-dependent prey density is described in terms of the dif-
ferential equation
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By solving this differential equation with initial condition 
x(0)=x0, we can calculate an “average functional response” 
over the time duration T, defined as
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For illustration, let us consider the particular case when 
f(x) = ax, with some constant a. Then, from (11) by integra-
tion we obtain
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Observe that this corresponds to the Nicholson-Bailey (1935) 
“competition equation” (see Royama 1971, p. 11-13). Finally 
we note, if the instantaneous functional response is not a 
linear function of prey density, then we get a different aver-
age functional response. For instance, let us start from Ivlev 
(1961) function
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where a and b are positive constants. Then, applying the 
above differential equation method we get the following av-
erage functional response
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 19 Using this derivation method, Okuyama and Ruyle (2011) 
derived Holling types II, III, Beddigton-DeAngelis and ratio 
dependent functional responses. Moreover, Aljetlawi et al. 
(2004) derived a functional response function that accounted 
for both predator and prey size. Furthermore, Cabello et al. 
(2007) introduced new expressions for Holling type III in 

terms of a new parameter called entomophagous potential (of 
a parasitoid or predator), which is important from the view 
point of biological pest control (e.g., Fernandez-Maldonado 
et al. 2017). 

5. A short note on the connection between  
deterministic and stochastic approaches

As we already have shown, different derivation methods 
may give the same functional response. For instance, Van der 
Meer and Smallegange (2009), using continuous time Markov 
model for a finite population and deterministic mass action 
method for infinite populations, derived the same functional 
response. The connection between finite Markov processes 
and differential equations is given by Kolmogorov (1931), 
to characterize the stochastic process. In a series of papers, 
Metz and Van Batenburg (1985), Metz and Diekmann (1986) 
and Metz et al. (1988) formulated the full continuous versions 
of the finite stochastic models, and studied their asymptotic 
behavior using differential equations. Sabelis (1990), apply-
ing the same method, built a model on the assumption that 
gut fullness is the sole internal state variable determining the 
attack rate. Dawes and Souza (2013) using the same method 
provided functional responses: the Holling type I (when han-
dling time is very short), type II (when handling time is long 
compared to searching time) and type III (when the mortality 
of the prey first increases with prey density at low densities, 
and then decreases at higher prey densities, so that the re-
sponse curve has a characteristic S-shaped form). 

I note that in physics, starting from a microscopic sto-
chastic model (individual level model), taking a limit in the 
densities of prey and predator, McKane and Newman (2005) 
arrived at a mean field (differential equation) model to give 
the functional response.

6. Discussion 

First of all, Holling type II is the experimentally most 
widely used functional response (Skalski and Gilliam 2001) 
and also very much used in theoretical investigations. I em-
phasize that all derivation methods are able to derive the 
Holling type II functional response. Consequently, all re-
viewed derivation methods have proved their usefulness in 
theoretical ecology. 

Now I am in the position to make clear what until now 
has been the unannounced aim of this review. Predation is 
a pure counter interested phenomenon, since predator has to 
kill its prey for living and this prey has to survive (or avoid) 
the predator attacks, thus each of them survives only at a cost 
to the other. The predator success depends on the behavior 
of both opponents, so in general, from mathematical point 
of view, the predation process can be described in terms of 
game theory, which is the mathematical tool to understand the 
conflicts of counter-interested species (Lima 2002). To define 
a game, we need to give the strategy set (now the behavior 
of opponents), and the payoff functions. For the predator the 
payoff function is the numerical response. For the prey the 
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payoff function is the probability of survival. Both payoff 
functions can be defined in terms of the functional response, 
which describes the predator success. Consequently, during 
the derivation of ecological games, the derivation methods 
of behavior dependent functional responses are an essential 
component of the definition of the payoff functions of prey 
and predator as well. Thus, the unannounced aim of this re-
view is to assist the development of the research line of eco-
logical games. To make clear why, in general, evolutionary 
game theory is unavoidable in foraging theory, let us consider 
the problem of foraging under predation risk (Lima and Dill 
1990, Scharf et al. 2011). For reproduction, animals must col-
lected food and survive, thus if the forager is not a top preda-
tor, then the food collected per unit time is not a sufficient fac-
tor to measure fitness. The antipredator behavior (e.g., vigi-
lance) also needs time, and the time constraint (if antipredator 
behavior and feeding exclude each other) implies a trade-off 
between food and safety. I note that evolutionary game theory 
has already been applied to the problem of vigilance (e.g., 
Brown 1999, Sirot 2012).  

Finally, time constraint is an essential motive in the func-
tional response. Recently, much attention has been focused 
on the role of time constraints in evolutionary game theory 
which are not directly connected with functional response. 
Now the question arises: which derivation methods have 
been already used in evolutionary games? I mention only two 
research lines. The first one considers the problem of klep-
toparasitism. Broom and his coauthors have several papers 
on this problem and they use two derivation methods. They 
most often use the stage differential equations to find the 
steady state of the predator population, see Section 4.1 (e.g., 
Hadjichrysanthou and Broom 2012, Spencer and Broom 
2018). They also use Markov processes to describe the sta-
tionary state of the predator population (Broom et al. 2010, 
Yates and Broom 2007). The second research line concerns 
matrix games under time constraint, where the stage differ-
ential equations are also used to find the steady state of the 
players (Cressman and Krivan 2019, Krivan and Cressman 
2017), moreover, the Markov processes are also applied to 
describe the stationary state of the players (Garay et al. 2016). 
Based on all this, I hope the derivation methods overviewed 
here will be useful not only in ecology, but also in evolu-
tionary game theory when the time constraints take place. 
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