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Multiple drug-resistant enterococci are major cause of healthcare-associated
infections due to their antibiotic resistance traits. Among them, Enterococcus faecalis is
an important opportunistic pathogen causing various hospital-acquired infections.
A total of 53 E. faecalis isolates were obtained from various infections. They were
identified by phenotypic and genotypic methods. Determination of antimicrobial
resistance patterns was done according to CLSI guidelines. The isolates that were
non-susceptible to at least one agent in ≥3 antimicrobial categories were defined as
multidrug-resistant (MDR). Detection of antimicrobial resistance genes was performed
using standard procedures. According to MDR definition, all of the isolates were
MDR (100%). High-level gentamicin resistance was observed among 50.9% of them
(MIC≥ 500 μg/ml). The distributions of aac(6′)-Ie-aph(2′′)-Ia and aph(3′)-IIIa genes
were 47.2% and 69.8%, respectively. The aph(2′′)-Ib, aph(2′′)-Ic, aph(2′′)-Id, and
ant(4′)-Ia genes were not detected. Vancomycin resistance was found in 45.3% of
strains. The vanA gene was detected in 37.7% of isolates, whereas vanB and vanC1

genes were not observed in any strain. Erythromycin resistance rate was 79.2% and
the frequencies of ermB and ermC genes were 88.6% and 69.8%, respectively. The
ermA and msrA genes were not present in any of the isolates. Our data indicate a high
rate of MDR E. faecalis strains. All of high-level gentamicin-resistant isolates carried at
least one of aac(6′)-Ie-aph(2′′)-Ia or aph(3′)-IIIa genes. Distribution of vanA was
notable among the isolates. In addition, ermB and ermCwere accountable for resistance
to erythromycin.
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Introduction

Multiple drug-resistant enterococci are the major cause of healthcare-
associated infections due to their virulence and antibiotic resistance traits
[1–4]. They are considered as critical agent for the dissemination of antimicrobial
resistance determinants to other bacteria through mobile genetic elements [2, 5].

High-level aminoglycoside resistance in enterococci is usually mediated
by aminoglycoside-modifying enzymes, including acetyltransferase, phospho-
transferase, and nucleotidyltransferase [6]. They catalyze the covalent modification
of amino and hydroxyl groups within the aminoglycosides [7]. High-level
gentamicin-resistant [HLGR; minimum inhibitory concentration (MIC)≥ 500 μg/ml]
enterococci harbor aac(6′)-Ie-aph(2′′)-Ia gene that encodes a bifunctional
aminoglycoside-modifying enzyme [AAC(6′)-Ie-APH(2′′)-Ia]. This enzyme is
associated with resistance to all available aminoglycosides except streptomycin
[6, 7]. Moreover, three aminoglycoside resistance genes, such as aph(2′′)-Ib,
aph(2′′)-Ic, and aph(2′′)-Id, have been recognized among gentamicin-resistant
strains. The aph(3′)-IIIa and ant(4′)-Ia genes also encode resistance to various
aminoglycosides [7, 8].

Vancomycin-resistant enterococci (VRE)-associated infections are
more severe than infections with vancomycin-susceptible enterococci [9].
Resistance to vancomycin is mediated by van gene clusters. VRE harbors the
transmissible vanA or vanB genetic elements that encode high-level resistance
to vancomycin [10, 11]. Low-level vancomycin resistance is also related to
vanC gene [12]. Prolonged hospitalization, prior exposure to antibiotics, and
use of foreign medical devices, such as catheters, are risk factors for VRE
acquisition [10, 13].

Due to general usage of macrolides, resistance to this family has increased
among enterococci [14]. Two major mechanisms including target modification by
the ribosomal methylase encoded by erm genes and efflux pump systems encoded
by msr and mefA/E genes mediate macrolide resistance [15]. The erm gene carried
by enterococci results in either inducible or constitutive resistance to all macrolides,
lincosamides, and streptogramin B. On the other hand, the msrA gene confers
inducible resistance to streptogramin B and some macrolide antibiotics [16].

Among the enterococci, Enterococcus faecalis is an important opportu-
nistic pathogen causing various hospital-acquired infections [14, 17]. However,
since there is limited data regarding the molecular characteristics of multidrug-
resistant (MDR) E. faecalis isolates in hospitalized patients in Iran, this study
was designed to examine the prevalence of genes encoding antimicrobial
resistance among E. faecalis strains isolated from hospitalized patients in Shiraz,
south west of Iran.
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Materials and Methods

Bacterial isolates

A total of 53 E. faecalis isolates were obtained from infections in Nemazee
Hospital (the main hospital affiliated to Shiraz University of Medical Sciences) from
September 2015 to March 2016 according to definitions of nosocomial infections
[18]. They were obtained from the urinary tract infections (n= 40), respiratory tract
infections (pleural fluid and endotracheal tube; n= 5), bloodstream infections
(n= 4), abdominal infections (n= 2), eye infection (n= 1), and transjugular intra-
hepatic portosystemic shunt (n= 1). Only one isolate per patient was included. This
study was approved by the ethics committee of Shiraz University of Medical
Sciences (Register code: IR.SUMS.REC.1397.090). Enterococcal isolates were
identified according to conventional microbiological tests, such as Gram staining
(Gram positive), catalase reaction (catalase negative), growth on brain–heart infu-
sion (BHI) agar (Conda, Madrid, Spain) with 6.5% NaCl, and bile-esculin test
(positive) [19]. The ddlE gene was amplified by polymerase chain reaction (PCR)
using E. faecalis specific primers (ddlE. faecalis F-5′- ATCAAGTACAGT-
TAGTCT-3′ and R-5′-ACGATTCAAAGCTAACTG-3′) for molecular confirma-
tion [12]. The PCR procedure consisted of a pre-denaturation step at 95 °C for
5 min, followed by 30 cycles for 60 s at 95 °C, 45 s at 45 °C, and 50 s at 72 °C. A
final extension step was performed at 72 °C for 5 min.

Determination of MDR and HLGR isolates

Antimicrobial susceptibility tests were performed using disc diffusion
method on the Mueller–Hinton Agar (Merck Co., Germany) based on Clinical
and Laboratory Standards Institute (CLSI) guideline [20]. The tested antibiotics
(Mast Group Ltd., UK) were vancomycin (30 μg), teicoplanin (30 μg), erythro-
mycin (15 μg), penicillin (10 units), ampicillin (10 μg), ciprofloxacin (5 μg),
tetracycline (30 μg), fosfomycin (200 μg), nitrofurantoin (300 μg), rifampin (5 μg),
quinupristin–dalfopristin (15 μg), and linezolid (5 μg). High-level gentamicin
resistance was also determined by the broth microdilution method using BHI broth
(Conda) according to CLSI guideline [20]. Staphylococcus aureus ATCC 25923
and E. faecalis ATCC 29212 were used as the standard strains.

Multidrug resistance was determined according to definitions of MDR
bacteria [21]. MDR definition for Enterococcus spp. is the isolate that were
non-susceptible (including resistant or intermediate) to at least one agent in ≥3
antimicrobial categories [21].
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DNA extraction and detection of resistance genes

Genomic DNA was extracted from fresh grown colonies, as described
previously [22]. PCR was performed to detect the genes encoding resistance to
aminoglycoside, glycopeptide, and macrolide antibiotics [aac(6′)-Ie-aph(2′′)-Ia,
aph(2′′)-Ib, aph(2′′)-Ic, aph(2′′)-Id, aph(3′)-IIIa, ant(4′)-Ia, vanA, vanB, vanC1,
ermA, ermB, ermC, and msrA] among strains [8, 12, 23]. The products
were separated by electrophoresis in 1% agarose gels with 1X Tris/acetate/EDTA
buffer, stained with safe stain load dye (CinnaGen Co., Iran) and visualized under
ultraviolet illumination.

Statistical analysis

The distribution of aminoglycoside resistance genes among HLGR and
non-HLGR isolates was calculated by χ2 and Fisher’s exact tests for each gene.
The prevalence of glycopeptide resistance genes among glycopeptide non-
susceptible and susceptible isolates was calculated by the aforementioned tests,
and the presence of macrolide resistance genes among macrolide non-susceptible
and susceptible isolates was also calculated. A p value of ≤0.05 was considered as
statistically significant.

Results

According to MDR definition, all of 53 E. faecalis strains were MDR
(100%). The antibiotic resistance patterns are shown in Table I. High-level
gentamicin resistance (MIC≥ 500 μg/ml) was observed among 27 (50.9%) iso-
lates. The distributions of aac(6′)-Ie-aph(2′′)-Ia and aph(3′)-IIIa genes were 25
(47.2%) and 37 (69.8%), respectively (Table I). The aph(2′′)-Ib, aph(2′′)-Ic, aph
(2′′)-Id, and ant(4′)-Ia resistance genes were not detected in any of the isolates.
The prevalence of aac(6′)-Ie-aph(2′′)-Ia gene among HLGR isolates was more
than non-HLGR isolates, significantly (p = 0.019). In addition, the aph(3′)-IIIa
gene was more frequent in HLGR in comparison to non-HLGR isolates with a
significant correlation (p< 0.001). The distribution of aminoglycoside resistance
genes among HLGR and non-HLGR isolates is shown in Table II.

Vancomycin resistance was found among 24 (45.3%) strains, whereas the
vanA gene was found in 20 (37.7%) isolates (Table I). All strains were negative for
vanB and vanC1 genes amplification.

Resistance to erythromycin was detected in 42 (79.2%) of isolates, and the
frequencies of ermB and ermC genes were 47 (88.6%) and 37 (69.8%),
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Table I. The distribution of resistance genes among MDR Enterococcus faecalis isolates

No. of
isolates Infections (N) Resistance patterns

MIC of GM
(μg/ml) Resistance genes

1 Urinary tract
infection (40)

VAN, RIF, ERY,
TET, and QDA

>2,048 vanA, ermB, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

2 RIF, ERY, TET, and
QDA

256 ermB, ermC, and aac(6′)-
Ie-aph(2′′)-Ia

3 RIF, ERY, TET, CIP,
and QDA

128 ermB and aph(3′)-IIIa

4 VAN, RIF, TET, and
QDA

1,024 vanA, ermB, ermC, and aph
(3′)-IIIa

5 VAN, RIF, ERY,
TET, QDA, and
AMP

2,048 vanA, ermB, ermC, and aph
(3′)-IIIa

6 VAN, RIF, ERY,
TET, and QDA

1,024 ermB, ermC, and aph(3′)-IIIa

7 TET and QDA 128 vanA, ermB, ermC, and aac
(6′)-Ie-aph(2′′)-Ia

8 VAN, TET, and QDA 16 –

9 VAN, ERY, TET,
CIP, QDA, TEC,
and AMP

>2,048 ermB, aac(6′)-Ie-aph(2′′)-Ia,
and aph(3′)-IIIa

10 ERY, TET, CIP, and
QDA

128 ermB, ermC, and aac(6′)-
Ie-aph(2′′)-Ia

11 VAN, ERY, TET,
CIP, and QDA

>2,048 ermB, aac(6′)-Ie-aph(2′′)-Ia,
and aph(3′)-IIIa

12 VAN, RIF, ERY,
TET, CIP, and QDA

64 ermB and aph(3′)-IIIa

13 RIF, ERY, TET, and
QDA

>2,048 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

14 VAN, TET, QDA, and
AMP

2,048 vanA, ermB, ermC, and aph
(3′)-IIIa

15 VAN, NIT, RIF, ERY,
TET, CIP, PEN,
QDA, TEC, and
AMP

256 vanA, ermB, ermC, aac(6′)-
Ie-aph(2′′)-Ia, and aph(3′)-
IIIa

16 RIF, TET, and QDA 256 aac(6′)-Ie-aph(2′′)-Ia, and aph
(3′)-IIIa

17 RIF, ERY, TET, CIP,
PEN, and AMP

128 vanA, ermB, and aph(3′)-IIIa

18 VAN, NIT, ERY, CIP,
PEN, and AMP

512 ermB and aph(3′)-IIIa

19 RIF, ERY, TET, CIP,
PEN, and AMP

>2,048 vanA, ermB, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

20 RIF and TET 16 ermB and ermC
21 ERY, TET, and QDA 16 ermB
22 VAN 512 vanA, ermC, and aac(6′)-

Ie-aph(2′′)-Ia
23 ERY, TET, and QDA 32 ermB
24 RIF, ERY, TET, and

QDA
8 vanA, ermB, and ermC
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Table I. (cont.)

No. of
isolates Infections (N) Resistance patterns

MIC of GM
(μg/ml) Resistance genes

25 ERY, TET, CIP, and
QDA

>2,048 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

26 VAN, RIF, ERY,
TET, CIP, PEN,
QDA, TEC, and
AMP

512 vanA, ermB, ermC, and aph
(3′)-IIIa

27 VAN, NIT, ERY, CIP,
PEN, TEC, and
AMP

>2,048 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

28 VAN, RIF, ERY,
TET, CIP, PEN,
QDA, and AMP

2,048 vanA, ermB, ermC, aac(6′)-
Ie-aph(2′′)-Ia, and aph(3′)-
IIIa

29 TET and QDA 16 ermB and ermC
30 VAN, RIF, ERY,

TET, CIP, PEN,
TEC, and AMP

512 ermB, ermC, and aph(3′)-IIIa

31 ERY, TET, CIP, PEN,
and AMP

>2,048 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

32 NIT, RIF, ERY, TET,
CIP, PEN, and AMP

2,048 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

33 ERY, TET, CIP, and
QDA

>2,048 vanA, ermB, ermC, and aac
(6′)-Ie-aph(2′′)-Ia

34 ERY, TET, and QDA 256 ermB, ermC, and aph(3′)-IIIa
35 RIF, ERY, TET, and

QDA
256 ermB, ermC, and aph(3′)-IIIa

36 ERY, TET, CIP, PEN,
and QDA

512 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

37 ERY, TET, CIP, and
QDA

2,048 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

38 TET and QDA 4 ermC
39 VAN, RIF, ERY,

TET, CIP, PEN,
TEC, and AMP

128 vanA, ermB, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

40 TET, PEN, and QDA 32 –

41 Respiratory tract
infection (5)

VAN, ERY, TET, and
QDA

128 vanA, ermB, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

42 VAN, RIF, ERY,
TET, CIP, PEN,
TEC, and AMP

512 vanA, ermB, ermC, and aph
(3′)-IIIa

43 ERY, TET, and QDA >2,048 vanA, ermB, ermC, aac(6′)-
Ie-aph(2′′)-Ia, and aph(3′)-IIIa

44 ERY, TET, CIP, PEN,
TEC, and AMP

128 vanA, ermB, ermC, and aph
(3′)-IIIa

45 VAN, ERY, TET,
CIP, and QDA

256 ermB and aph(3′)-IIIa

46 Bloodstream
infection (4)

ERY, TET, and QDA 256 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa
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respectively (Table I). However, the ermA and msrA genes were not detected in
any of the isolates.

The distribution of resistance genes among non-susceptible and susceptible
isolates to related antibiotics is shown in Tables III and IV.

Discussion

E. faecalis is a common pathogen that can cause severe hospital-acquired
infections [17, 24]. In this study, all strains isolated from various infections were
MDR. Although this finding was more than any other studies in Iran [25–27], high
rates of multidrug resistance among E. faecalis strains were also reported from
other countries [15, 28].

Our results indicated that 50.9% of isolates were HLGR (MIC≥ 500 μg/ml).
In the several studies, high-level gentamicin resistance among E. faecalis isolates
was reported in 65%–96% of the strains [29–31].

In this study, the most prevalent aminoglycoside resistance gene among the
HLGR isolates was aph(3′)-IIIa (92.6%), and the aac(6′)-Ie-aph(2′′)-Ia gene was
found in 62.9% of them (Table II). It was contrary to previous studies that the aac
(6′)-Ie-aph(2′′)-Ia gene has been characterized as the main aminoglycoside

Table I. (cont.)

No. of
isolates Infections (N) Resistance patterns

MIC of GM
(μg/ml) Resistance genes

47 NIT, ERY, TET,
QDA, and AMP

16 ermC

48 ERY, TET, CIP, PEN,
QDA, and AMP

32 ermB and ermC

49 VAN, RIF, ERY,
TET, CIP, PEN,
TEC, and AMP

2,048 ermB, ermC, aac(6′)-Ie-aph
(2′′)-Ia, and aph(3′)-IIIa

50 Abdominal
infection (2)

VAN, ERY, TET, and
QDA

>2,048 vanA, ermB, ermC, aac(6′)-
Ie-aph(2′′)-Ia, and aph(3′)-IIIa

51 VAN, ERY, TET, and
QDA

8 ermB and ermC

52 Eye infection (1) ERY, TET, and QDA 1,024 ermB, ermC, and aph(3′)-IIIa
53 TIPS (1) VAN 1,024 vanA, ermB, ermC, and

aph(3′)-IIIa

Note: VAN: vancomycin; NIT: nitrofurantoin; RIF: rifampin; ERY: erythromycin; TET: tetracycline;
CIP: ciprofloxacin; PEN: penicillin; QDA: quinupristin–dalfopristin; TEC: teicoplanin; AMP: ampicillin;
GM: gentamicin; MIC: minimum inhibitory concentration; TIPS: transjugular intrahepatic portosystemic
shunt.

ANALYSIS OF DRUG-RESISTANT E. FAECALIS ISOLATES 209

Acta Microbiologica et Immunologica Hungarica 66, 2019



resistance gene [30–32]. In a study conducted in Tehran, north of Iran, the
aac(6′)-Ie-aph(2′′)-Ia and ant(4′)-Ia genes were detected in HLGR enterococci
[30]. It seems that aph(3′)-IIIa gene is the predominant related gene in our region.
It is often carried on a conjugative plasmid among enterococci [33] and therefore
the isolates could acquire it by conjugation.

We found that all of the HLGR isolates carried at least one of aac(6′)-Ie-aph
(2′′)-Ia or aph(3′)-IIIa genes (Table I). However, 30.7% and 46.1% of non-HLGR
isolates harbored aac(6′)-Ie-aph(2′′)-Ia and aph(3′)-IIIa genes, respectively
(Table II). This may be due to downregulation of genes expression.

All of the studied isolates were also negative for aph(2′′)-Ib, aph(2′′)-Ic,
aph(2′′)-Id, and ant(4′)-Ia genes amplification. Absence of the aph(2′′)-Ib,
aph(2′′)-Ic, and aph(2′′)-Id genes in E. faecalis strains was shown in several
studies [34–37]. They are minor contributors to gentamicin resistance among
Enterococcus strains [33].

Table II. Distribution of aac(6′)-Ie-aph(2′′)-Ia and aph(3′)-IIIa genes among HLGR
and non-HLGR isolates

Isolates (N)

Resistance genes

aac(6′)-Ie-aph(2′′)-Ia aph(3′)-IIIa
[N (%)] [N (%)]

HLGR (27) 17 (62.9) 25 (92.6)
Non-HLGR (26) 8 (30.7) 12 (46.1)
Total (53) 25 (47.2) 37 (69.8)

Note: HLGR: high-level gentamicin-resistant.

Table III. Distribution of vanA gene among glycopeptide non-susceptible and
susceptible isolates

Isolates (N) vanA gene [N (%)]

Glycopeptide non-susceptible (43) 18 (41.8)
Glycopeptide susceptible (10) 2 (20.0)
Total (53) 20 (37.7)

Table IV. Distribution of ermB and ermC genes among macrolide non-susceptible
and susceptible isolates

Isolates (N)

Resistance genes

ermB [N (%)] ermC [N (%)]

Macrolide non-susceptible (51) 46 (90.1) 35 (68.6)
Macrolide susceptible (2) 1 (50.0) 2 (100.0)
Total (53) 47 (88.6) 37 (69.8)
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The aac(6′)-Ie-aph(2′′)-Ia and aph(3′)-IIIa genes were present in
20 (37.7%) isolates, simultaneously (Table I). Co-existence of these genes among
isolates of E. faecalis has been previously reported from Iran [34]. Co-presence of
aac(6′)-Ie-aph(2′′)-Ia and aph(3′)-IIIa genes leads to failure in combination
therapy by most aminoglycosides (except for streptomycin) with cell wall-active
agents [6].

To the best of our knowledge, this was the first study to investigate regarding
glycopeptide and macrolide resistance genes among MDR E. faecalis strains in
Iran. In this study, more than 45% of the strains were VRE. Notable resistance to
vancomycin among E. faecalis strains was similar to several studies in the country
[38, 39]. Moreover, increasing VRE prevalence among hospitalized patients was
also reported previously from southwestern Iran [40]. In contrast to our results,
lower rates of VRE were reported in various studies [41–43].

We found that 37.7% of the isolates carried vanA gene, whereas vanB and
vanC1 genes were not detected in any of the strains. Similarly, previous researches
had indicated that the vanA gene was the only glycopeptide resistance determinant
found in E. faecalis isolates [2, 9, 44, 45]. According to these studies, vanA gene
was the predominant glycopeptide resistance gene among E. faecalis strains.
Dissemination of resistance determinants to other bacteria such as S. aureus using
Inc18 plasmids of vancomycin-resistant E. faecalis strains is a serious risk of VRE
colonization in hospitals [13].

Statistically, there was no significant difference between the distribution of
vanA gene among glycopeptide non-susceptible and susceptible isolates; however,
it was more prevalent in non-susceptible strains (p> 0.05; Table III). Susceptibil-
ity to vancomycin among vanA-positive isolates is probably due to deficiency in
vanA operon. VanA protein alone cannot mediate resistance to vancomycin, and
the true functions of VanH and VanR proteins are also necessary [46]. On the other
hand, the vanA gene was not detected in some vancomycin-resistant isolates. This
resistance could be due to poor penetration of antibiotic into cells or VanE-type
vancomycin resistance. This type of vancomycin resistance (VanE-type) has been
described in E. faecalis strains, which are resistant to low levels of vancomycin
and susceptible to teicoplanin [46, 47].

The vanC genes are intrinsic property (chromosomally encoded) of
Enterococcus gallinarum, Enterococcus casseliflavus, and Enterococcus
flavescens [12]. This could explain absence of vanC1 gene in our E. faecalis
isolates, despite the existence of reported cases in the literature [48, 49]. This
gene may have been transferred from above enterococcal species to E. faecalis
horizontally [48].

As shown in Table I, high incidence of ermB and ermC genes was
observed among analyzed strains, but the ermA gene was not found among
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them. The various distributions of erm genes were shown in previous studies
[5, 14, 15, 50, 51]. However, ermB gene is the most prevalent one among
enterococcal species and ermA gene is more commonly found in staphylococcal
strains [15, 51–56].

The ermB and ermC genes were more frequent in macrolide
non-susceptible in comparison to susceptible isolates without any significant
correlation (p> 0.05; Table IV). Suppression of gene expression may lead to
erythromycin susceptibility among isolates that harbor ermB or ermC genes.

In this study, the investigated gene encoding efflux pump (msrA) was not
found. Non-existence of msrA gene in E. faecalis strains was shown in a previous
study [57]. It seems that presence and expression of erm genes in E. faecalis are
sufficient for macrolide resistance.

Since all of the isolates were MDR and almost half of them were HLGR and
VRE, infection control procedures are recommended to be performed in hospital.
Improving hand hygiene compliance of healthcare workers is probably the most
effective strategy for reducing the incidence of healthcare-associated infections.
Moreover, disinfection and sterilization of medical equipment is essential for
prevention and control of infection. Due to reduced biocide susceptibility in
enterococci [58], constant monitoring of disinfectant agents susceptibility can be
helpful to designate more effective agents.

In conclusion, we evaluated the E. faecalis strains isolated from various
infections, and all of the strains were MDR. More than half of the isolates
had MICs ≥ 500 μg/ml for gentamicin (50.9%). The distributions of aac(6′)-
Ie-aph(2′′)-Ia and aph(3′)-IIIa genes were 47.2% and 69.8%, respectively.
All of the studied isolates were also negative for aph(2′′)-Ib, aph(2′′)-Ic,
aph(2′′)-Id, and ant(4′)-Ia genes amplification. All the HLGR isolates carried
at least one of aac(6′)-Ie-aph(2′′)-Ia or aph(3′)-IIIa genes. Resistance to
vancomycin was observed in more than 45% of the studied strains and
erythromycin resistance was 79.2%. The vanA gene was found in 37.7% of
the isolates, and all of them were negative for vanB and vanC1 genes
amplification. The frequencies of ermB and ermC genes were 88.6% and
69.8%, respectively. The ermA and msrA genes were not detected in any of the
strains.

Limitations

In this study, there were some limitations. First, small number of isolates
was investigated. Second, vanE gene detection among vanA-negative isolates that
were resistant to vancomycin was required.
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