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Abstract. In this paper, we analyze the convergence of the fitted mesh method applied to sin-
gularly perturbed Volterra delay-integro-differential equation. Our mesh comprises a special
nonuniform mesh on the first subinterval and uniform mesh on another part. Error estimates are
obtained using difference analogue of Gronwall’s inequality with delay. A numerical test that
confirms the theoretical results is presented.

2010 Mathematics Subject Classification: 65L11; 65L12; 65L20; 65R20

Keywords: Volterra delay-integro-differential equation, singular perturbation, finite difference,
uniform convergence

1. INTRODUCTION

Volterra delay-integro-differential equations (VDIDEs) have a major influence on
the field of science such as ecology, medicine, physics, biology and so on [4, 6, 14].
These equations play a significant role in modelling of some phenomena in engineer-
ing and sciences, and hence have led researchers to develop a theory and numerical
computation and analysis for VDIDEs.

Here we shall concerned with the development of fitted difference method for
singularly perturbed Volterra delay-integro-differential equation (SPVDIDE):

Lu WD "u0Ca.t/uC

tZ
t�r

K.t;s/u.s/ds D f .t/; t 2 I; (1.1)

subject to
u.t/D '.t/; t 2 I0; (1.2)

where I D .0;T � D
m
[
pD1

Ip, Ip D
˚
t W rp�1 < t � rp

	
, 1 � p � m and rs D sr , for

0 � s � m, I D Œ0;T � and I0 D Œ�r;0�: " 2 .0;1� is the perturbation parameter and
r is a constant delay, which is independent of ": a.t/ � ˛ > 0; f .t/ .t 2 I /; '.t/
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.t 2 I0/ and K.t;s/
�
.t; s/ 2 I � I

�
are assumed to be sufficiently smooth functions

such that the solution, u.t/; has initial layer at t D 0 for small values of ".
Singularly perturbed differential equations are typically characterized by a small

parameter " multiplying some or all of the highest order terms in the differential
equation. In general, the solutions of such equations exhibit multiscale phenom-
ena. Within certain thin subregions of the domain, the scale of some derivatives is
significantly larger than other derivatives. These thin regions of rapid change are
called, boundary or interior layers, as appropriate. Such type of equations occur fre-
quently in mathematical problems in the sciences and engineering for example, in
fluid flow at high Reynold number, electrical networks, chemical reactions, control
theory, the equations governing flow in porous media, the drift-diffusion equations
of semi-conductor device physics, and other physical models [5, 16, 17]. It is well-
known that standard discretization methods do not work well for these problems as
they often produce oscillatory solutions which are inaccurate if the perturbed para-
meter " is small. To obtain robust numerical methods it is necessary to fit the coef-
ficients (fitted operator methods) or the mesh (fitted mesh methods) to the behavior
of the exact solution [1, 2, 5, 10, 15, 19, 22] (see also references cited in them). For
a survey of early results in the theoretical analysis of singularly perturbed Volterra
integro-differential equations (VIDEs) and in the numerical analysis and implement-
ation of various techniques for these problems we refer to the book [11]. An analysis
of approximate methods when applied to singularly perturbed VIDEs can also be
found in [12, 18, 20].

In the last few years, a considerable amount of effort has been devoted to the nu-
merical solution of VDIDEs. An overview of the approximate methods for VDIDEs
may be obtained from [3, 7, 9, 21, 24, 25].

The above mentioned papers, related to VDIDEs were only concerned with the
regular cases, i.e., in the absence of initial/boundary layers. SPVDIDEs also fre-
quently arise in many scientific applications. Wu and Gan [23] investigated error
behaviour of linear multistep methods applied to SPVDIDEs and derived global er-
ror estimates A.˛/�stable linear multistep methods with convergent quadrature rule.
He and Xu [8] discussed the exponential stability of impulsive SPVDIDEs. Amirali-
yev and Yilmaz [2] gave an exponentially fitted difference method on a uniform mesh
for (1.1)-(1.2) except for a delay term in differential part and shown that the method
is first-order convergent uniformly in ". A useful discussion of uniform convergence
on a fitted mesh, for another form of SPVDIDEs have been investigated in [13].

In this paper, the main goal is to give a finite difference scheme on a special piece-
wise uniform mesh on the first subinterval and uniform mesh on the rest of the interval
for the numerical solution of the initial-value problem (1.1)-(1.2). The construction
of the difference scheme is based on the method of integral identities by using appro-
priate interpolating quadrature rules with remainder term in integral form. In Section
2, we construct the finite difference discretization and introduce a special piecewise
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uniform mesh. In Section 3, the error analysis for the approximate solution is presen-
ted and the method is shown theoretically to be uniformly (with respect to the singular
perturbation parameter) convergent. Numerical results are given in Section 4 which
validate that in practice the method is first order uniformly accurate. The paper ends
with a summary of the main conclusions.

Notation: Throughout the paper we use C to denote a generic positive constant
independent of the perturbation parameter and mesh.

Assumption: We also will assume that " � CN�1, as is generally the case in
practise.

2. THE MESH AND DIFFERENCE SCHEME

In this section, a special piecewise uniform mesh on Œ0;T � is introduced and the
difference scheme consisting of upwind type scheme for differential part and a com-
posite rectangle integration of explicit type for integral part is presented for discret-
izing (1.1)-(1.2).

Before presenting the numerical method for the solution of (1.1)-(1.2) we need the
asymptotic estimates for its differential solution.

Lemma 1. For a;f 2 C 1Œ0;T �,ˇ̌̌̌
ˇ @@t K.t; s/

ˇ̌̌̌
ˇ�M0 <1;

the solution of (1.1)-(1.2) satisfies

kuk1 � C0;ˇ̌
u0.t/

ˇ̌
� C

�
1C

1

"
e�

˛t
"

�
; 0� t � T;

where
C0 D

�
j'.0/jC˛�1K k'k1;0C˛

�1
kf k1

�
e�˛

�1KT ;

K Dmax
I�I

jK.t;s/j ;

k'k1;0 D

0Z
�r

j'.t/jdt:

The proof is being established in the analogous way as in [2, 13].

Our nonuniform mesh

! D
˚
0D t0 < t1 < :: : < tN0�1 < tN0 D T I hi D ti � ti�1

	
;

which consists of m submeshes !
N;p

.1� p �m/, for an even number N, organized
as follows
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! D
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pD1

!
N;p
;

!
N;1
D

�
ti D ih

.1/; i D 1;2; : : : ;N=2; h.1/ D
2�

N
; ti D �C .i �

N

2
/h.2/;

i D
N

2
C1; : : : ;

3N

2
; h.2/ D

r ��

N

�
;

!
N;p
D

�
ti D rp�1C

�
i � .p�

1

2
/N

�
h.3/; i D .p�

1

2
/N C1; : : : ; .pC

1

2
/N;

h.3/ D
r

N

o
; 2� p �m; rs D sr .0� s �m/

with transition point � D ˛�1" lnN . Thus the mesh ! contains 3N
2

points on !
N;1

and N points on each subinterval !
N;p

.2� p �m/ with total number N0 D .mC
1
2
/N .

The problem (1.1)-(1.2) is discretized using the relation

h�1i

tiZ
ti�1

Lu.t/dt D h�1i

tiZ
ti�1

f .t/dt; 1� i �N0 (2.1)

followed by the application appropriate quadrature rules.
Namely, applying right side rectangle rule in (2.1), analogous to [13] we get

h�1i

tiZ
ti�1

�
"u0.t/Ca.t/u.t/�f .t/

�
dt D "u

t;i
Caiui �fi CR

.1/
i

with the truncation error

R
.1/
i D�h

�1
i

tiZ
ti�1

.t � ti�1/
d

dt
Œa.t/u.t/�f .t/�dt: (2.2)

For the remain part in (2.1), after using right side rectangle rule, we have

h�1i

tiZ
ti�1

0@ tZ
t�r

K.t;s/u.s/ds

1Adt D tiZ
ti�r

K.ti ; s/u.s/dsCR
.2/
i ;

with

R
.2/
i D�h

�1
i

tiZ
ti�1

.�� ti�1/

0B@ d

d�

�Z
��r

K.�;s/u.s/ds

1CAd�: (2.3)
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Also applying the composite left side rectangle rule, we obtain
tiZ

ti�r

K.ti ; s/u.s/ds D

iX
jDi�NC1

hjK.ti ; tj�1/uj�1CR
.3/
i ;

with

N D

(
3N
2
; 1� i � 3N

2

N; i > 3N
2

R
.3/
i D

iX
jDi�NC1

tjZ
tj�1

.tj � �/
d

ds
K.ti ; �/u.�/d�; (2.4)

for

1� i �
3N

2
and i >

5N

2
;

and

R
.3/
i D

iX
jDi�NC1

tjZ
tj�1

.tj � �/
d

ds
K.ti ; �/u.�/d��

ti�rZ
ti�N

K.ti ; s/u.s/ds; (2.5)

for
3N

2
< i �

5N

2
:

Therefore we have the exact equality for the u.t/:

L
N
ui WD "u

t;i
Caiui C

iX
jDi�NC1

hjK.ti ; tj�1/uj�1CRi D fi ; 1� i �N0;

(2.6)

ui D 'i ; �
3N

2
� i � 0;

with remainder term
Ri DR

.1/
i CR

.2/
i CR

.3/
i

where R.k/i .k D 1;2;3/ are given by (2.2), (2.3), (2) and (2.5).
Based on (2.6) we propose the following scheme for approximating (1.1)-(1.2):

L
N
yi WD "y

t;i
Caiyi C

iX
jDi�NC1

hjKi;j�1yj�1 D fi ; 1� i �N0; (2.7)

yi D 'i ; �
3N

2
� i � 0: (2.8)
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3. ERROR ANALYSIS AND CONVERGENCE

Let ´i D yi �ui . Then for the error of the approximate solution ´i , from (2.6) and
(2.7) it follows that

L
N
´i DRi ; 1� i �N0; (3.1)

´i D 0; �
3N

2
� i � 0: (3.2)

Lemma 2. For the solution of (3.1)-(3.2) holds the estimate

k´k1;! � C kRk1;! :

Proof. Once the inequalityˇ̌̌̌
ˇ̌ iX
jDi�NC1

hjKi;j�1 j́�1

ˇ̌̌̌
ˇ̌�K iX

jDi�NC1

hj
ˇ̌
j́�1

ˇ̌
�K

iX
jD1

hj
ˇ̌
j́�1

ˇ̌
;

is satisfied, then by using Lemma 4.1 from [13] we have that

j´i j � ˛
�1
kRk1;!C˛

�1K

iX
jD1

hj
ˇ̌
j́�1

ˇ̌
;

which in turn in view of difference analogue of Gronwall’s inequality leads to

j´i j � ˛
�1
kRk1;! exp

0@˛�1K iX
jD1

hj

1A� ˛�1exp �˛�1KT �kRk1;! :
Thus the proof is completed. �

Lemma 3. Under the assumptions of Section 1, the error function Ri of the dif-
ference scheme satisfies

kRk1;! � CN
�1 lnN: (3.3)

Proof. We estimate R.k/i .k D 1;2;3/ separately. For R.1/i , using (2.2) on an ar-
bitrary mesh we have

ˇ̌̌
R
.1/
i

ˇ̌̌
� Ch�1i

tiZ
ti�1

.t � ti�1/
�
1C

ˇ̌
u0.t/

ˇ̌�
dt; 1� i �N0:

From here by virtue of Lemma 1 we get

ˇ̌̌
R
.1/
i

ˇ̌̌
� C

8<:hi Ch�1i "�1

tiZ
ti�1

.t � ti�1/e
�˛t="dt

9=; ; 1� i �N0:
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On the layer region Œ0;�� this reduces toˇ̌̌
R
.1/
i

ˇ̌̌
� Ch.1/.1C "�1/D C2˛�1N�1 lnN."C1/; 1� i �

N

2
;

therefore ˇ̌̌
R
.1/
i

ˇ̌̌
� CN�1 lnN; 1� i �

N

2
; (3.4)

For i >
N

2
, we can write

ˇ̌̌
R
.1/
i

ˇ̌̌
� C

8<:hi C "�1
tiZ

ti�1

e�˛t="dt

9=;D Cnhi C˛�1�e�˛ti�1="� e�˛ti="�o
D C

n
hi C˛

�1e�˛ti�1="
�
1� e�˛hi="

�o
� C

�
hi C˛

�1e�˛ti�1="
�

� C
�
hi C˛

�1e�˛�="
�
D C

�
hi C˛

�1N�1
�
;
N

2
C1� i �N0

with
hi D h

.2/;
N

2
C1� i �

3N

2
I hi D h

.3/;
3N

2
C1� i �N0:

Thereby ˇ̌̌
R
.1/
i

ˇ̌̌
� CN�1;

N

2
C1� i �N0: (3.5)

Next for R.2/i , according to (2.3) we have

ˇ̌̌
R
.2/
i

ˇ̌̌
�

tiZ
ti�1

ˇ̌̌̌
ˇ̌̌ �Z
��r

@K.�;s/

@�
u.s/dsCK.�;�/u.�/�K.�;�� r/u.�� r/

ˇ̌̌̌
ˇ̌̌d�:

Taking into consideration the boundless of @K=@�; K.t; s/ and Lemma 1 we arrive atˇ̌̌
R
.2/
i

ˇ̌̌
� Crhi ; 1� i �N0;

which in turn implies that ˇ̌̌
R
.2/
i

ˇ̌̌
� CN�1 lnN: (3.6)

Now estimate R.3/i for 1� i �
3N

2
and i >

5N

2
we get

ˇ̌̌
R
.3/
i

ˇ̌̌
�

iX
jDi�NC1

tjZ
tj�1

.tj � �/

ˇ̌̌̌
d

d�
K.ti ; �/

ˇ̌̌̌
ju.�/jd� � C

iX
jDi�NC1

h2j :

From here it follows thatˇ̌̌
R
.3/
i

ˇ̌̌
� CN

ˇ̌̌
h.1/

ˇ̌̌2
� CN�1 lnN; 1� i �

N

2
; (3.7)
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R
.3/
i

ˇ̌̌
� CN

ˇ̌̌
h.2/

ˇ̌̌2
� CN�1;

N

2
C1� i �

3N

2
; (3.8)ˇ̌̌

R
.3/
i

ˇ̌̌
� CN

ˇ̌̌
h.3/

ˇ̌̌2
� CN�1; i >

5N

2
: (3.9)

Finally, we estimate R.3/i for
3N

2
< i �

5N

2ˇ̌̌
R
.3/
i

ˇ̌̌
�

iX
jDi�NC1

tjZ
tj�1

.tj � �/

ˇ̌̌̌
d

d�
K.ti ; �/

ˇ̌̌̌
ju.�/jd�C

ˇ̌̌̌
ˇ̌
ti�rZ
ti�N

K.ti ; s/u.s/ds

ˇ̌̌̌
ˇ̌

� C

0@ iX
jDi�NC1

h2j Cjti � r � ti�N j

1A :
Since

ti � r � ti�N D rC .i �
3N

2
/h.3/� r �� � .i �

3N

2
/h.2/

D��Œ1� .i �
3N

2
/N�1�

and
iX

jDi�NC1

h2j D

3N=2X
jDi�NC1

h2j C

iX
jD 3N

2
C1

h2j D .
3N

2
� iCN/

ˇ̌̌
h.2/

ˇ̌̌2
C .i �

3N

2
/
ˇ̌̌
h.3/

ˇ̌̌2
�N

�ˇ̌̌
h.2/

ˇ̌̌2
C

ˇ̌̌
h.3/

ˇ̌̌2�
D .r ��/h.2/C rh.3/ D Œ.r ��/2C r2�N�1;

then ˇ̌̌
R
.3/
i

ˇ̌̌
� C

�
�CN�1

�
� CN�1 lnN;

3N

2
< i �

5N

2
: (3.10)

Now use (3.4)-(3.10) to get the desired inequality (3.3). �

Lemma 2 and Lemma 3 give the main result of our paper.

Theorem 1. Let u be solution of (1.1)-(1.2) and yi its approximation by the dif-
ference scheme (2.7)-(2.8). Then

ku�yk1;! � CN
�1 lnN:

4. NUMERICAL RESULTS

Example 1. First we study the following test problem

"u0C2u�

tZ
t�1

u.s/ds D�1C t �
"

2

�
1� e�

2t
"

�
; t 2 .0;2� ;
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u.t/D 1; �1� t � 0:

The exact solution is given by

u.t/D

(
e�

2t
" ; 0� t � 1

e��1.t�1/�e��2.t�1/
p
1C"

�1C e�
2t
" C e�

2.t�1/
" ; 1� t � 2

where

�1 D
1�
p
1C "

"
; �2 D

1C
p
1C "

"
:

We define the exact error eN" and the computed "�uniform maximum pointwise error
eN as follows

eN" D ky�uk1;!
N0

;

eN Dmax
"
eN" ;

where y is the numerical approximation to u for various of N and ". Parameter-
uniform rates of convergence are computed by

pN D ln
�
eN =e2N

�
= ln2:

The values of " and N for which we solve the test problem are
"D 2�i ; i D 0;6;12;18;24I N D 64;128;256;512;1024: From Table 1 we observe
that the "�uniform experimental rate of convergence is monotonically increasing
towards one, so in agreement with the theoretical rate given by Theorem 1.

TABLE 1. Errors and rates of convergence for Example 1.

" N D 64 N D 128 N D 256 N D 512 N D 1024

20 0.008841 0.004804 0.002539 0.001305 0.000666
0.88 0.92 0.96 0.97

2�6 0.008783 0.004839 0.002575 0.001333 0.000676
0.86 0.91 0.95 0.98

2�12 0.008783 0.004840 0.002575 0.001333 0.000676
0.86 0.91 0.95 0.98

2�18 0.008768 0.004831 0.002571 0.001331 0.000675
0.86 0.91 0.95 0.98

2�24 0.008768 0.004831 0.002571 0.001331 0.000675
0.86 0.91 0.95 0.98

eN 0.008841 0.004840 0.002575 0.001333 0.000676
pN 0.86 0.91 0.95 0.98
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Example 2. Consider the initial-value problem

"u0CuC

tZ
t�1

su.s/ds D 5t2�1; 0 < t � 2

u.t/D 5C t; �1� t � 0:

For this problem the exact solution is not known. Therefore we use the double-
mesh principle to estimate the errors and compute solutions, that is, we compare the
computed solution with the solution on a mesh that is twice as fine. The Table 2
shows our numerical results for the second problem. We measure the accuracy in the
discrete maximum norm

eN" Dmax
i

ˇ̌̌
y
";N
i � Qy

";2N
i

ˇ̌̌
;

where Qy ";2Ni is the approximate solution of the respective method on the mesh

Q!2N D
n
x i
2
W i D 0;1;2; : : : ;2N

o
with

xiC 1
2
D
xi CxiC1

2
for i D 0;1;2; : : : ;N �1:

The rates of convergence are defined as

pN" D
ln
�
eN" =e

2N
"

�
ln2

:

The "�uniform errors eN are estimated from

eN Dmax
"
eN" :

The corresponding "�uniform the rates of convergence are computed using the for-
mula

pN D
ln
�
eN =e2N

�
ln2

:
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TABLE 2. Errors and rates of convergence for Example 2

" N D 64 N D 128 N D 256 N D 512 N D 1024

20 0.033904 0.019338 0.010435 0.005515 0.002835
0.81 0.89 0.92 0.96

2�6 0.043189 0.024464 0.013293 0.006977 0.003562
0.82 0.88 0.93 0.97

2�12 0.059090 0.033471 0.018187 0.009612 0.004907
0.82 0.88 0.92 0.97

2�18 0.064587 0.036332 0.019470 0.010290 0.005253
0.83 0.90 0.92 0.97

2�24 0.066203 0.037500 0.020096 0.010621 0.005422
0.82 0.90 0.92 0.97

eN 0.066203 0.037500 0.020096 0.010621 0.005422
pN 0.82 0.90 0.92 0.97

5. CONCLUSIONS

In this paper, we presented a finite difference scheme on the piecewise uniform
mesh to solve singularly perturbed initial value problem for a linear first order Vol-
terra integro-differential equation with delay. The difference scheme is based on the
method of integral identities with the use of appropriate interpolating quadrature rules
with remainder term in integral form. The emphasis is on the convergence of numer-
ical method. It is shown that the method displays uniform convergence in respect to
the perturbation parameter. We have implemented the present method on two par-
ticular problems. The numerical results show that the proposed method is first order
uniformly accurate and hence can be recommended for singularly perturbed Volterra
delay-integro-differential equation. The main lines for the analysis of the uniform
convergence carried out here can be extended to more complicated linear differential
equations as well as nonlinear differential equations.
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