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Abstract. In this paper, we investigate the umbral representation of the geometric polynomials
w? := wpy (x) to derive some properties involving these polynomials. Furthermore, for any prime
number p and any polynomial f with integer coefficients, we show (f(wx))? = f(wx) (mod
p) and we give other curious congruences.
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1. INTRODUCTION

The geometric numbers are quantities arising from enumerative combinatorics and
have nice number-theoretic properties. In combinatorics, the n-th geometric num-
ber (named also the n-th ordered Bell number) counts the number of ways to par-
tition the set [#] := {1,...,n} into ordered subsets [2, 3, 6]. The geometric poly-
nomials are defined by w,(x) = Yz _, {Z}k!xk and satisfy the recurrence relation
(x + Dwa(x) = x Y7 (?)wj(x), n > 1, [9], where {7} is the (n,k)-th Stirling
number of the second kind [2,26]. These polynomials have attracted attention from
many researchers, see for instance [9, 10, 15-17]. For x = 1 we obtain the geomet-
ric numbers wy, :=w, (1) =Y 7 _o {Z}k !, for more information about these numbers,
see [6-8,11,12,14,28,29]. More generally, let wy, (x;r,s) be the n-th (r, s)-geometric
polynomial defined by

n

wn (x;r,8) =)

k=0

n+r

1ok
ktr (k+s)Ix".

r

This polynomial generalizes the geometric polynomial wy,(x) = w,(x;0,0) and the
polynomial wy, (x;r,r) introduced by Mezé [18]. Here, {Z}r denotes the (n,k)-th
r-Stirling number of the second kind [4]. One can see easily that

wo(x:r,s) = s!,

wi(x;r,8) =s!(r + (s + Dx),

© 2019 Miskolc University Press



396 MILOUD MIHOUBI AND SAID TAHARBOUCHET

wa(x,r,5) =512+ @r + 1) (s + Dx + (s + 1) (s +2)x3).

We note that this generalization can be viewed as a particular case of that defined
by Kargin et al. [16]. As it shown below, these polynomials are also linked to the
absolute r-Stirling numbers of first kind denoted by [Z]r

Recall that the r-Stirling numbers can be defined by [4,26]

n

(X)n = Z(—l)"‘k |:Zi::| (x+r)F and (x +r)" = Z
k=0 r k=0

n—+r

k4r (X)k

,
where (), =a---(a—n+1)ifn>1, (a)g = 1.

This work is motivated by application of the umbral calculus method to determine
identities and congruences involving Bell numbers and polynomials in the works of
Gessel [13], Sunetal. [27], Mez6 et al. [19] and Benyattou et al. [1]. In this paper, we
will talk about identities and congruences involving the (7, s)-geometric polynomials
based on the geometric umbra defined by w/; := wj (x). For more information about
umbral calculus, see [5, 13,22-25].

2. IDENTITIES INVOLVING THE (r,s)-GEOMETRIC POLYNOMIALS

The above recurrence relation is equivalent to (x + 1)wy = x(wx + 1)*.,n > 1.
Furthermore, we have

Proposition 1. Let f be a polynomial and r,s be non-negative integers. Then
(x+Dfwx+r)=xf(wx+r+1D+ f(r),
(Wx +7)ntr = (+r)IX"(x + 1),
(Wx 47 —5)"(Wx)s = X wy (x:7.5),
(Wx +7) " (Wx +8)s = (x + 1D wy (x:7,5).
Proof. Tt suffices to show the first identity for f(x) = x". For r = 0 we have
(x + 1w} —x(wx +1)" = §(,—0). Assume it is true for  — 1, then if we set
hp(r):=(x+ D(wx+7r)"—x(wx+r+1)"
we obtain i, (r) = 37, ('})hj r=1)=3"_ (7)(1’ —1)/ =", which concludes

the induction step. For the other identities, since (x), = Y 7z _, (—1)nk [Z]xk and
(x), is a sequence of binomial type [20,23], we obtain

n+r
n+r
Wyt Pntr =) ( ) )(r)j (Wdntr—j = (+1)X"(x + 1)
Jj=0
So, the polynomials x*wy (x;r,s) and (x + 1)*w,(x,r,s) must be, respectively,

n

2

Jj=0

n

(Wx)j+s = Z

r j=0

n+r
Jr

n+r

J+r (Wx—5); (Wy)s = (Wx + 7 —5)" (Wy)s,
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n—+r
jHry

" n—+r
> H

j=0

(Wx +S)j+s = Z

J=0

(Wx)j (Wx +8)s = (Wx + 1) (Wx +5)s.

O
The last two identities of Proposition 1 lead to:
Corollary 1. Let r; s be non-negative integers and f be a polynomial. Then
(x+1° f(wx+r—5)(Wx)s = x° f(Wx +7)(Wx +5)s.
Proposition 2. Let P, and T, be the polynomials
Pn(x;r) = Z(—l)j (j —:r)x”_j and Tp(x;r) = i (j ::__:)xj.
Jj=0 Jj=0
Then (Wx—r—1), =nlPy(x;r) and (Wx+n-+r), =nlT,(x;r).
Proof. 1t suffices to observe that
n
(Wx=r == (j)( 1)y ey =131 (’ “)x"—f,

j=0
n

(wx+n+r)n:Z( )(n+r)n 7 (Wy)j _mzci:) J

=0
O

The following theorem can be served to derive several identities and congruences
for the (r, s)-geometric polynomials.

Theorem 1. Let m,s be non-negative integers and [ be a polynomial. Then

m—1

(D" f(wy) =2 f(wx+m) = D fE)x+ DK m = 1,

k=0

Proof. Set f(x) = Zzzoakxk and use Proposition 1 to obtain

(x+ 1) f(We) = xf (wx +1) = f(0) + Zak((x + DwE —x(wy + 1)") = £(0).
k=0

So, the identity is true for m = 1. Assume it is true for m. Then
m—1

(x4 D" f(wy) = (x + 1)(2 (x + 1)1k £ k) 4+ x™ f (wy + m))

k=0

m—1
=Y e+ D)™ FE f )+ X (e + 1) f(wy+m)
k=0
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and since (x 4+ 1) f(wx +m) —x f(Wx +m + 1) = f(m), we can write

m—1

(ot 1™ fw) = 3 (o DRk £k 42 (xf(wx Fmt D+ f(m))
k=0
m—1

=Y e+ D)™ R K )+ 3™ f(m) + T f(wytm 4 1)

k=0
= DG+ D" L) +a" T f (Wit m 1)
k=0

which concludes the induction step. O

We note that for f(x) = x" and x = 1 in Theorem 1 we obtain Proposition 3.3
given in [8].

Corollary 2. For any polynomial f there holds

1 x \F 1
row = () ey

Proof. For m =1 in Theorem 1, when we replace f(x) by f(x +r) we get the
identity f(r) = (x+1) f(wx+71)—xf(wx+7r+1). Then

n

k
RHS =nli>ncl>ol—|1—x Z(lix) ((x+1)f(wx+k)—xf(wx+k+1))

k=0
X n+1
= tim (Fon) = (5] Sonn D)= fon
n—o00 14+x
which completes the proof. U

Corollary 3. Let n,r,s be non-negative integers.
For f(x) = (x+r)"(x +5)s or (x +r—5)"(x)s in Corollary 2 we obtain

s! k+s x \F 1
wn(x;r,S)ZmZ( s )(k+r)”(m) x>
k>0

Corollary 4. For any integersr >0, s > 0 and n > 1 the polynomial wy, (x,r,s +
1) has only real non-positive zeros.

Proof. From Corollary 3 we may state

d
X' (x+Dwpp1(xsr,s+1) = xd—(xr(x + 1) w, (xir, s + r))
X
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and using the recurrence relation of r-Stirling numbers we conclude that this identity
remains true for all real number x. So, by induction on n, it follows that wy (x;r,s +
r), n > 1, has only real non-positive zeros. g

Lemma 1. For any non-negative integers n > 2 there holds
~ \n
1+ xX) w1 (x) = Y {k$ (k—1)!xk,
k=1
Proof. From the definition of geometric polynomials, we have

n—1 -1
(1+X)wp—1(x) =) % }kl ky Z }k!xk+1

k=1 k=1

SR

=Z{Z}(k—1)!xk.

For more explicit formulae for geometric polynomials, see for example [15].

Proposition 3. Let n,r,s be non-negative integers. Then

n

1og(1+zwf:) r+GE+DO+E+HDE DY wae 1(x)—

n>1 n>2
In particular, forr = s = 0 we get
" t"
log(l + Z wn(x)a) =xt+(x+1) Z wn_l(x)a.
n>1 n>2

Proof. One can verify easily that the exponential generating function of the poly-
nomials wy, (x;7,s) is to be s!exp(rt)(1—x(exp(t) —1))~*~!. Then, upon using this
generating function and the last Lemma, we can write

LHS =rt—(s+ 1)In(1 —x(exp(z) —1))
k
=rt+(s+ 1)2%(exp(t)—l)k

k>1

:rt+(s+l)Z(k—l)!ka§Z§;—'

k>1 n>k
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=rt+(s+1)xt+(s+l)22—n'2§2}(k—l)!xk
Tk=1

n>2

= D G DD Y w0

n>2

3. CONGRUENCES INVOLVING THE (R,S)-GEOMETRIC POLYNOMIALS

In this section, we give some congruences involving the (7, s)-geometric polyno-
mials. Let Z, be the ring of p-adic integers and for two polynomials f(x), g(x) €
Z,[x], the congruence f(x) = g(x) (mod pZ,[x] ) means that the corresponding
coefficients of f(x) and g(x) are congruent modulo p. This congruence will be used
later as f(x) = g(x) and we will use @ = b instead a = b (mod p ).

Proposition 4. Let n,r,s be non-negative integers and p be a prime number. Then,
for any polynomial f with integer coefficients there holds

p—1
DS+ DPTIEYR = f(wy).

k=0
In particular, for f(x) = (x +r—s5)"(x)s or (x +7r)"(x 4+ 5)s we get, respectively,

p—1

Y =s+k)" (k)s(x + 1P HFF = xSw, (xirs),

k=0

p—1

D+ s +Hh)s(x+ DPTIEF = (x4 DSwp(xirs).

k=0

Proof. For m = p be a prime number, Theorem | implies
LHS = (x+1)? f(wx) =x” f(wx+ p) = (x? +1) f(wy) = xP f(Wx) = (W)
For the particular cases, use Proposition 1. U

Corollary 5. Let n,r,s,m,q be non-negative integers and p be a prime number.
Then, for any polynomials [ and g with integer coefficients there holds

(f(wx))Pg(wx) = f(Wx)g(Wy).
In particular, we have Wiyp1q(X;7,8) = Wmyq(X;7,5).
Proof. By Fermat’s little theorem and by twice application of Proposition 4 we
may state

p—1 p—1
LHS =) (f()Pgl)(x+ )P *x* =3 fl)g(k)(x+ 1P~ x* = RHS.
k=0 k=0



IDENTITIES AND CONGRUENCES INVOLVING THE GEOMETRIC POLYNOMIALS 401

0

We note that, for f(x) = x", g(x) = x? and x = 1, Corollary 5 may be seen as a
particular case of Theorem 3.1 given in [8].

Corollary 6. For any non-negative integers m > 1,n,r,s and any prime number
p, there hold
(x+ 1)s+1(wm(p_1)(x;r, s)—s)=—(s—r)s(x+ 1) xP7"" ' #£0,
(x+ 1)s+1(wm(p_1)(x;r,s)—s!) =—sI(x?+1), =0,
wherer' =r andr’ €{0,1,...,p—1}.

Proof. Setn = m(p — 1) in Proposition 4. If ' # 0 we get
p—1
(& + D W (pey (x:7.8) = D (' +E)™ P (s + k) (x + 1P RAE
k=0
p—1
= ) R DPTITE
k=0, r'+k#p
p—1
=) (s+k)s(x+ DPTIRAH
k=0
—(s—r 4 p)s(x+ 1) " xP
= (x + D)Swo(x;0,5) — (s — )5 (x + 1) ~1xP"
=sl(x+ 1) — (s —r)s(x + 1) " 1x2"

and if 7’ = 0 we get

p—1
@+ D oy (rirs) = D (s +h)s(x + PRk

k=1
p—1

=) (s +k)s(x + DPFxK —s1(x +1)7
k=0

= (x 4+ 1)* T wg(x:0,5) —s!(x + 1)?

=sl(x+ 1) T —s1(x? +1).

which complete the proof. O

Remark 1. Forr =s =m—1 = 01in Corollary 6 or n = p in Lemma 1 we obtain
(x + Dwp—1(x) = x —x? which gives for x = 1 the known congruence w,_1 = 0,
see [8].
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Now, we give some curious congruences on (r,s)-geometric polynomials and on
(r1,...,rg)-geometric polynomials defined below.

Theorem 2. For any integers n,m,r,s > 0 and any prime number p } m, there

holds
p—1 .
Z Mxkrs) = (—m)" (wp—1(x;r +m,s)—s!).
o m)

Proof. Upon using the identity x5w,, (x;r,s) = (Wx +r —s)" (Wx)s and the known
congruence (—m) % = (plzl)mp_l_k we obtain

p—1
-1
XLHS =) (pk )m”‘l"‘(wx+r—s)”+"(wx)s
k=0
= (Wyx+7—5)" (Wy +7 +m—5)P" (wy)g
n
= Z (n.)(_m)n_j (Wwx+r+m _S)j+p_1(wx)s
— \J
Jj=0
= (_m)n (Wx+r+m _s)p_l(wx)s
n
n s N
+8(n21)z (])(_m)n ‘I(Wx+r+m_s)J+p 1(W)i{)s
j=1
= x*(=m)"wp—1(x:r +m,s)
n
n .
+8(>1)x’ Z (j)(—m)” Twptj—1(x;r +m,s)
j=1
= X (—m) " wp1 (37 + m,5)
n
n .
+8(>1)x’ Z (j) (—m)"wj(x;r +m,s)
j=1

= X (=Y w1 (37 4 m.5) + Suz1)x° (Wi (x17.5) — (~m)"s1)

= X*[(=m)"wp—1 (x:7 +m,s) + wy (x:7,5) — (—m)"s!],

where § is the Kronecker’s symbol, i.e. §(;,>1) = 1 if n > 1 and 0 otherwise. O
Letry = (r1,...,rq) be a vector of non-negative integers and let
n+lrg—1|
n+|rq| . '
Wn(X:Tq) = . +rx?, 0<ry <---<rg,
n(xi1g) Jgo e Gt 4

Tq
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where {”;Sr'lr'z |}rq are the (r1,...,74)-Stirling numbers defined by Mihoubi et al. [21].

This polynomial is a generalization of the r-geometric polynomials wy,(x;r) :=
Wy (x;1,7).

Proposition 5. For any non-negative integers n,m and any prime p t m, there

holds
p—1 .
x4 Z wn(#(x);crq) = (_m)n (_m)rl T (_m)rq (wp—l (x;m,O) — 1)
k=1

In particular, for ¢ = 1 and rq = r we obtain

p—1

x’ Z w = (_m)”(—m)r(wp_l(x;m,O) — 1)

k=1 (=m)*

Proof. By the identity (wy), = n!x" and by [21, Th. 10] we have

n+rg—1| +|l’ |
Xtwy(xirg) = Y T (W),
— Jt+rq
j=0
n+rg—1|
n+|rg|
= Z . K (Wx_rq)j(wx)rq
=0 J +Tq

= wz (Wx)r1 cee (Wx)rq

|1'q|

k
= Z ap(rg)wit
k=0

|rgl

= aj(rg)wn+ (%),

j=0
where Zl rq| 09k (rq)uk = (U)r, ---(w)r, . So, by application of Theorem 2 we get

|rgl

ry N Watk (X3Tq) wn+j+k(x§0’0)
P P Za/(wZ (-m)F
|rq|
=Y "a;(xg)(=m)" (wp1 (x:m.0)— 1)
j=0

= (=m)" (=m)p; -+ (=m)r, (Wp—1(x;m.0) = 1).
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Remark 2. Since x"7wy (x;rg) = Wy (Wx)r, -+ (Wx)r,, then, for
g(x) = x9(x)p -+ (x)r, and f(x) = x" in Corollary 5 we obtain

Wimnp+q(X:Tg) = Whmtq(X:Ty),

Wi (p—1)(X:Tg) = wo(x:xg), r1--rg #0, m>0.

Corollary 7. Let ag(x),...,a:(x) be polynomials with integer coefficients,

t t
Rni(x;r,8) = Zai(x)wn+i(x;r,s) and £:(x,y) = Zai(x)y’.
i=0

i=0
Then, for any non-negative integers n,m,r,s and any prime p ¥ m, there hold

p—1 .
3 %('ifT(;‘k”) = (cm)" Ly (x.—m) (wp—1 (i1 + 1, 5) —51).
k=1

Proof. Theorem 2 implies

pil Rtk (x57,5) Zaj( )Z wn+k+j(x r.s)

T Cmyk (—m)*

= Zaj(x)(—m)n+j(wp_1(x;r +m,s)—s!)
j=0
= (—m)" L (x,—m)(wp—1(x;7 +m,s)—s!).

4., CONGRUENCES INVOLVING Wy (x;F,$), P, (x,r) AND T, (x,7)

The following theorem gives connection in congruences between the polynomials
wy, and &,

Theorem 3. Let n,r be non-negative integers and p be a prime number. Then, for

m €{0,..., p—1} there holds
L rWa(x;r + k. k)
2 = =

In particular, for m = 0, we get

= (=1)"m!(r + m)" Pp—1(x,m).
k=m

p—1

;r+k.k _
Z(_x)k% =r"(1+x+-+xP71).
k=0 )
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Proof. Fork <m we get (m+1),_;_x =0and form <k < p—1 we have

(m+p—k—1! (p—1—(k—m)! 1 (=Dkm
<m+ l)p—l—k = m = ! = —%m

where (x), =x(x+1)---(x+n—1)if n > 1 and (x)9 = 1. Then

p—1
LHS =—(—1)"m! Z(m + l)p_l_kkan(x;r +k,k)
k=0
p—1
= —(=1)"m! ) {m—p+1)p_1—k (W +1)" (W)
k=0

p—1 .
=—(=1)"m! )" (” . 1) (m—p + 1) p—1—k (Wx + 1) (—Wx)
k=0

=—(—1D)"m{(m—p+1—wx)p_1(wx+r)"
= —(=1)"ml(wx—m+ p—1)p_1 (Wy+7)"
=—(=1D)"m\(wx—m~+r+m)"(Wx—m+p—1)p_1

=—(=1)"m!y
J

—0

n+r—+m

Jtr4m (Wx_m)j(wx_m+p_1)p—l-

r+m

But for j > 1 we have

(Wx—m)j(Wx—m+p—1)p_1=(Wx—m+p—1)j4p-1
=Wx—m—1j1p 1= +p—DPjtp1(x.m+1)
= —§(j=0)Pp-1(x.m+1),

hence, it follows LH S = (=1)"m!(r + m)" Pp_1(x,m). O
A connection in congruences between the polynomials w, and 75, is to be:

Theorem 4. For any integers n,m,r > 0 and any prime p, there holds

p—1
D (=m)p1—k (o + DFwy (xir +m k) = =" Ty (xim).
k=0

Proof. Upon using the identity (x 4+ 1)Sw, (x;r,5) = (Wx +7)" (Wx + 5)s and the

known congruence (m),_1_g = (plzl)(—m)p_l_k we obtain

p—1
LHS = ;} (pl: 1) (m) p—1—k (Wx +r +m)" (Wy + k)
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p—1 1
= Z (Pk )(m)p—l—k(wx+r +m)" (wy + 1)
k=0

= (Wx+r+m)n(wx+m+1)p—l
= (Wx+m+r)n(wx+m+p_l)p—l

n
n+r
=D 0 (O m) (Wt p=T)py
j=0 J r
" n—+r
=> (M p—=Djp
j=0 J r
n
n+r . - .
=> . (J+p—DTjyp1(xim—j)
j=0 J r
" n—+r
=(P—1)!77v—1(x;m)+z Par (J+p—DWTjqp1(xim—j)
=1 r

= —r"Tp_1(x;m).
]

Corollary 8. Let R, (x;r,s) be as in Corollary 7. Then, for any non-negative
integers n,m,r,s and any prime p + m, there holds

p—1 .
]; (—x)* (:1) ‘R"’f(x’kr! LLIL (=)™ (r +m)" L (x, 7 +m) Pp_1 (x,m).

Proof. Theorem 3 implies

t p—1
k\wpti(;r+k, k)
_ ) k n+j
115 = 30 L -0 (m) -

t
=Y a; (X)) +m)"H Py (x.m)
j=0
= (D" +m)"Li(x.r +m)Pp_1(x.m).
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