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Abstract. In the present article we use a combinatorial approach to generalize the Comtet num-
bers. In particular, we establish some combinatorial identities, recurrence relations and gen-
erating functions. Additionally, for some particular cases we study their relationship with ¢-
successive associated Stirling numbers and their g-analogue.
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1. INTRODUCTION

It is well-known that the Stirling numbers of the second kind {Z} count the number
of partitions of a set with n elements into kX non-empty blocks. This sequence satisfies

the recurrence relation
n n—1 n—1

with the initial conditions {g} = 1 and {3} = {%} = 0.

The Stirling numbers {}'} can be generalized to the associated Stirling numbers
of the second kind {}}_  (cf. [1,4,7,8,10,11,18,20])) by means of a restriction
on the size of the blocks. In particular, this sequence gives the number of partitions
of n elements into k blocks, such that each block contains at least m elements. It is
clear that {Z}Zl = {Z} This combinatorial sequence has been applied to the study
of some special polynomials such as generalized Bernoulli and Cauchy polynomials,
(see, e.g., [12-16]).

Recently, Belbachir and Tebtoub [2] considered a variation for the associated Stirl-
ing numbers. They introduced the 2-successive associated Stirling numbers of the

. 2 . .
second kind {Z}[ ]. This new sequence counts the number of partitions of n elements
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into k blocks, with the additional condition that each block contains at least two con-
secutive elements. Moreover, the last element #» must either form a block with its
predecessor or belong to another block satisfying the previous conditions. In [2], the
authors derived the recurrence

[2] [2] [2]
n _k n—1 . n—2 0> ok
k - k k—1 T

2
with the initial conditions {g}[ 1= 1, {nfl}[z] =0and {3} =0forn>1.
Inspired by these results, in this paper we aim to investigate the sequence
{al(n, k)}n k>0, defined by the recurrence relation

a[t](n,k) = uka[t](n —1,k) —I—a[t](n —t,k—1), n=>tk, (1.1)

with the initial conditions a[1(0,0) = 1,a{(n,n —€) =0 for £ =1,2,...,r —1 and
al’l(n,0) = 0, for n > 1. Moreover, {u,} is a sequence of real numbers.

We will call the sequence {a[t](l’l,k)}n,kzg the generalized t-Comtet numbers.
The reason for this name is that for t = 1 we recover the Comtet numbers (see, e.g.,
[9,21]). Note that if ug = k, then a/l(n, k) = { }[ I This sequence is called by
Belbachir and Tebtoub [3] as the t-successive associated Stirling numbers. If t =2
and uy, = k, then a®/(n k) = { }[2] Ift = 1and uy = k, then all(n, k) = { }

In this paper our goal is to give the recurrence relation, the generating function
and some combinatorial identities. For some particular cases, we give combinatorial
interpretations.

2. BASIC PROPERTIES
From the recurrence relation (1.1) we obtain the following generating function.

Theorem 1. Fork > 1,

tk
(] 1 a
A k 2.1
k (X) Za (I’l )x (I—MOX)(I_MIX)(I_sz) (l—uk_x)’ ( )
n>tk
with A[t](x) = uox

Proof. Multiplying both sides of (1.1) by x” and summing over n > tk, we have

A = 3 a1 hx" + 3 ald(n— 1,k — 1)«

n>tk n>tk
= UpX Z al(n, k)x" + Z al(n k= 1)x"+
n>tk n>tk—t

= ukxA[t](x) +x A[t] 1 (X0).
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Then
A (x)
A[t] x) = k—1 )
k (x) 1—upx
Iterating this last recurrence, we obtain (2.1). ]

From the above relation, we have the following combinatorial expression.
Corollary 1. The generalized t-Comtet numbers are given by the explicit identity
aln, k) = Z uil'uéz ---u;.c", (2.2)
i1Fiotix=n—tk
forn > tk.

Theorem 2. The generalized t-Comtet numbers satisfy the following recurrence
relation

n—tk
an k)= " ulan—i—1.k—1). (2.3)
i=0
Proof. Forn > tk,
a(n,k) =uran—1,k) +a(n—t,k—1),
uga(n—1,k) =uia(n—2,k) Jfuran—1—t,k—1),
u,zca(n—2,k) =u,3€a(n—3,k) —I—uia(n—2—t,k—1),
Wt ek 4 1,k)= ul " a(tk, k) Ul TR g (k1 -1,k - 1),
ut = a(tk, k) = ul " ek — 1. k) +ul " Fa( (k- 1),k - 1),
by summing, we get the result. O

Theorem 3. We have the following rational explicit formula

k uk+n
[z] _ J
a"m+tk k)= —2———, (2.4)
JZ(:, [Tiz ) (uj—ui)

which is independent from t.

Proof. We have
A/[:](x) = Z alln, kyx™ = x'* Za[t](n + 1tk k)x",

n>tk n>0
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then
1
(7]
a“ (n+tk,k)x
D s T e ey
k
— %j
iz l—ujx
k k
U’
; 175] (u] —Uj ) Z
k+n
R — xn’
g Z 1_[176] (uj ui)
which gives the result. g
Corollary 2. The dual expression depending ont
n+k(t 1)
[t]
a(n,k)= (2.5)
Z l—[laéj (u/ _ul)

2.1. Exponential generating function for the t-Comtet numbers

Let uy,...,ux be a sequence of complex numbers and let (A)m=1,...,» be the
sequence of matrices such that A, is m x m-matrix

Uk—m  Uk—-m+1 - Uk—1
Uk—m+1 Ug
Am = . . . 9’
: g - 0
Uk—1 Uk 0 0

with the convention that u .o = 0.

Consider also
oj =(-1)/ > Ufy ** Uk
1<k <k2<~~<kj <k
(the alternate sequence of elementary symmetric function associated to u 1,45, ..., Ug).
We have (p—u1)(p—u2) - (p—ug) = p* + o1 p¥ 1+ 02 p* 2 +--- 4 01. Now
we can state the following lemma which will be used to establish the main result of
this subsection.

Lemma 1. We have the following decomposition

1 n o k ,3
=y 4y QJ (2.6)
i=o P = P

prt(p—uy)---(p—ug)
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(=1)LE+D/2] 1
with o = —————=——det(4;), 2o = 1/0}, and f; = ———.
GIIC_H k
uf [ [y —ur)
i=1
i#j
Proof. We leave the proof to the reader. U

n
Let (/00 := 3 a[t](n,k)%, with C7(x) = 1. We have

n>tk

ot x"
—tCIEt]()C)Z Z a[t](n+t,k)m,

Ox n>t(k—1)
which gives using relation (1.1),
81 at—l
ch’](x) = Uiy cH)+ ¢ ). 2.7)

To solve the linear recurrence differential equation we use Laplace transform. Using
the fact that
t_

!
== ey =0,
9xi—1 k =0

[l _ 0 Al
Ck 0) = ack )

y=0
we get
k
[Te —uir™Hecfon =21,
i=1
o0
where £(C{1(y)) = [ clleray.
0

Thus by recursion, we get

k
PRI -untcf o) = £ ) = 2w,

i=1

where u(¢) is the Heaviside function. Using Lemma 1, we have

t—-Dk o k Bi
Lo =2am| Y S+Y -2
i=0 P =P

The inverse Laplace transform gives,
(t—Dk yict k
C;Et](y): Z OliTI)'-FZ,Bjeujy- (2.8)
it

i
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Theorem 4. The exponential generating function of t-Comtet numbers is given by
=Dk i

Za[t](n,k))’%: Z %) +Z,B]e (2.9)

n>tk

3. THE 2-SUCCESSIVE ASSOCIATED r-WHITNEY NUMBERS

In this section, we study the particular case uy = km +r. Let n,r > 0 be integers.
Let I, (n,k) denote the set of partitions of the set [n +r] :={1,...,n,n+1,...,n+
r}into k +r blocks, such that, the first r elements are in distinct blocks. The elements
{1,2,...,r} will be called special elements. A block of a partition of the above set
is called special if it contains special element. The cardinality of I1,(n,k) is the
r-Stirling numbers of the second kind [5].

The 2-successive associated r-Whitney numbers of the second kind, denoted

[2] +(n, k), count the number of partitions in I1.(n,k), such that:

e the k non-special blocks contain at least two consecutive numbers,

o all the elements but the last one and its predecessor in non-special blocks are
coloured with one of /1 colours independently,

o the elements in the special blocks are not coloured,

o the last element n 4 r must either form a block with its predecessor or belong
to another block (special or not-special) satisfying the previous conditions.

We denote by 17, r[ (1, k) the set of partitions in IT,(n, k) that satisfying the previous
conditions. It is clear that if r = 0 and m = 1, then Wl[z(} (n,k) = {k}[ ] , (see [2]).

For example, W[ 3(5,2) = 15 with the partitions being (the m = 2 different colours

of the elements w111 be fixed as red and blue, and the r = 3 special elements are 1,2
and 3):

{13,42},{3},{4,5,6},{7.8}},  {{1},{2}.{3},{4,5,6}.{7.8}},
{1,6},{2},3},44,5), (7.8}, {{1},{2.6},{3}.{4.5},{7.8}},
{13.{21,43,6},44,5},{7.8}} ., {{1.4},{2},{3}.15,6},{7.8}},
UTL (2.4}, 30,45,61,{7.8}} . {{1},42}.{3.4}.{5.6}.17.8}},
{183,425, 3}, 14,55 46,73 {{1},12,8},{3},{4,5}.{6,7}}
{1123, (3.8), 14,55 46,73 {{1},42},43},{4,5,8},{6,7}} ,
{1123, (3),14.5.81,{6, 7)), {{1},{2},{3}.14,5},{6,7.8}},

{13,123, {3},14.5},{6,7.8}} .
Theorem 5. For n > 2k, we have

W2 @m.k) = (km+r)W2 o - 1.0+ W2an-2k-1. @D
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Proof. For any set partition of Hr[z,lz (n,k), there are three options: either n + r
form a block with its predecessor (n 4+ — 1), or n + r is in a special block or n 4+ r

is in a non-special block. In the first case, there are W,Lz]r (n —2,k — 1) possibilities.
In the second case, the element n 4 r can be place into one of the r special blocks

and the remaining elements can be chosen in W,,[f]r (n —1,k). Altogether, we have
rW,,[Z]r (n —1,k) possibilities. For the third case, we can follow a similar argument,
then we obtain km W,,[,z]r (n —1,k) possibilities. d

A comparison of (3.1) and (1.1) shows that al?! (n,k)= W,,[,z], (n,k) forup =km+
r. Therefore, from Theorem 1 and Corollary 1 we get the following corollaries.

Corollary 3. Fork > 1,

W) =" Wl k)"

n>2k
2k
= z . 62
A=rx)1—=m+r)x)1-Cm+r)x)---(1—(km+r)x)
with WO[Z] (x) = 1_1r - Moreover, the 2-successive associated r-Whitney numbers of
the second kind are given by the explicit identity
Wn[f,]r(n,k) = Z rio(m—i—r)i1 ---(km+r)ik, (3.3)

io+iy+iz+-+ig=n—2k
forn > 2k.

In particular, for m = 1 and r = 0 we obtain the generating function of the 2-
successive associated Stirling numbers of the second kind.

Corollary 4. (see [2, Theorem 2.3 and Corollary 2.4] and [3, Theorem 18]) For
k>1,

. 2 2k
Ak(x)‘:n§k§k§ T U2 (I —kx)’ 34

with Ag(x) = 1. Moreover,
" (2]
— i1 i
{k} = > 111272 .. ik
i1+iz+-+ix=n—2k

2
Our next identity expresses Wn[f]r (n,k) in terms of {,’(}[ ] fori <n.
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Theorem 6. Letn,k > 0,

n ) [2]
2] _ —i(nk) ok )i
Wy (n,k) = Z r l(n—i)ml {k} ) (3.5)

i=2k
Proof. From (3.2) we have

x2k

A=rx)1—=m+r)x)A1—-Cm+r)x)---(1—(km+r)x)

> Wl k" =

n>2k
B xzk
(=)t (1= 250 (1= 225 - (1 s )
_ (k! (25)*
2k 2 k
TR (- ) (1 2)
B (1 _ rx)k—l y2k
 om¥* (I-y)(-=2y)--(1—kmy)’
where y = {27
Therefore from (3.4), we have
(2]
k—1 :
2] n (1—rx) i ;
Z W (1, k)" = 2k Z W Y
n>2k i>2k
2 ‘ .
_Zgi}[] m1—2kxz
o _ | —k+1
eyl k (1—rx)
. . ) [2]
:szi—zk i—k+] A LN GV,
. , i—k k '
i>2kj>0
Comparing the coefficients of x", we obtain (3.5). O
Combinatorial proof: We can construct any set partition of I7, ,[2,1, (n,k) as follows:

we put n —i elements in the special blocks. Then there are (;’:,]z)r”_i possibilities.

Note that we have to subtract k elements of n because in the non-special blocks there
are at least two consecutive numbers. The remaining i elements (i > 2k) can be
chosen in m! =2k {,’c} ways. The factor m! =2k accounts for the i — 2k non-minimal
elements within these blocks that are each to be colored in one of m ways.

From Theorem 5 and by induction on n we obtain the following identity.
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Theorem 7. For n > 2k we have

w2l 1< =i (kY .k
Hk) = g 2 DI £y

Proof. Let,

k
Wy2i(n k) = — ;)( k= (j)(m] +7)
1 & (k=1
 (mk+7) e (K1Y, ik
T k=11 Z(_) j(j 1)(mj—|—r) 1

kk,Z(— D ,( )(mj )

n—1—-k

k
n—1—k—i mt _1\k—J ;i+1 k

mkk' Z d j;o( D (])m
k k
+Z(—1)k‘fﬂr<.)

j=0 /

1 AV
kk.Z(— Dk- f(j)(mj +r)" k.

3.1. Relations with the r-Whitney numbers

The r-Whitney numbers of the second kind W, , (1, k) were defined by Mez& [17]
as the connecting coefficients between some particular polynomials.
For non-negative integers n,k and r with n > k > 0 and for any integer m > 0

n
(mx+1r)" =Y m* W, (0. k)xE, (3.6)
k=0

where x% = x(x —1)---(x —=n+1) forn > 1,and x2 = 1.
The r-Whitney numbers of the second kind satisfy the recurrence [17]

Wm’r(n,k) = mer(l’l - l,k_ 1) + (km + r)Wm,r(n - l,k). (3.7)
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Comparing (3.7) and (3.1) we have the following relation.
Corollary 5. [2, Theorem 4.1] For n > 2k,
WL (n.k) = Wy r(n —k k). (3.8)

Mez6 and Ramirez [19] studied the r-Whitney matrices of the second and the
first kind and they derived several identities for these matrices. In particular, the
r-Whitney matrix of the second kind is defined by

1 0 0 0 0
r 1 0 0 0
r? m—+2r 1 0 0
Wnr (0,0, g0 = | 13 m?+3rm+3r? 3m+3r 1 0
it omd+drm? 4 6r2m+4rd Tm+12rm+6r2 6m+4r 1

Notice that the sequence (W,,[,Z], (n,k))x corresponds with the sequence of elements
on rays in direction (1, 1) over the r-Whitney matrix of the second kind.

4. THE t-SUCCESSIVE ASSOCIATED r-WHITNEY NUMBERS

In this section, we consider the rays in direction (s, 1), i.e., we are going to study
the sequence {W, (n —sk.,k)}. We denote by W,,[f,]r (n,k) the number W, ,(n —
sk,k), where t = s+ 1. We call this new sequence the t-successive associated r-
Whitney numbers of the second kind. It is possible to show that the ¢-successive
associated r-Whitney numbers count the number of partitions in I7, (n, k), such that:

e the k non-special blocks contain at least ¢ consecutive numbers,

e all the elements but the last one and its # — 1 predecessors in non-special
blocks are coloured with one of m colours independently,

o the elements in the special blocks are not coloured,

e the last element n + r must either form a block with its ¢ — 1-predecessors
or belong to another block (special or not-special) satisfying the previous
conditions.

Reasoning in a similar manner as in Theorem 5 we obtain the following results.

Theorem 8. For n > tk, we have

W (n.k) = (e + r)WEL (0 = 1.k) + WL (0 — 1.k — 1), @1
Fork > 1,
Wk[t](x) = Z W'Lt,]r(n’k)xn
n>0
tk
u (4.2)

T (=rx)(I=(m+r)x)(1=Cm+r)x)(1—(km+r)x)’
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with Wo[t](x) = l—lrx' Moreover, for n > tk we have
1 & k
[£] _ _1\k—J . —(t—1k
”m,r(nvk) = mkk!j§=0( H*/ (])(mj +r)" . (4.3)

As corollary for ¢t = 2 we get [3, Theorem 4, Theorem 6 and Theorem 7].
It is not difficult to generalize the relation given in Theorem 6.

Theorem 9. Ifn,k > 0, then

n ) [
_i[n—=k\ ;)i
W,E,’},(n,k):Zt;cr" ’(n_l_)m’ ! {k} : (4.4)
1=
Consequence. From Equation (4.2) we deduce that W,,[f,], (n+ (t — 1)k, k) are the
classical r-Whitney numbers Wy, ,(n,k).

From the explicit formula given in (4.3) we get the exponential generating function
of the 7-successive associated »-Whitney numbers.

Theorem 10. The exponential generating function of the t-successive associated
r-Whitney numbers is

e(jm—f-r)x

k k—j
[, . X" k\(=1)
Wil = Yo Wil o= ( ok G @9

n>tk ’ j=0 J

Corollary 6. For the 2-successive associated r-Whitney numbers,

k k=) ,(im+r)x
2] k(=) e
W " (x) = E . 4.6
k@ j=0(j) kK'mk  (jm+r)k (4.6)

These two result are more specified expressions as relation (2.9) of Theorem 4.

Proof. (Theorem 10) We use the derivation (¢ — 1)k times according to x and using
the consequence property, we get

a(t—l)k 1] X"
n>tk—(t—1)k
1
— k'_kerx(emx o l)k
m
1 K (k
— X Z ( )(_l)k—jejmx
k .
k'm = J

J

k _
-y K\ D Gmne
] k!mk '
=0
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Theorem 11. Forn >k, we have

Wi n+@-Dkky= > H(r+m(] —Zze))l/“ (4.7)
i1+ Fin=n— —kj=0
i1,,in€{0,1}

Proof. By induction over n, we suppose that the identity is true until n — 1

> 1‘[<r+mu le))”“

iy +-+ip=n—kj=0
i1,,in€{0,1}

= > H(r+mu —Zzl))’m

i1+ +zn 1—(n 1)—(k—1)j=0
i1, ,ip—1€40,1}

n—2 J
+ > [T0+mG =3 iy | ¢ +mk).
i1+ tip—1=(n—1)—k j=0 I=1

i1, ,in—1€{0,1}
We have
Wi (n+(t = Dk k)
= (mk +r)WH (n =1+ @ = Dk.) + W (n =1+ @ = D) (k= 1),k),
which gives the desired result. u

Corollary 7. Forn > tk, we have

n—(t—1)k—1 J
Wi (n.k) = > [T ¢+mG=3 i+ @8
itetin—q—nxk=n—tk  j=0 t=1

i1, ip— -1k €10,1}

with empty sum equal zero.

Example 1. For k =t =2 we have the following formula

Wn[’lz,:l'(naZ) == Z ril(’”+m(1_i1))i2(r+m(2—i1_iz))i3x
i1++ip—2=n—4
X (rmn—=3—iy—ipg—-—in_3))"2,

w42 = Y re+m-i) =1,
i+j=0
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WA G2)= > re+m-i) ¢ +m@—i— )k =30+m)

i+j+k=1
Wir©e = Y re+m=i) ¢ +m@=i— ) +m@—i—j-k)
i+j+k+i=2

= 6r2 4+ 12mr +Tm>.

Theorem 12. We have the following explicit formula
i k
Wi (n+tk.k) = — Y (=1)F (]) (mj +r)"*k, (4.9)
g

and thus

Wl (n.k) = kk,Z( 1)k= /( )(m]+ pyn=(=Dk 4.10)

Proof. It suffices to setuy =mk +r then [u; —u; =m(j —i)] in Theorem3. O
For t = 2 we get Theorem 7.

Theorem 13. Expression of t-successive r-Whitney numbers in terms of binomials
and Stirling numbers.

witl (n + 1k k)—(r)kr§<n+k)r”_imi;i$ 4.11)
m,r ) =\ - : :
m/ = i k
Proof.
k n+k n+k . .
WL (n+th k) = kk,ZZ( D= ,( )( )(mj)’r”k—l
Jj=0i=0
1 n+k n—+k k
+k— k—
= i 2 ( >0
j=0
+k
1 anl n+k—i n+k i
T mk i k
i=0
Notice that Zfzo(—l)k_j(j)j’ =0fori <k. O

5. A g-ANALOGUE OF THE ¢-SUCCESSIVE ASSOCIATED STIRLING NUMBERS

Finally, we considerer a g-analogue of the ¢-successive associated Stirling num-
bers of the second kind. For this purpose, we use a similar statistic studied by Carlitz
[6], see also [21].
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Letw = B1/B»/---/ By be any block representation of a set partition in H(gt,]l (n,k):=
1 (n, k), with min(B;) < min(B,) < --- < min(By,). We define the following stat-
istic on the set [T (n, k).

k
wil(r) ==Y " —D)(Bi| -t +1).
i=1
We now define the g-analogue of the t-successive associated Stirling numbers of
the second kind.

Definition 1. Define {Z}[qt] as the distribution polynomial for the w{! statistic on
the set 711 (n, k), that is,

1]
{Z} = > """ nkzo,

q wellll(n,k)
where ¢ is an indeterminate.

It is clear that {Z} lt] = {Z}[t].

For example, in the set I1 (21(7,3) we have the following partitions:
{11.21.{3.4.55.16.71),  {{1.2,3}.{4.51.{6. 73}, {{1.2,5}.{3.4}.{6.7}}.
{{1’2}’{3’4}?{5v6’7}}’ {{1’2}’{3?4’7}’{5’6}}’ {{1’2’7}’{3’4}?{5v6}}

Therefore,

[2]
7
{3} ="+’ +¢’ +a’ +4¢* +4° =3¢ +2¢* +¢°.
q

Let us introduce the following notations.

!
g =1+q++4""" [lg!=[1]g[2lgIn]g and qum

n

The last coefficient is called g-binomial coefficient. If ¢ = 1, then [Z]l = (k)

Theorem 14. For n > tk, we have

n o n—1
%k} I[k]q§ k
q

Proof. For any set partition of I [tJ(n, k), there are two options: either n form
a block with its r — I-predecessors, or n is in a block that satisfies the conditions.

— [t e . .
k_l{”_t}[] possibilities. In this case, the size of the
k—14q

k—1

[£]

n—t [t]
+qk_1{k_1} . (5.1)
q

q

In the first case, there are g

last block By is t, then this block contributes a factor ¢ . In the second case,
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the element n can be place into one of the k blocks and thus contributes a factor

l+qg+qg2+-4gk1= [k]4. Moreover, the remaining elements can be chosen in
n—1

. }5] ways. Altogether, we have [k]4{" ;1}([;] possibilities. O
From above theorem, we obtain the following corollaries.
Corollary 8. Fork > 1,
" [t] ) x’kq(g)
2 |k . == =Bl (1= kg»)

n>tk

(5.2)

Moreover, the g-analogue of the t-successive associated r-Stirling numbers are given
by the explicit identity
(7]

1 S 11/ ) 351/ (53)

q i1 +io++ixg=n—tk
forn > tk.

Corollary 9. Forn >tk we have
n i & k k—j
—J . —(t—
. —k—Z(— D a D

q
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