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MULTIPLE SOLUTIONS FOR ASYMPTOTICALLY LINEAR
2p-ORDER HAMILTONIAN SYSTEMS WITH IMPULSIVE
EFFECTS
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Abstract. In this paper, we are concerned with 2 p-order Hamiltonian systems with impulsive
effects. We investigate the variational structure associated to this system. In addition, we obtain
some results of multiple solutions for asymptotically linear 2 p-order Hamiltonian systems via
variational methods and critical point theorems. Meanwhile, some examples are presented to
illustrate our main results.
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1. INTRODUCTION AND MAIN RESULTS

In recent years, variational methods have been introduced to investigate various
impulsive differential equations since papers [10, 13] appeared. As one kind of
widely applicable differential equations, Hamiltonian systems with impulsive effects
have been also concerned on widely and many new corresponding results have been
obtained, see for instance [3,7-9, 11, 12, 15]. However, in aforementioned papers
Hamiltonian systems are second order. To the best of our knowledge, few authors
have considered asymptotically linear 2 p-order Hamiltonian systems with impulsive
effects. One difficulty is that the suitable impulsive effects associated to this system
have been not found. Another is that the suitable critical point theorems have been
not applied. In this paper, we present such impulsive conditions. More precisely, we
investigate multiple solutions for

(—1)P+1@P) LYV (1,u) =0, a.e.t€[0,T],
u(j)(())zu(j)(T), j=0,1,-2p—1,
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where p is a positive integer, u(¢) = (u!(t),u?(t),--- . u™ (1)), V : [0,T]xRY - R
is measurable with respect to ¢, for every u € R, continuously differentiable in u,
foralmostevery r € [0,T],0 =ty <t; <--- <ty <tgr1=T,tx (k =1,2,--- ,q) are
the instants where the impulses occur, A(uiup_” (tx)) = ui " (t,:r) —ui 7 ()
and I;;x :R—-R(@ =1,2,--- N, j=12,---,p,k =1,2,--- q) are continuous.

From now on, we write A, B and C as {1,2,---,N},{1,2,---,p} and {1,2,--- ,q}
respectively. In addition, £ (R”) stands for the space of symmetric matrices of order
N and Iy is the unit matrix in £5(RY). For any A;, A5 € £5(RY), we denote by
A1 < Ay if Ap — A is positively semi-definite, and denote by A1 < A if Ap — A
is positively definite. For any A1, A> € L%([0, T]; £5(RY)), we denote by A1 < A,
if Aj(t) < A,(¢) fora.e.t €]0,T[, and denote by A; < A, if A} < Az and A;(¢) <
A»(t) on a subset of |0, T'[ with nonzero measure.

Let us have the space

HY = {ue HP(0.TERY)u(0) =u(T).j = 0.1 p—1

with the inner product
T
(u,v) = f WP (1), 0P (1)) + (u(t),v(t))dt, Vu,ve HF,
0

where (-,-) denotes the inner product in R . The corresponding norm is defined by

1
T 2
||u||=(/0 Iu(p)(t)|2+|u(t)|2dt) , YueH?.

Suppose that /;;; and V' satisfy that the following some conditions:
(I1) Every I;jx(i € A,j € B,k € C) is bounded and /;,(0) = 0.
(I2) Every I;jx(i €A, j € B,k € C) is odd.
(V1)  V(t,u) is twice continuously differentiable in u for a.e. ¢ € [0, T].
(Va) VV(t,0) =0 and set Ag(t) = D2V(¢,0).
(V3) There exist Ay, A € L*®([0,T]; £5s(RY)) and r > 0 such that

A1(t) < DZV(t,u) < Ax(2)

for every u € RN with |u| > r, and a.e. t € [0, T].
(Va) V(t,—u)=V(t,u) forevery u € RN andae.t €[0,7T].
(Vs) V(,0)=0.

Our main results are the following two theorems.

Theorem 1. Suppose that (I1), (V1) — (V3) with ip(A1) =ip(A2) >0,
Vp(A2) =0, and ip(A1)€ [ip(Ao).ip(Ao) +vp(Ao)] hold. Then, (1.1) has at least
one nontrivial weak solution. Further, if v,(Aog) = 0 and ‘ip(Al) —ip(Ao)} > pN,
then problem (1.1) has two nontrivial weak solutions.
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Theorem 2. Suppose that (I1),(12), (V1) — (Vs) withip(A1) = ip(A2) >0,
vp(A2) =0, and vy (Ao) =0 hold. Then, problem (1.1) has at least |ip(A1)—ip(Ao)|
distinct pairs of nontrivial weak solutions.

Remark 1. Here i, (A) and v, (A) are called the index and nullity of A respectively.
Indeed, for any A € L®([0,T]; £5(RN)), we define

T T
¢A(u,v)=/0 (u(P)(t),v(p)(t))dt—/O (A(Ou(t),v(t))dt, Yu,ve HP.

Forany x,y € Hlp if p4(x,y) =0, we say that x and y ¢4-orthogonal. If Hy, H» are
the two subsets of Hlp and for any x € Hy and y € Hp, ¢p4(x,y) =0, we say that H,
and H, ¢4-orthogonal. In addition, H lp has a ¢4-orthogonal decomposition H lp =

H lp +(A) b H 1p 0(A) b H 1” ~ (A) such that ¢4 is positive definite, zero and negat-
ive definite on H lp +(A),H lp 0(A) and Hlp ~ (A) respectively. Moreover, H lp 0(A)
and H lp " (A) are finitely dimensional. Hence, for any A € L*([0, T]; £s(RN)), we

define ip,(A) = H f’ “(A), vp(A) =dimH lp O(A). These results are the immediate
conclusions of Proposition 2.1.1, Definition 2.1.2 in [5].

This paper is organized as follows. In Section 2, we first recall several critical
point theorems. Then, we investigate the variational structure associated to problem
(1.1) in H 1p . Finally, we quote the two lemmas which are crucial in our argument.
In Section 3, we verify our main results by applying variational methods and critical
point theorems when V' satisfies the generalized asymptotically linear conditions.
Our results extends some conclusions directly in [4]. Analogously, by new definition
of weak solution, one can be dealt with problem (1.1) when V' satisfies some other
conditions, such as the convex potential condition, the even type potential condition,
the Ahmad-Lazer-Paul type coercive condition and its several generalizations, the
sublinear potential condition, the superquadratic potential condition, the subquadratic
potential condition and the asymptotically quadratic potential condition. In Section
4, we present some examples in order to illustrate our results.

2. PRELIMINARIES

Let X be a Hilbert space. We first recall some critical point theorems in critical
point theory. These theorems are due to K. C. Chang.

Theorem 3 ( [, Theorem 4.3.4]). Let f € C1(X,R) be even and f(0) = 0. As-
sume [ satisfies PS—condition and
(i) there is an m-dimensional subspace X1 and a constant r > 0 such that

sup  f(x) <O,
xeXNAU;
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(ii) there is a j-codimensional subspace X, such that

inf f(x)> —oo0.
xeXr

Then f has at least m — j distinct pairs of critical points provided m — j > 0.
Theorem 4 ([, Theorem 4.3.6]). Let f € C'(X,R) be even and f(0) = 0. As-

sume | satisfies PS—condition and
(i) there is a j-codimensional subspace X1 and two constants r,a > 0 such that
f(x)>a foranyxeX,NaU,,
(ii) there is a m-dimensional subspace X, and a constant R > 0 such that
f(x) <0 forany x € X,\Ug.
Then f has at least m — j distinct pairs of critical points provided m — j > 0.

The last one is called three solutions theorem and can be verified by Theorem 5.1,
Theorem 5.2 and Corollary 5.2 in [2]. One can find its proof in [6].

Theorem 5 ([6, Proposition 5.5.2]). Assume f € C?(X,R) and satisfies PS-
condition, f"(x) is Fredholm with finite Morse index for each critical point x € X
and f'(0) = 0. Suppose there is a positive integer y such that

yelm™(f"(0)),m°(f"(0))+m™(f"(0))]

1, 6=

and Hy(X, f4;R) = 84, R for some regular value a < 1(0), where 4, = 0’ 54 v
s Y-

Then, f have a critical point xo # 0. Moreover, if 0 is a non-degenerate critical point,

and m®(f"(x0)) < |y —m~(f"(0))|, then f have another critical point x1 # X, 0.

Remark 2. Here f, = {x € X|f(x) <a,a € R}. The Morse nullity and Morse
index of f atx € X are defined as dim(ker f”(x)) and the supremum of the dimen-
sions of the vector subsequence of X in which f”(x) is negative definite respectively.
Both are denoted by m°( f”(x)) and m™(f”(x)) respectively.

Next, we investigate the variational structure of (1.1). This idea comes from papers

(10, 14].

Ifu e HY, then uﬁzl)_])(t,j') and ul(zp_J)(tk_)(i € A, j € B,k € C) may not exist.
This leads to impulsive effects.

Letustake y € H lp , multiply both sides of the equation in (1.1) by y, and integrate
between 0 and 7', then

T T
/((—1)P+1u(21’),v)dt+f (VV(t,u),v)di = 0. 2.1)
0 0

Moreover, combing u2?7~D (0) = u2P~D(T), one has
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T
/((—1)p+1u(2p),v)dt
0
4q tet1
=(_1)P+lzf w®P) v)di
k=0"k

q
= (=DPT Y (@D (G ) vl ) — @ (). 0@ )

k=0

4 rte+r
— (=Pt Z/ (u(zl’_l),i))dt
k=0"k

N g¢q
= P (@ () v ) = PP D) v )

i=1k=0
9 tet1
+(—1)P+22/ @®P™ ) dr
k=0" Tk

= ()P (@D 7),0(T7) - @D (07),0(0%))

N ¢ T
HEDPR Y Y AW 0+ (07 [ e 5 ar
0

i=lk=1

T N ¢
= / (—DPT2@CP™D by de + (=DPF2D S " Ly (i (1)) i (8-
0

i=lk=1

Similarly, combining ¥ 27~/ (0) = u@P=7)(T), j € B\{1}, one has
T
/ ((_1)P+2u(2p—1)’ v)dt
0

T N ¢
= [ (07T )t (17 Y Y e 00 1),
0

i=lk=1

’

T
/ (=1)2PyP+D =1y gy
0

T N g
= /O (~D?PH1u® oy Py dr 4 (1223 S 1 PP @0) PP ().
i=1k=1
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Hence,

T T
f(u(p),v@))dz—/ (VV(t.u).v)dr
0 0

N p 4 ' )
33 Pl P o Py =0 @2)

i=1j=1k=1
Definition 1. Say thatu € H lp is a weak solution for (1.1) if (2.2) holds for any
ve H 1p .
Consider the functional ¢ : H lp — R defined by putting
(9

1 (T T N p ¢ u
<p(u)::§/0 |u(p)(t)|2dt—/0 V(t,u(t))dt+222/0 L (s)ds.

i=1j=1k=1
(2.3)
Then, ¢ is Gateaux differential at any u € H lp and

T T
(w/(u),v)=/0 (u(l’),v(p))dt—/(; (VV(t,u),v)dt

N p ¢
DD I I o  IAL S (el (79) it (79 B )

i=1j=1k=1
forany VV(t,u) e H lp . Hence, the following lemma holds by (2.4) and Definition 1.
Lemma 1. Ifu € Hlp is a critical point of ¢, then u is a weak solution for (1.1).

Finally, we quote the two important lemmas. The first lemma is identical with
Proposition in [6] when T = 1 and it’s proof is absolutely similar to the proof of
Proposition 5.3.1.

Lemma 2. If (V1)-(Va) hold, then for any & > 0, there exists A :[0,T] xRN —
LsRN)and g 1[0, T]xRY — RY such that

Vou(t,u) = A(t,u)u + g(t,u), (2.5
where
Ar—ely < A(t,u) < Ay +ely, foranyu e RN ae. 1 € (0,77, (2.6)
A u()) € L([0,T], £s(RN)) for allu € L*>([0,T],RY), (2.7)
and
g(u(-)) € L0, T].RN) is bounded for all u € L>([0, T],RN). (2.8)

Remark 3. Say then V satisfies asymptotically linear conditions if (2.5)-(2.8) hold.
Lemma 2 shows that if (V1)-(V3) hold, then F satisfies these conditions.
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The second lemma is a immediate corollary of Proposition 2.1.3 in [5].

Lemma 3. Forany A € L*®([0,T]; £5(RN)), we have
(i) vp(A) is the dimension of the solution subspace of

(=Pt 2P L A(Hu =0, t€[0,T],
u(j)(O) — u(j)(T), j=0,1,--2p—1,
and v, (A4) €{0,1,---, pN}.

(ii) ip(A) = 35 <o vp(A+AIN).
(iii) If ip(A) = 0, then

2.9

T ’ T
/ ‘u(p)(t)‘ dtz/ (AOu().u@)de,  Vue HP.
0 0

And the equality holds if and only ifu € H lp O(A).
(iv) vp(A) = m®(Ba), ip(A) = m™ (¢a)-
For any Ay, A> € L®([0,T]; £5(RM)), we have
(v) If Ay = Az, then ip(A1) < ip(A2) and ip(A1) +vp(A1) < ip(A2) +vp(A2); if
A1 < Az, thenip(A1) +vp(Ar) <ip(A2).

i) Ifip(A1) = ip(A2) > 0, vy(A2) =0, then HP = HP ™ (A;) & HP T (42).
3. PROOFS OF MAIN RESULTS

Proof of Theorem 1. By Theorem 5 and Lemma 3(iv), we complete the whole
proof by three steps.
Step 1: ¢ € C2(H? ,R) and 0 is a non-degenerate critical point of ¢.

If (/1) and (V1) hold, then by the continuity of /;;x (i € A, j € B,k € C), for every
u € HY, ¢"(u) is determined by

T T
(@" v, w) = fo (WP (1), 0P () dt — /0 (D2V(tu(t)w(t),v(t))dt

N p ¢
33 S P L@ T @ywd TP ) 3.1)

i=1j=1k=1

for all v,w € H lp . Moreover, we have ¢ € C2(H?”,R). Meanwhile, (2.4) together
with (I7) and (V2) implies ¢’(0) = 0. Namely, 0 is a critical point of ¢. In addition,
by (3.1), we have

T T
(¢" (0)v, w) = / WP (1), v P (1)) dt — / (Ao(Hw(t),v(1))dt.
0 0
If ¢”(0)v = 0, then for all w € H?,

T T
/(w(p)(t),v(p)(t))dt—/ (Ao(w (), v(1))dt =0.
0 0
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It implies that v is a solution of (2.9) where A = Ag. Because of v,(A4g) = 0, we get
v = 0. The only thing left to do is to prove that for all w € H 713 , " (0)v = w has one
solution in H{. Indeed, ¢”(0) = Id — K where K : HY — H{ defined by

T
(Kv,w) :/0 (Ao(Hw(),v(t))dt Yv,we Hlp.

Considering that K is compact, we obtain that R(¢” (0)) = HY from ker¢” (0) = {0}.
Hence, ¢”’(0) has a bounded inverse. Namely, O is a non-degenerate critical point of

®.
Step 2: ¢ satisfies P.S-condition.

If (I1) and (V1) — (V3) withi(A;) = i(A2) > 0, v(A2) = 0 hold, then ¢ satisfies
P S-condition.

Let {¢(uy)} be a bounded sequence such that ¢’ (uy,) — 0. We first prove that {u,}
is bounded in H 7’3 . Indeed, by (2.4), we have

T T
/ WP vP)dt = (¢/(un),v)+/ (VV(t,uy),v)dt
0 0

N p q
N P LS @ V@), G2

Let F = C([0, T];R") with the norm ||ut]|o0 = rr[laxT] |u(t)|. We only need to verify
telo,

that {u,} will be bounded in F. If not, we can assume |u,| o0 — +00 and set

Un = Un/[tn| co-
By (3.2) and (2.5), we get

T
/ WP, v dr
0

= | 2 (@ ). v) + /0

T T
(A 1) 0 (1), 0) i+ ]| 2 [ (@ (tn).v) di
0

N p g4 ) )
a2 YN D LTV @y TP ). (3.3)

i=1j=1k=1

It implies that {v, } is bounded in H lp . Without loss of generality, we assume v, — vg
in Hlp, then v,, — vg in F. By mean of ||v, ||co = 1, we have ||vg||co = 1. In addition,
(3.3) can become

/OT <(u,(f),v(p)) —(A(t,un)vn,v)> dt

T
— Nutn 20 Gt), ) + 1 |21 / (g (1), v) di
0
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N p ¢
~uall DD P L T o V). (34

i=1j=1k=1

However, by (2.6) and (2.7), there exists A € L ([0, T]; £5(RY)) such that

T T
/ (A(t,up)v(t),w(t))dt —>/ (A()v(t),w())dt Yv,w e L*([0, T],RN),
0 0

(3.5)
by going to subsequences if necessary, and

Ai—ely <A< Ax+ely. (3.6)
Since ¢’ (1) — 0 and ||uy, ||oo — +00, the right side of (3.4) tends to zero. (3.4) and
(3.5) imply that

T
f (0P @.0P @) = (A@)wo(0),v()) dr =0, vveH!. (37
0
Hence, vy is the solution of the following problem

(—1)PTCP (1) + A(t)v(r) = 0,

) . 3.8
v (0) = vUNT), j=0,1,---2p—1. ©.8)

By (3.6) and Lemma 3(v), we have ip(/f) <ip(A2+¢ly) and ip(/f) + vp(/f) <
ip(A2+eln)+vp(Az+eln). Butvy(Az+ely) =vp(A2) =0. Hence, vp(/f) =0
and (3.8) has only trivial solution. This contradicts ||vg]lec = 1.

Next, we prove that {u, } contains a convergent subsequence. Since {u, } is bounded,
there exists a subsequence {u,, } such that u,,, — ug in Hf. Then uy,,, — uo uni-
formly in [0, 1] and

Up,, —> U0 3.9

inL2([0,T]),RY). By (3.2), we have

T T
f WP v P) di = (' (). 0) + f (VV(t1tm,).0) di
0 0

N p ¢
S P L tm, TP @00 T ().

i=1j=1k=1

Moreover, ¢ (up,,) — 0 implies

T T
/ (u(()p),,)(p))d,:/ (VV(t,up),v)dt
0 0

N p g
_ZZ Z(_1)J+p1ijk(u(()f_l)(lk))vi(J_l)(tk), Yve HYP.

i=1j=1k=1
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Hence,

fOT ((v2 0 -uP®) 0P 0)) dr

T
— (@' (tmy,).0) + /0 (VY (tottmy, (1)) — VV (1. u0(0))) . 0(0)) dt

N p ¢
=IO (Figg P @) — T TP 00) 0 ).

i=1j=1k=1

It follows that

[I——r
= u$? w2 + uny, — ol L2
1
= swp [ (W04 ) 0 P) di + un,, =0l
[vl<1/0

1
= sup (go'(unm),v—}—/o (V' (t un,,)—V'(t,u0)) vdt

lvl<1

V2 ! j i—1 i—1 —1
= > D (Figa Ot P 00) = T P 00) 0 P (00
i=1j=1k=1

By ¢'(upn,,) = 0, (V1), the continuity of /;;5 (i €A, j € B,k € C) and (3.9), we have
un,, —uol| — 0. Namely, u,,, — uo in Hlp.
Step 3: For some regular value a < ¢(0),

Hy(HY | 04;R) = 84y R, where y =ip(A1). (3.10)
By Lemma 2, we know that
VV(t,u) = A(t,u)u+g(t,u), (3.11)
where
Ay —ely < A(t,u) < Ar+ely

and g(7,u) is bounded since (V1) — (V3) with i, (A1) =i, (A2) > 0 hold. In addition,
iflet A3(t) = A1(t) —eln,A4(t) = A(t) +elpy, then

A3(t) = A(t.u) < Aq(1). (3.12)

Moreover, let Hy = Hlp_(A3),H2 = H1p+(A4), then H? = H; ® H, by Lemma
3(vi). Denote

1 1
lully := (—pas (u,u))2,Yu € Hy, |ullz := da, w,u))2,Yu € Hy.
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From Lemma 3(iii), we can verify that || -||1 and || - || are equivalent to || - || on H}
and H, respectively. Hence, by (2.4), for any u = u1 +u, with uy € Hy,us € Ho,
we have

(@' (u), (uz2 —uy))
T
/ WP O~ 1P (1)) di + / A (O)u(0) - (ua(t)—ur (1)) di
/ (g(t.u(®)). (uz(t) — ul(r)))dr+221kz(u (1) (2 —ur)* (1)

I=1k=1

T T T
- / WP (P di — f (A () ua(t).uz(0)) di — / (g(t.u(t)).ua(0)) di
0 0 0

T T T
- / WP ()P di + / (A1 () (1)) di + / (g (o)) ur (1)) dt
0 0 0

M N M N
N B R s ) =D Ll ek 1)

I=1k=1 I=1k=1

T T T
> [0 WP () di [0 (Asua (1) u2(0)) di — /0 (g (u(0)).un (1)) di

1 T
- f WP ()P di + / (Asur (1), u1 () dit + / (g(t.u(t)).ur (1)) di
0 0 0

M N M N
Y T R ) =D > Ll ) )

I=1k=1 I=1k=1

T T
— Juzl2— [0 (g0 ua(0)) di + Jur |2 + /0 (gt (0))ur (1)) dt

M N M N
Y B R s ) =Y > Ll @) )

I=1k=1 I=1k=1
> Cy|luzl|? + Callur||* — C3||uz|| — Callur || + Cs (3.13)

where C; € R (i = 1,2), RT is a set of positive constants, C; € R(i = 3,4,5). It
follows that there exists Ry > 0 such that

(@' (). up—uy)>1, VYueHY

with [[uz]| > Ro or |lui|| > Ro. Denote by M = (H, N Ug,) ® Hy, where Ug, is
a closed ball with center 0 and radius Rp. Since ¢ is decreasing along vector field
V(u) = —up + uq for every u = up +uy & M, we can define the flow o(t,u) =
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e "up + e'uy, and the time Ty, arriving at M satisfies e~ 7#||u,|| = Ro. Set

U +uq, for ||u]| < Ry,

t,ur +uyp) =
(U2 ) o(Tyt,u), for ||u|| > Ro.

We can verify that for any —a > —¢(0) large enough, 7(¢,u) is a deformation
retract from (Hlp,(pa) to (M, M Ng,). Hence,

Hy(HY ,¢q;R) = Hy(M, M Npq;R). (3.14)
On the other hand, by (3.11), we have

T
V(t,u)z/o (VV(t,su),u)ds + V(t,0)

T T
=/ (A(l,su)su,u)ds—l—/ (g(t,su),u)ds + V(t,0).
0 0

Thus,
T
/ V(t,u)dt
0
T T T
=/ (/ (A(t,su)su,u)ds—i—/ (g(t,su),u)ds—i—V(t,O)) dt
0 0 0
T T T T T
:/ / (A(t,su)su,u)dsdt—i—/ / (g(t,su),u)dsdt—i—/ V(t,0)dt
o Jo o Jo 0
T ,T T ,T T
2/0 /0 (A3su,u)dsdt+/0 /0 (g(t,su),u)dsdt+/() V(t,0)dt

1 T T T T
= —/ (A3u,u)dt+/ / (g(t,su),u)dsdt+/ V(t,0)dt
2 Jo o Jo 0

because of (3.12). Hence, for any u = u| + up € M, we have

1 T 1 T T T
o) < 5/ |u<1’)|2dz——/ (Agu,u)dt—[ / (g(t,su),u)dsdt
0 0

(/ 1))
(tr)
_/ Vi, O)dt+ZZZ/ Lijk(s)ds
0 i=1j=1k=1
1 T T
55/ (PP + PP 42 u8P) ) dr - /(Ag,ul,ul)dt
0

1 (T T T
——/ (A3M2,M2)df—/ (A3u1,u2)dl—/ / (g(t,su),ur)dsdt
2 Jo 0 o Jo
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T T
_/ / (g(t7su)vu2)det+C6
o Jo
LT o 1T e
_5/0 <|u1 | —(A3u1,u1)) dt+§/0 (|u2 | —(A3u2,u2)> dt
r T T
+/ ((ugp),ugp))—(/bm,uz)) dt—/ / (g(t,su),u1)ds dt
0 o Jo
T T
[ [ tsaasar+cs
o Jo
T T
:¢A3(M1,M1)+¢A3(u2,u2)—/ / (g([’su)’ul)dsdt
o Jo

T T
—/ / (g(t,su),uz)dsdt + Ce
0 0
< —Crlur|* + Cglur|| + Co, (3.15)

where C; e RT,C; e R (i =6,8,9).
By (3.12), we get 0 < —¢pa, (v, u) < —¢4,(u,u). Since | - ||1 is equivalent to || - ||

on H; and H; is finitely dimensional, (—¢4, (-, -))% is also the norm of H;. Similar
to (3.15), we have

@) > —Crolu1|* + Ci1llur| + Cr2, (3.16)

where C19 e RT,C; e R(i = 11,12).
(3.15) and (3.16) show that for any u = uj +up € M,

o) = —o0 if and only if [ur]l = +o0

uniformly in u, € Hp N URO- Thus, there exist T > 0,a; <ap; <—T,R;1 > Ry, > Ry
such that

(HaNUgy) ® (H1\UR,) C ¢a; N M C (HyNUgy) ® (H1\UR,) C ¢a, N M.

Leto(t,u) = e "us+e'uy, forevery u € MN(¢a, \@a,), ¢(0(t,u)) is continuous
with respect to 7, ¢(c(0,u)) = @(u) > a1 and (o (t,u)) - —oo(t = +00), so there
exists uniquely t = 7 (u) such that o (t,u) € M Ny, and ¢(o(t,u)) = a;. Define

, foru e MNeg,,
7]1([’”):
o(T1(w)t,u), foru € MN(ga,\¢a,)
and
(t10) u, for ||u1|| > Ry,
20, Uu) =
" u2+tu1+(1—t)”5—11”u1, for ||u|| < Ry.
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By the map n(z,u) = n2(t,n1(¢,u)) we can verify that (Hz N URO ® (H1\Ug,);R)
is a strong deformation retract of (M N ¢,4,;R). Hence,

Hyg(M, MN@qy;R) =2Hy(HyNUg,) @ Hy, (H2 NUg,) ® (H1\Ug,);R)
=Hy(HyNUR,.9(H  NUR,):R)
~5,,R. (3.17)
(3.14) and (3.17) imply that (3.10) holds.

Now all the conditions of Theorem 5 are satisfied, and the corresponding conclu-
sions hold. The proof is complete. O

Proof of Theorem 2. By the proof of Theorem 1, we know that ¢ € C'(H? R),
and ¢ satisfies PS-condition when (/1), (V1) — (V3) with i,(A1) = ip(42) > 0,
Vp(A2) = 0 hold. Moreover, we find that ¢ is even and ¢(0) = 0 when (/1), (12), (Va)
and (V5) hold. In fact,

p(—u)
1T N 2 g V) T
3 e Yy [ s [ vewa
0 i=1j=1k=1"9 0
1 T N » 4 P T
- 5/ |u(1’)|2dt+222/ _Iijk(_sl)dsl—/ V(t,u)dt.
0 i=1=1k=1"0 0
1 T N » 4 P T
- 5/ '“(”)|2d’+22 Z/ Lijk(s1)dsi —/ V(t.u)dt
0 i=1j=1k=1"° 0
=¢(u).

Now it suffices to consider the two possibilities: i,(Ag) > ip(A1) and ip(Ap) <
ip(A1). In fact, we only consider the second case because the first case can be in-
vestigated as before by Theorem 3. For small ¢ > 0 satisfying v,(A4o +¢ly) =0 =
vp(A1—eln),ip(Ao+ely) =ip(Ao) and ip (A1 —eln) =ip(A1), similar to (3.13)
and (3.15), we can verify that for any x € H1p+(A0 +elpy),

@(u) = Cysllul®> + Crallull + C1s,
and for any x € H{ (A1 —ely),
p(u) < —Ciellull> + C17lul + Cis.

where C; € RT(i = 13,16),C; e R(i = 14,15,17,18). Let j = i»(Ao).m = i»(A}).

Hence, for these two subspaces H1p+(A0 +e&ly) and Hlp_(Al —ely) of H? The-
orem 4(i)(ii) hold. The proof is complete. O
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4. EXAMPLES

For the sake of simplicity, we only consider (1.1) for the case of N = p =g =
T = 1. In addition, let t; = % and I111(s) = ﬁ’ s €R.

Example 1. Consider the following problem

i(t)+VV(t,u) =0,
u(0) =u(1),u(0) =u(l), 4.1)
AGi(1)) = () —i(r7) = L (u(n)),
where V(t,u) = 42e~10u? + 2~ 10 [(u—6) In(u2 + 1) + 12u arctanu + 2 arctan u —
2ul.
Clearly, |I111(s)| < 1 and I111(0) = 0. V(t,u) is C? in u for every t € [0,T] and

D2V(t.u) = m2e™% (8 + 24H12) Then, 7n2e~10 < D2V/(t,u) < 9m2e ™10 as [u| >

5. In addition, Agy(z) = 2072e 10, By Lemma 3, we obtain that i1(7.57t26_£) =
i1 (8.57126_%) =3,i1(Ap) = 5,v1(A4o) = 0 by simple calculations. Hence, (4.1) has
two nontrivial weak solutions by Theorem 1.

Example 2. Consider (4.1), where V(t,u) = %nze_ltfo u?—8m2e~ 10 [—% In(u? +
1) + uarctanu]. By Example 1, I71; satisfies (/7). Meanwhile, /111 is odd. V
satisfies (V7)-(V2) and is even in u for every ¢t € [0,T]. In addition, V(¢,0) =0
and D2V(t.u) = m2e710(7— —£). Then 6.272¢™10 < D2V(t.u) < Tw2e™To
as |u| > 3. Meanwhile, Ag(?) = —n2e 0, i1(6.2n2e_1t*0) = i1(77r2e_1t*0) =3,
v1(7712€_1t*0) =1i1(Ap) = v1(4p) = 0. Hence, (4.1) has at least three distinct pairs
of weak solutions by Theorem 2.
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