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Abstract. We consider the following second order impulsive differential equation with delays8̂<̂
:
.Lx/.t/� x00.t/C

Pp
jD1 aj .t/x

0.t � �j .t//C
Pp
jD1 bj .t/x.t ��j .t//D f .t/;

t 2 Œ0;!�;

x.tk/D kx.tk �0/; x0.tk/D ıkx
0.tk �0/; k D 1;2; :::; r:

In this paper we obtain sufficient conditions of nonpositivity of Green’s functions for impuls-
ive differential equation. All results are formulated in the form of theorems about differential
inequalities. It should be noted that the sign-constancy of the coefficients bj .t/ was assumed in
all the literature devoted to impulsive functional differential equations. One of the main purposes
of this work is to propose a technique allowing us to avoid these assumptions.
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Keywords: second order impulsive differential equations, boundary value problems, sign-constancy
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1. INTRODUCTION

Impulsive differential equations have attracted an attention of a number of recog-
nized mathematicians and have applications in many spheres of science from physics,
biology, medicine to economical studies. The following well-known books can be
noted in this context [14,17–19]. In the book [3], the concept of the general theory of
functional differential equations was presented. On the basis of this concept nonos-
cillation for the first order functional differential equations was considered in [4],
where positivity of the Cauchy and Green’s functions of the periodic problem was
firstly studied. A concept of nonoscillation for the first order differential equations
is also considered in the book [1]. The positivity of Green’s function of one- and
two-point boundary value problems for functional differential impulsive equations
was studied in [2, 5–8, 10–13, 15]. It should be noted that the sign-constancy of the
coefficients bj .t/ was assumed in all the results for impulsive functional differential
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equations. One of the main purposes of this work is to propose a technique allowing
us to avoid these assumptions.

Let us consider the following impulsive equations:

.Lx/.t/� x00.t/C

pX
jD1

aj .t/x
0.t��j .t//C

pX
jD1

bj .t/x.t��j .t//Df .t/; t 2 Œ0;!�;

(1.1)
x.tk/D kx.tk �0/; x0.tk/D ıkx

0.tk �0/; k D 1;2; :::; r;

0D t0 < t1 < t2 < ::: < tr < trC1 D !;
(1.2)

x.�/D 0; x0.�/D 0; � < 0; (1.3)
where f , aj , bj : Œ0;!�! R are summable functions and �j , �j : Œ0;!�! Œ0;C1/

are measurable functions for j D 1;2; :::;p, p and r are natural numbers, k and ık
are real positive numbers.

Let D.t1; t2; :::; tr/ be a space of functions x: Œ0;!�! R such that their derivative
x0.t/ is absolutely continuous on every interval t 2 Œti ; tiC1/, i D 0;1; :::; r , x00 2
L1, we assume also that there exist the finite limits x.ti � 0/ D limt!t�

i
x.t/ and

x0.ti �0/D limt!t�
i
x0.t/ and condition (1.2) is satisfied at points ti .i D 0;1; :::; r/.

As a solution x we understand a function x 2D.t1; t2; :::; tr/ satisfying (1.1)-(1.3).
There is not many works on sign-constancy of Green’s functions of second-order

impulsive boundary value problems. We can note only the results of [5–8, 16] where
these problems are considered. In these papers the coefficients bj .t/ were assumed
to be nonpositive. Using approaches of these papers, we obtain the results on sign-
constancy of Green’s functions to impulsive two-point boundary value problems
without sign assumption on the coefficients bj .t/. Our results are presented in the
form of algebraic inequalities, establishing the smallness of the coefficients aj .t/,
jbj .t/j, j D 1; :::;p, t 2 Œ0;!�.

2. PRELIMINARIES

For equation (1.1)-(1.3) we consider the following variants of boundary condi-
tions:

x.0/D 0; x.!/D 0; (2.1)

x0.0/D 0; x.!/D 0; (2.2)

x.0/D 0; x0.!/D 0; (2.3)

x0.0/D 0; x0.!/D 0: (2.4)
General solution of the equation (1.1)-(1.3) can be represented in the form [4]:

x.t/D �1.t/x.0/CC.t;0/x
0.0/C

Z t

0

C.t;s/f .s/ds; (2.5)

where
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� �1.t/ is a solution of the homogeneous equation

.Lx/.t/� x00.t/C

pX
jD1

aj .t/x
0.t � �j .t//C

pX
jD1

bj .t/x.t ��j .t//D 0; t 2 Œ0;!�;

(2.6)
x.tk/D kx.tk �0/; x0.tk/D ıkx

0.tk �0/; k D 1;2; :::; r;

0D t0 < t1 < t2 < ::: < tr < trC1 D !;
(2.7)

x.�/D 0; x0.�/D 0; � < 0; (2.8)
with the initial conditions x.0/D 1, x0.0/D 0.
� C.t;s/, called the Cauchy function of the equation (2.6)-(2.8), is the solution

of the equation

.Lsx/.t/� x
00.t/C

pX
jD1

aj .t/x
0.t � �j .t//C

pX
jD1

bj .t/x.t ��j .t//D 0; t 2 Œs;!�;

(2.9)
x.tk/D kx.tk �0/; x0.tk/D ıkx

0.tk �0/; k Dm;:::; r;

0D t0 < t1 < t2 < ::: < tr < trC1 D !;
(2.10)

where m is a number, such that tm�1 < s � tm,

x.�/D 0; x0.�/D 0; � < s; (2.11)

satisfying the initial conditions C.s;s/D 0, C 0t .s; s/D 1 and C.t;s/D 0 for
t < s.

If the boundary value problem (1.1)-(1.3), (2.i), i D 1;4 is uniquely solvable, then
its solution can be represented as

x.t/D

Z !

0

Gi .t; s/f .s/ds; i D 1;4; (2.12)

where Gi .t; s/ is Green’s function of the problem (1.1)-(1.3), (2.i) respectively [5].
Using general representation of the solution (2.5), the following formulas for

Green’s functions can be obtained:

G1.t; s/D C.t;s/�C.t;0/
C.!;s/

C.!;0/
; (2.13)

G2.t; s/D C.t;s/�C.!;s/
�1.t/

�1.!/
; (2.14)

G3.t; s/D C.t;s/�C.t;0/
C 0t .!;s/

C 0t .!;0/
; (2.15)

G4.t; s/D C.t;s/�C
0
t .!;s/

�1.t/

�01.!/
: (2.16)

Below the following definition will be used.
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Definition 1. We call Œ0;!� a semi-nonoscillation interval of (2.6)-(2.8), if every
nontrivial solution having zero of derivative does not have zero on this interval.

3. SIGN-CONSTANCY OF GREEN’S FUNCTIONS FOR bj .t/� 0

Denote G�.t; s/ the Green’s function of the problem (1.1)-(1.3) with boundary
conditions

x.�/D 0; x0.�/D 0: (3.1)

In the paper [5], the following theorem has been proven for the problems (1.1)-
(1.3), (2.i).

Lemma 1. Assume that the following conditions are fulfilled:
(1) bj .t/� 0, j D 1; :::;p, t 2 Œ0;!�.
(2) The Cauchy function C1.t; s/ of the first order impulsive equation

y0.t/C

pX
jD1

aj .t/y.t � �j .t//D 0; t 2 Œ0;!�;

y.tk/D ıky.tk �0/; k D 1;2; :::; r;

y.�/D 0; � < 0;

(3.2)

is positive for 0� s � t � !.
(3) Green’s function G�.t; s/ of the problem (1.1)-(1.3),(3.1) is nonnegative for

t; s 2 Œ0;�� for every 0 < � < !.
(4) Œ0;!� is a semi-nonoscilation interval of .Lx/.t/D 0.

Then Green’s functions Gi .t; s/, i D 1;3 are nonpositive for t; s 2 Œ0;!� and under
the additional condition

Pp
jD1 bj .t/�Œ0;!�.t ��j .t// 6� 0, t 2 Œ0;!�, where

�Œ0;!�.t/D

�
1; t 2 Œ0;!�;

0; t 62 Œ0;!�;
(3.3)

G4.t; s/� 0 for t; s 2 Œ0;!�.

Using the results of [9] (see Theorems 4.1 and 4.2 from [9]), it is easy to see,
that if aj .t/ � 0, j D 1; :::;p, t 2 Œ0;!�, then the assumption 4) follows from the
rest 3 assumptions of Lemma 1, so we can exclude it and rewrite Theorem 1 in the
following form.

Theorem 1. Assume that the following conditions are fulfilled:
(1) aj .t/� 0, bj .t/� 0, j D 1; :::;p, t 2 Œ0;!�.
(2) The Cauchy function C1.t; s/ of the first order equation (3.2) is positive for

0� s � t � !.
(3) Green’s function G�.t; s/ of the problem (1.1)-(1.3),(3.1) is nonnegative for

t; s 2 Œ0;�� for every 0 < � < !.
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Then Green’s functions Gi .t; s/, i D 1;3 are nonpositive for t; s 2 Œ0;!� and under
the additional condition

Pp
jD1 bj .t/�Œ0;!�.t��j .t// 6� 0, t 2 Œ0;!�, Green’s function

G4.t; s/� 0 for t; s 2 Œ0;!�.

In Theorem 1 we have assumed that the Cauchy function C1.t; s/ of the first order
impulsive equation (3.2) is positive. In the lemma below, we will formulate the results
of [4] on the conditions of positivity of Cauchy function of the first order impulsive
differential equation

y0.t/Ca1.t/y.t � �1.t//D 0; t 2 Œ0;!�;

y.tk/D ıky.tk �0/; k D 1;2; :::; r;

y.�/D 0; � < 0:

(3.4)

Lemma 2. Let 0 < ıj < 1 for j D 1; :::; r and the following condition be fulfilled

1C lnB.t/
e

�

Z t

m.t/

aC.s/ds; (3.5)

where B.t/ D
Q
j2Dt

ıj , Dt D fi W ti 2 Œt � �1.t/; t �g, aC.t/ D maxfa1.t/;0g and
m.t/Dmaxft ��1.t/;0g. Then Cauchy function of the first order impulsive differen-
tial equation (3.4) is positive.

In the case of p > 1 the following sufficient condition proven in [4] can be used.

Lemma 3. Let aj .t/� 0 for j D 1; :::;p, 0 < ık � 1 for k D 1; :::; r andZ !

0

pX
jD1

aj .s/ds <

rY
kD1

ık; (3.6)

then Cauchy function of the first order impulsive differential equation (3.2) is positive.

In the next section we will consider an auxiliary impulsive boundary value prob-
lem, which will provide the conditions of nonnegativity of Green’s function G�.t; s/.

4. AUXILIARY BOUNDARY VALUE PROBLEM x00.t/D ´.t/

Let us consider the following equation:

x00.t/D ´.t/; t 2 Œ0;!�; (4.1)

x.tk/D kx.tk �0/; x0.tk/D ıkx
0.tk �0/; k D 1;2; :::; r; (4.2)

x.�/D 0; x0.�/D 0; � < 0: (4.3)

Denote by NC.t;s/ the Cauchy function of the equation (4.1)-(4.3). According to
[6], Cauchy function for this impulsive equation has the form, represented on the
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Figure 1. This corresponds to the following equation:

NC.t;s/D �Œ0;t�.s/
h rX
iD0

.t � s/�Œti ;tiC1/.t/�Œti ;tiC1/.s/

C

rX
iD1

.i .ti � s/C ıi .t � ti //�Œti ;tiC1/.t/�Œti�1;ti /.s/

C

rX
iD2

i�2X
jD0

h iY
kDjC1

k .tjC1� s/C

iX
lDjC2

iY
kDl

k

l�1Y
kDjC1

ık .tl � tl�1/

C

iY
kDjC1

ık .t � ti /
i
�Œti ;tiC1/.t/�Œtj ;tjC1/.s/

i
:

(4.4)

s

tt1

t1

t2

t2

t3

t3

ω

ω

t− s

t− s

t− s

t− s

γ3(t3 − s)
+δ3(t− t3)

γ2(t2 − s)
+δ2(t− t2)

γ1(t1 − s)
+δ1(t− t1)

γ2γ1(t1 − s)
+γ2δ1(t2 − t1)
+δ2δ1(t− t2)

γ3γ2(t2 − s)
+γ3δ2(t3 − t2)
+δ3δ2(t− t3)

γ3γ2γ1(t1 − s)
+γ3γ2δ1(t2 − t1)
+γ3δ2δ1(t3 − t2)
+δ3δ2δ1(t− t3)

0

FIGURE 1. The Cauchy function of impulsive equation (4.1) - (4.3).

Let us build now the Green’s function NG.t;s/ of the problem (4.1)-(4.3) with
boundary conditions

x.!/D 0; x0.!/D 0: (4.5)
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The solution of this boundary value problem will be of the following form:

x.t/D

Z !

0

h
NC.t;s/C

�1.t/

�1.!/

h NC 0t .!;s/
NC 0t .!;0/

NC.!;0/� NC.!;s/
i

�
NC.t;0/

NC 0t .!;0/

i
´.s/ds;

(4.6)

with the corresponding Green’s function

NG.t;s/D NC.t;s/C
�1.t/

�1.!/

h NC 0t .!;s/
NC 0t .!;0/

NC.!;0/� NC.!;s/
i
�
NC.t;0/

NC 0t .!;0/
; (4.7)

where

�1.t/D

(
1; t 2 Œ0; t1/;Qr
kD1 k; t 2 Œtk; tkC1/:

(4.8)

See the graphical representation of Green’s function NG.t;s/ on the Figure 2.

s

tt1

t1

t2

t2

t3

t3

ω

ω

−(t− s)

−(t− s)

−(t− s)

−(t− s)1
δ3
(t3 − t)

+ 1
γ3
(s− t3)

0

1
δ2δ3

(t2 − t)

+ 1
γ2δ3

(t3 − t2)

+ 1
γ2γ3

(s− t3)

(t1−t)
δ1δ2δ3

+ (t2−t1)
γ1δ2δ3

+

+ (t3−t2)
γ1γ2δ3

+ (s−t3)
γ1γ2γ3

(t1−t)
δ1δ2

+ (t2−t1)
γ1δ2

+ (s−t2)
γ1γ2

1
δ2
(t2 − t)

+ 1
γ2
(s− t2)

1
δ1
(t1 − t)

+ 1
γ1
(s− t1)

FIGURE 2. The Green’s function of impulsive equation (4.1) - (4.3), (4.5).
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Theorem 2. If aj .t/ � 0, bj .t/ � 0 for j D 1;p, 0 < k � 1, 0 < ık � 1 for
k D 1;r , and if the condition

!Qr
kD1 ık

esssup
t2Œ0;!�

pX
jD1

jaj .t/j

C!

 
rX
iD1

ti � ti�1Qr
kDi ık

Qi
kD1 k

i C
!� trQr
kD1 k

!
esssup
t2Œ0;!�

pX
jD1

jbj .t/j< 1

(4.9)

is satisfied, then Green’s function G.t;s/ of the (1.1)-(1.3),(4.5) is nonnegative.

Proof. We can rewrite equation (1.1)-(1.3) in the form

´.t/C

pX
jD1

aj .t/

Z !

0

NG0t
�
t � �j .t/; s

�
�Œ0;!�

�
t � �j .t/

�
´.s/ds

C

pX
jD1

bj .t/

Z !

0

NG
�
t ��j .t/; s

�
�Œ0;!�

�
t ��j .t/

�
´.s/ds D f .t/:

(4.10)

Denote the operator K: L1! L1 as follows:

.K´/.s/D

Z !

0

h
�

pX
jD1

aj .t/ NG
0
t

�
t � �j .t/; s

�
�Œ0;!�

�
t � �j .t/

�
�

pX
jD1

bj .t/ NG
�
t ��j .t/; s

�
�Œ0;!�

�
t ��j .t/

�i
´.s/ds:

(4.11)

For aj .t/ � 0, bj .t/ � 0, j D 1; :::;p, the operator K: L1! L1 is positive. If
the spectral radius �.K/ < 1, then the solution of (4.10) can be represented in the
form:

´D .I �K/�1f D

24 1X
jD0

Kj

35f: (4.12)

The solution x.t/ of the boundary value problem (1.1)-(1.3),(4.5) can be written
in the form:

x D

0@ NG 1X
jD0

Kj

1Af; (4.13)

where NG
P1
jD0K

j is Green’s operator for (1.1)-(1.3) with boundary conditions (4.5).
From nonnegativity of Green’s function NG.t;s/ and positivity of operator K: L1!
L1 it follows that Green’s function G.t;s/ for (1.1)-(1.3),(4.5) is nonnegative.
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Now let us find the conditions that the spectral radius of the operator K: L1!
L1 is less than one. It is satisfied, when

esssup
t2Œ0;!�

pX
jD1

jaj .t/jesssup
t2Œ0;!�

Z !

0

j NG0t .t; s/jds

Cesssup
t2Œ0;!�

pX
jD1

jbj .t/jesssup
t2Œ0;!�

Z !

0

j NG.t;s/jds < 1:

(4.14)

If 0 < k � 1, 0 < ık � 1 for k D 1;r , then:

esssup
t;s2Œ0;!��Œ0;!�

j NG.t;s/j D

rX
iD1

ti � ti�1Qr
kDi ık

Qi
kD1 k

i C
!� trQr
kD1 k

; (4.15)

esssup
t;s2Œ0;!��Œ0;!�

j NG0t .t; s/j D
1Qr

kD1 ık
: (4.16)

Thus, the spectral radius �.K/ < 1, if 0 < k � 1, 0 < ık � 1 for k D 1;r and

!Qr
kD1 ık

esssup
t2Œ0;!�

pX
jD1

jaj .t/j

C!

 
rX
iD1

ti � ti�1Qr
kDi ık

Qi
kD1 k

i C
!� trQr
kD1 k

!
esssup
t2Œ0;!�

pX
jD1

jbj .t/j< 1:

(4.17)

�

Example 1. Let us consider the following differential equation

x00.t/Ca1.t/x
0.t � �1.t//Cb1.t/x.t ��1.t//D f .t/; t 2 Œ0;3�; (4.18)

with impulses (1.2), where
t1 D 1; 1 D 0:9; ı1 D 0:5;

t2 D 1:5; 2 D 0:6; ı2 D 0:7;

t3 D 2:5; 3 D 0:8; ı3 D 0:4;

(4.19)

and a1.t/� 0, b1.t/� 0.
For an auxiliary differential equation

x00.t/D ´.t/; t 2 Œ0;3�; (4.20)

with impulses (1.2), (4.19) and boundary conditions

x.3/D 0; x0.3/D 0; (4.21)

we constructed Green’s function NG.t;s/. It is represented on the Figure 3 and its
derivative NG0t .t; s/ - on the Figure 4.
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t

0.0
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1.0
1.5

2.0
2.5

3.0

s

0.0

0.5

1.0

1.5

2.0
2.5
3.0

G
(t,s

)

0

5

10

0

2

4

6

8

10

12

14

FIGURE 3. NG.t;s/ of (4.20), (4.19), (4.21).

Calculating maximum values of j NG.t;s/j and j NG0t .t; s/j in t; s 2 Œ0;3�� Œ0;3�, we
obtain:

esssup
t;s2Œ0;3��Œ0;3�

j NG.t;s/j D 14:914; (4.22)

esssup
t;s2Œ0;3��Œ0;3�

j NG0t .t; s/j D 7:143: (4.23)

According to Theorem 2, for our example, we obtain the following condition of
positivity of Green’s function G.t;s/:

21:429 esssup
t2Œ0;3�

ja1.t/j C 44:742 esssup
t2Œ0;3�

jb1.t/j< 1: (4.24)
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t

0.0
0.5

1.0
1.5

2.0
2.5

3.0

s

0.0

0.5

1.0

1.5

2.0
2.5
3.0

G
'(t,s

)

−6

−4

−2

0

−7

−6

−5

−4

−3

−2

−1

0

FIGURE 4. NG0t .t; s/ of (4.20), (4.19), (4.21).

5. SIGN-CONSTANCY OF GREEN’S FUNCTIONS FOR THE CASE WHEN bj .t/ CAN
CHANGE SIGN

For the case when bj .t/, j D 1; :::;p, changes sign, there can be considered an
auxiliary differential equation:

.L�x/.t/� x00.t/C

pX
jD1

aj .t/x
0.t��j .t//C

pX
jD1

b�j .t/x.t��j .t//D ´.t/; t 2 Œ0;!�;

(5.1)
x.tk/D kx.tk �0/; x0.tk/D ıkx

0.tk �0/; k D 1;2; :::; r;

0D t0 < t1 < t2 < ::: < tr < trC1 D !;
(5.2)

x.�/D 0; x0.�/D 0; � < 0; (5.3)
where

b�j .t/D

�
bj .t/; bj .t/� 0;

0; bj .t/ > 0:
(5.4)
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The solution for the boundary value problems (5.1)-(5.3), (2.i) can be written in
the form

x.t/D
�
G�i ´

�
.t/�

Z !

0

G�i .t; s/´.s/ds; i D 1;4: (5.5)

The given equation (1.1) can be written in the form:

.Lx/.t/D .L�x/.t/C

pX
jD1

bCj .t/x.t ��j .t//D f .t/; (5.6)

where

bCj .t/D

�
bj .t/; bj .t/ > 0;

0; bj .t/� 0:
(5.7)

After the substitution (5.5) into (5.6) we obtain

´.t/C

pX
jD1

bCj .t/

Z !

0

G�i
�
t ��j .t/; s

�
�Œ0;!�

�
t ��j .t/

�
´.s/ds D f .t/; i D 1;4:

(5.8)
Define the integral operatorsKi WL1!L1 for each type of boundary conditions

(i D 1;4) by the equality:

.Ki´/.t/D�

pX
jD1

bCj .t/

Z !

0

�
G�i

�
t ��j .t/; s

�
�Œ0;!�

�
t ��j .t/

��
´.s/ds: (5.9)

Its spectral radius can be denoted by �.Ki /.
We propose an assertion about nonpositivity of Green’s function of (1.1)-(1.3),

(2.i) without an assumption bj .t/� 0, j D 1; :::;p. For this case we can reformulate
Theorem 1 as follows.

Theorem 3. Assume that the following conditions are fulfilled:
(1) aj .t/� 0, j D 1; :::;p, t 2 Œ0;!�.
(2) The Cauchy function C1.t; s/ of the first order equation (3.2) is positive for

0� s � t � !.
(3) Green’s function G�.t; s/ of the problem (5.1)-(5.3),(3.1) is nonnegative for

t; s 2 Œ0;�� for every 0 < � < !.
(4) �.Ki / < 1.

Then Green’s functionsGi .t; s/, i D 1;3 are nonpositive for t; s 2 Œ0;!� and under the
additional condition

Pp
jD1 b

�
j .t/�Œ0;!�.t � �j .t// 6� 0, t 2 Œ0;!�, Green’s function

G4.t; s/� 0 for t; s 2 Œ0;!�.

Proof. The conditions (1)-(3) of Theorem 3 correspond to all the conditions of
Theorem 1, so they guarantee that Green’s functions G�i .t; s/, i D 1;4, are nonposit-
ive.
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We have assumed above, in equation (5.7), that bCj .t/ � 0. Together with the fact
that G�i .t; s/� 0, according to Corollary 1, it implies that the operators Ki , i D 1;4,
are positive.

If the condition �.Ki / < 1 holds, then the equation (5.8) can be written as follow-
ing:

´D .I �Ki /
�1f D

24 1X
jD0

K
j
i

35f: (5.10)

It follows from G�i .t; s/ � 0 that all operators Kji are positive and, consequently,
for this case

P1
jD0K

j
i � 0.

The solution x.t/ of the given boundary value problem (1.1)-(1.3), (2.i) can be
written in the form:

x D

0@G�i 1X
jD0

K
j
i

1Af; (5.11)

where Green’s operator for the problem (1.1)-(1.3), (2.i) is

Gi DG
�
i

1X
jD0

K
j
i ; (5.12)

which is nonpositive when the condition �.Ki / < 1 holds.
�

For the case when bj .t/ can change sign, we can also use the following form of
Theorem 1.

Corollary 1. Assume that the following conditions are fulfilled:
(1) 0 < k � 1, 0 < ık � 1 for k D 1;r and aj .t/� 0, j D 1; :::;p, t 2 Œ0;!�.
(2) The condition (3.6) is fulfilled.
(3) The inequality

�

pX
jD1

aj .t/ NG
0
t

�
t � �j .t/; s

�
�Œ0;!�

�
t � �j .t/

�
�

pX
jD1

bj .t/ NG
�
t ��j .t/; s

�
�Œ0;!�

�
t ��j .t/

�
� 0

(5.13)

is fulfilled for t 2 Œ0;!�.
(4) The condition (4.17) is fulfilled.

Then Green’s functions Gi .t; s/, i D 1;3 are nonpositive for t; s 2 Œ0;!� and under
the additional condition

Pp
jD1 bj .t/�Œ0;!�.t��j .t// 6� 0, t 2 Œ0;!�, Green’s function

G4.t; s/� 0 for t; s 2 Œ0;!�.
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Example 2. Let us consider the same equation as in Example 1, where a1.t/ D
0:015t C 0:005, b1.t/D 0:005t � 0:005 (so, b1.t/ changes sign at the point t D 1),
�1.t/D 0:5, �1.t/D 0:5.

x00.t/C.0:015tC0:005/x0.t�0:5/C.0:005t�0:005/x.t�0:5/D f .t/; t 2 Œ0;3�;

(5.14)
with impulses (1.2), where

t1 D 1; 1 D 0:9; ı1 D 0:5;

t2 D 1:5; 2 D 0:6; ı2 D 0:7;

t3 D 2:5; 3 D 0:8; ı3 D 0:4:

(5.15)

Let us verify if the condition (5.13) is satisfied. Denote

M.t;s/D�.0:015tC0:005/ NG0t .t �0:5;s/�Œ0;3� .t �0:5/

�.0:005t �0:005/ NG .t �0:5;s/�Œ0;3� .t �0:5/ :
(5.16)

The form of function M.t;s/, for our example, is shown on Figure 5. It is easy
to see that the function M.t;s/ � 0 for t; s 2 Œ0;3�� Œ0;3�. Thus, the condition 3) of
Corollary 1 is fulfilled.

Now let us verify the condition (4.17). It is equivalent to the condition:

esssup
t;s2Œ0;3��Œ0;3�

Z 3

0

M.t;s/ds < 1; (5.17)

or

esssup
t;s2Œ0;3��Œ0;3�

M.t;s/ <
1

3
: (5.18)

For our example, we can calculate

esssup
t;s2Œ0;3��Œ0;3�

M.t;s/D 0:18: (5.19)

Substituting this into the equation (5.18), we can obtain: 0:18 < 1
3

. Thus, the condi-
tion 4) of Corollary 1 is fulfilled.

Let us use Lemma 3 to check the condition 2) of Corollary 1. We can calculate:Z 3

0

.0:015tC0:005/dt D 0:0825;

3Y
kD1

ık D 0:14:

We obtain 0:0825 < 0:14, thus, the condition 2) of Corollary 1 holds. So, all the con-
ditions of Corollary 1 are fulfilled. It means that, for our example, Green’s functions
Gi .t; s/, i D 1;4 are nonpositive.
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FIGURE 5. M.t;s/.
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