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Abstract. This work is devoted to investigate the stochastic asymptotically stability of the zero
solution for a kind of third-order stochastic differentials equation with variable and constant
delays by a suitable Lyapunov functional. Our results improve and form a complement to some
results that can be found in the literature. In the last section, we give an example to illustrate our
main result.
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1. INTRODUCTION

Stochastic delay differential equations (SDDEs) are natural generalizations of stochastic
ordinary differential equations (SODEs) by allowing the coefficients to depend on the
past values.

Recently, the studies of stochastic differential equations (SDEs) have attracted the
considerable attentions of many scholars in the last forty years.

SDEs play an important role in many branches of science and engineering, and
there are a large number of books, which provide full details for the background of
probability theory and stochastic calculus, see for example, [6,7,9,10,13–16] and the
references therein.

Systems of SDDEs occupy now a place of central importance in many areas of
science including medicine, engineering, biology and physics.

Stability theory is one of the main components of SDDEs. The Lyapunov’s direct
method has been successfully used to investigate stability problems in deterministic
SDDEs for more than one hundred years, when there is no analytical expression for
solutions.

An apparent advantage of this method is the stability in the large can be obtained
without any prior knowledge of solutions. Therefore the method yields stability in-
formation directly without solving differential equations.
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However, there are many difficulties encountered in the study of stability by means
of Lyapunov’s direct method. Therefore, in the relevant literature, some authors
investigated the stability of solutions for DDEs and SDDEs by using different ap-
proaches such as the fixed point method, the inequalities techniques, the perturbation
methods, the second method of Lyapunov and so on (see e.g. [19, 22] and reference
therein).

In this direction, many authors have proposed different approaches to investigate
the stability of solutions of third-order DDEs. We can mention the papers of Ademola
et al. [4, 5], Graef and Tunç [8], Mahmoud [11], Omeike [17], Oudjedi et al. [18],
Remili et al. [20,21], Sadek [23], Shekhar et al. [24], Tunç [25–29] and the references
cited therein.

Meanwhile, the scarcity of works on stability and boundedness of solutions for
third-order SDEs with or without delay were studied very rarely, interesting results
are contained, for instance, in [1], [2], [3].

In 2015, Abou-El-Ela et al. [1] considered the stochastic asymptotic stability of
the zero solution and the uniform stochastic boundedness of all solutions for the
third-order SDE of the form

«x.t/Ca Rx.t/Cb Px.t/C cx.t/C�x.t/ P!.t/D p.t;x.t/; Px.t/; Rx.t//;

where a;b;c and � are positive constants; !.t/ 2 Rm is a standard Wiener process,
p is a continuous function.

In 2015, Abou-El-Ela et al. [2] investigated the asymptotic stability of the zero
solution for the third-order SDDEs given by

«x.t/Ca1 Rx.t/Cg1. Px.t � r1.t///Cf1.x.t//C�1x.t/ P!.t/D 0;

«x.t/Ca2 Rx.t/Cf2.x.t// Px.t/Cf3.x.t � r2.t///C�2x.t �h.t// P!.t/D 0;

where a1;a2;�1 and �2 are positive constants; 0� r1.t/� 1, 0� r2.t/� 2, 1 and
2 are two positive constants which will be determined later. 0� h.t/;suph.t/DH ;
!.t/ 2 Rm is a standard Wiener process; g1;f1;f2 and f3 are continuous functions
with g1.0/D f1.0/D f3.0/D 0.

In 2017, Ademola [3] studied the problems of stability, boundedness and unique-
ness of solutions of a certain third-order SDDE as the following form

«x.t/Ca Rx.t/Cb Px.t/Ch.x.t � �//C�x.t/ P!.t/D p.t;x.t/; Px.t/; Rx.t//;

where a;b and � are positives constants, h;p are nonlinear continuous functions in
their respective arguments with h.0/D 0, � > 0 is a constant delay.

The main purpose of this work is to establish new criteria for the stochastic asymp-
totic stability of the zero solution for a kind of third-order nonlinear SDE with vari-
able and constant delays as the following form

«x.t/Ca Rx.t/C�. Px.t � r.t///C .x.t � r.t//C�x.t �h/ P!.t/D 0; (1.1)
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where a;� and h are positive constants, r.t/ is a continuously differentiable function
with 0� r.t/� 1, 1 is a positive constant which will be determined later, �; are
two nonlinear continuous functions in their respective arguments with �.0/D .0/D
0, !.t/D .!1.t/;!2.t/; � � � ;!n.t// 2 Rm ism� dimensional standard Brownian mo-
tion, defined on the probability space. The functions � and  are also differentiable
throughout this work.

In this paper, by constructing a suitable Lyapunov functional, sufficient conditions
for the stochastically asymptotically stability of the zero solution of (1.1) are estab-
lished. Our result includes and improves the former results that can be found in the
literature.

The remainder of this work is organized as follows. In section 2, we give a the-
orem, which deals with stochastic asymptotically stability of the zero solution for
(1.1). In section 3, we introduced the proof of the main theorem. In the last section,
we gave an example to verify the analysis made in this work.

2. STABILITY RESULT

Let !.t/D .!1.t/; : : : ;!m.t// be anm�dimensional Brownian motion defined on
the probability space. Consider an n-dimensional SDE

dx.t/D f .t;x.t//dtCg.t;x.t//dB.t/ on t � 0; (2.1)

with initial value x.0/ D x0 2 Rn. As a standing condition, we assume that f W
RC�Rn!Rn and g WRC�Rn!Rn�m satisfy the local Lipschitzian condition and
the linear growth condition for the existence and uniqueness of solutions for equation
(2.1) (see for example, [12,30]). It is therefore known that equation (2.1) has a unique
continuous solution on t � 0, which is denoted by x.t Ix0/ in this work. Assume
furthermore that f .t;0/ D 0 and g.t;0/ D 0, for all t � 0. Hence the stochastic
differential equation admits the zero solution x.t I0/� 0.

LetC 1;2.RC�RnIRC/ denote the family of non-negative functions V.t;x/ defined
on RC�Rn, which are once continuously differentiable in t and twice continuously
differentiable in x.

Define the differential operator L associated with equation (2.1) by

LD
@

@t
C

nX
iD1

fi .t;x/
@

@xi
C
1

2

nX
i;jD1

Œg.t;x/ gT .t;x/�ij
@2

@xi@xj
;

If L acts on a function V 2 C 1;2.RC�RnIRC/, then

LV.t;x/D Vt .t;x/CVx.t;x/:f .t;x/C
1

2
traceŒgT .t;x/Vxx.t;x/g.t;x/�; (2.2)
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where Vt D @V
@t

, Vx D . @V@x1
; : : : ; @V

@xn
/ and

Vxx D .
@2V

@xi@xj
/n�n D

0BB@
@2V
@x1@x1

: : : @2V
@x1@xn

:::
:::

@2V
@xn@x1

: : : @2V
@xn@xn

1CCA :
Moreover, let K denote the family of all continuous nondecreasing functions � W
RC! RC such that �.0/D 0 and �.r/ > 0, if r > 0.

Lemma 1 ([13]). Assume that there exist V 2C 1;2.RC�RnIRC/ and � 2K such
that

V.t;0/D 0; �.jxj/� V.t;x/; and

LV.t;x/� 0; for all .t;x/ 2 RC�Rn:

Then the zero solution of the stochastic differential equation (2.1) is stochastically
stable.

Lemma 2 ([13]). Assume that there exist V 2 C 1;2.RC �RnIRC/ and �1;�2,
�3 2K such that

�1.jxj/� V.t;x/� �2.jxj/; and

LV.t;x/� ��3.jxj/; for all .t;x/ 2 RC�Rn:

Then the zero solution of the stochastic differential equation (2.1) is stochastically
asymptotically stable.

Now we present the main stability result of (1.1).

Theorem 1. In additions to the basic assumptions imposed on the functions � and
 appearing in (1.1), suppose that there exists positive constants ˛1;˛2;ˇ1;ˇ2;1;2;
c1;L and M such that:

.i/ ˛1 �
 .x/
x
� ˛2 and  .x/sgnx > 0, for all x ¤ 0.

.i i/ supf 0.x/g D c1

2
and j 0.x/j � L, for all x.

.i i i/ ˇ1 �
�.y/
y
� ˇ2, for all y ¤ 0 and j�0.y/j �M , for all y.

.iv/ 0� r.t/� 1 and r 0.t/� 2, such that 0 < 2 < 1.
.v/ aˇ1� c1 > 2ˇ1C6.
.vi/ �2 < 2˛1�a�ˇ1�2.

Then the zero solution of (1.1) is stochastically asymptotically stable, provided that

1 <min
�
2˛1��

2�a�ˇ1�2

2.LCM/
;
.aˇ1� c1�2ˇ1�6/.1�2/

4�.LCM/.1�2/C4L.�C2/
;

.aˇ1� c1�2ˇ1/.1�2/

4ˇ1.LCM/.1�2/C4ˇ1.�C2/M

�
;

with �D aˇ1Cc1

4ˇ1
:
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3. PROOF OF THEOREM 1

The equation (1.1) can be written in the following equivalent system:

Px D y;

Py D ´;

Ṕ D �a´��.y/� .x/C

Z t

t�r.t/

�0.y.s//´.s/dsC

Z t

t�r.t/

 0.x.s//y.s/ds

��x.t �h/ P!.t/:

(3.1)

Define the Lyapunov functional V.t;Xt /, where Xt D .xt ;yt ;´t /, as the following

V.t;Xt /D�

Z x

0

 .�/d�C .x/yC
1

2
�ay2C

Z y

0

�.�/d�C�y´C
1

2
´2

Cx´Cx2C�

Z 0

�r.t/

Z t

tCs

y2.#/d#ds

C�

Z 0

�r.t/

Z t

tCs

´2.#/d#dsC
1

2
�2
Z t

t�h

x2.s/ds;

(3.2)

where � and � are two positive constants, which will be determined later.
Our target here is to show that the Lyapunov functional V.t;Xt / satisfies the condi-
tions of Lemma 2.
Thus from (3.2), (3.1) and by using It Oo formula (2.2), we get

LV.t;Xt /D 
0.x/y2C�´2���.y/y�a´2Cy´�ax´�x�.y/�x .x/C2xy

C .xC�yC´/

�Z t

t�r.t/

�0.y.s//´.s/dsC

Z t

t�r.t/

 0.x.s//y.s/ds

�
C�r.t/y2��.1� r 0.t//

Z t

t�r.t/

y2.#/d#

C�r.t/´2��.1� r 0.t//

Z t

t�r.t/

´2.#/d#C
1

2
�2x2:

In view the assumptions .i/� .iv/ of Theorem 1, we obtain

LV.t;Xt /�
c1

2
y2C�´2��ˇ1y

2
�a´2Cy´�ax´�ˇ1xy�˛1x

2
C2xyC

1

2
�2x2

C .xC�yC´/

�
M

Z t

t�r.t/

´.s/dsCL

Z t

t�r.t/

y.s/ds

�
C�1y

2
C�1´

2
� .1�2/

�
�

Z t

t�r.t/

y2.#/d#C�

Z t

t�r.t/

´2.#/d#

�
:
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Then by using the inequality 2uv� u2Cv2, with the condition r.t/� 1 in Theorem
1, we have

LV.t;Xt /��

�
˛1�

1

2
.�2CaCˇ1C2/�

1

2
.LCM/1

�
x2

�

�
�ˇ1�

1

2
.c1Cˇ1C3/�

1

2
�.LCM/1��1

�
y2

�

�
1

2
.a�1/�

1

2
.LCM/1����1

�
´2

C

�
LC

�L

2
��.1�2/

�Z t

t�r.t/

y2.#/d#

C

�
M C

�M

2
��.1�2/

�Z t

t�r.t/

´2.#/d#:

If we take

�D
L.�C2/

2.1�2/
> 0 and � D

M.�C2/

2.1�2/
> 0;

it follows that

LV.t;Xt /��

�
˛1�

1

2
.�2CaCˇ1C2/�

1

2
.LCM/1

�
x2

�

�
�ˇ1�

1

2
.c1Cˇ1C3/�

1

2
�.LCM/1�

L.�C2/

2.1�2/
1

�
y2

�

�
1

2
.a�1/�

1

2
.LCM/1���

M.�C2/

2.1�2/
1

�
´2:

In view of

�ˇ1�
1

2
c1 D

aˇ1� c1

4
> 0 and

a

2
��D

aˇ1� c1

4ˇ1
> 0;

We have

LV.t;Xt /��

�
˛1�

1

2
.�2CaCˇ1C2/�

LCM

2
1

�
x2

�

�
1

4
.aˇ1� c1�2ˇ1�6/�

�.LCM/.1�2/CL.�C2/

2.1�2/
1

�
y2

�

�
aˇ1� c1�2ˇ1

4ˇ1
�
.LCM/.1�2/CM.�C2/

2.1�2/
1

�
´2:

(3.3)
Thus, in view of (3.3), one can conclude that LV.t;Xt / satisfies the condition .i i/
of Lemma 2 as:

LV.t;Xt /� �D1.x
2
Cy2C´2/; for some D1 > 0; (3.4)
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provided that

1 <min
�
2˛1��

2�a�ˇ1�2

2.LCM/
;
.aˇ1� c1�2ˇ1�6/.1�2/

4�.LCM/.1�2/C4L.�C2/
;

.aˇ1� c1�2ˇ1/.1�2/

4ˇ1.LCM/.1�2/C4ˇ1.�C2/M

�
:

Next, we shall show that the assumption .i/ of Lemma 2 is satisfied.
Since

R 0
�r.t/

R t
tCs y

2.#/d#ds and
R 0
�r.t/

R t
tCs ´

2.#/d#ds are non-negative and by
using the assumption .i i i/ of Theorem 1, we obtain

V.t;Xt /� �

Z x

0

 .�/d�C .x/yC
1

2
�ay2C

1

2
ˇ1y

2
C�y´C

1

2
´2Cx´Cx2

D
1

2ˇ1

�
ˇ1yC .x/

�2
C
�
�yC

´

2

�2
C
�
xC

´

2

�2
C
1

2
�.a�2�/y2

C
2

ˇ1y2

Z x

0

 .�/

�Z y

0

.�ˇ1� 
0.�//�d�

�
d�I y ¤ 0:

(3.5)
Now we recall that:

a�2�D
aˇ1� c1

2ˇ1
> 0;

and

�ˇ1� 
0.�/�

aˇ1C c1

4
�
c1

2
D
aˇ1� c1

4
> 0I by condition .i i/ of Theorem 1:

Then, we get
2

ˇ1y2

Z x

0

 .�/

�Z y

0

�
�ˇ1� 

0.�/
�
�d�

�
d�

�
aˇ1� c1

4ˇ1

Z y

0

 .�/d�;

which together with (3.5), implies the following inequality

V.t;Xt /�
1

2ˇ1

�
ˇ1yC .x/

�2
C
�
xC

´

2

�2
C
1

2
�

�
aˇ1� c1

2ˇ1

�
y2

C
�
�yC

´

2

�2
C
aˇ1� c1

4ˇ1

Z y

0

 .�/d�:

Hence, we can see that

V.t;Xt /�D2.x
2
Cy2C´2/; for some D2 > 0: (3.6)

In view of the assumptions  .x/ � ˛2x,  .y/ � ˇ2y from the conditions .i/ and
.i i i/ of Theorem 1 respectively; and the inequality uv � 1

2
.u2C v2/, then we can
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write from (3.2) that

V.t;Xt /��

Z x

0

˛1�d�C
˛2

2
.x2Cy2/C

1

2
�ay2C

Z y

0

ˇ2�d�C
�

2
.y2C´2/

C
1

2
´2C

1

2
.x2C´2/Cx2C�

Z t

t�r.t/

�
# � tC r.t/

�
y2.#/d#

C�

Z t

t�r.t/

�
# � tC r.t/

�
´2.#/d#C

1

2
�2
Z t

t�h

x2.s/ds:

Since r.t/� 1, then it follows that

V.t;Xt /�
1

2

�
.�C1/˛2C3C�

2h

�
kxk2C

1

2

�
˛2Cˇ2C�.aC1/C�

2
1

�
kyk2

C
1

2

�
�C2C�21

�
k´k2:

Then there exists a positive constant D3 such that

V.t;Xt /�D3.x
2
Cy2C´2/; D3 > 0: (3.7)

Therefore from (3.6) and (3.7), we note that V.t;Xt / satisfies condition .i/ of Lemma
2.
Thus all the assumptions of Lemma 2 are satisfied, so the zero solution of (1.1) is
stochastically asymptotically stable.
This completes the proof of Theorem 1.

4. EXAMPLE

In this section, we give an example to show the applicability of the result obtained
and for illustrations.
As an application of Theorem 1, we consider the third-order stochastic delay differ-
ential equation as the following form:

«x.t/C12 Rx.t/C8 Px.t � r.t//C sin. Px.t � r.t///C24x.t � r.t//

C
x.t � r.t//

1Cx2.t � r.t//
C3x.t/ P!.t/D 0:

(4.1)

Its equivalent system is given as:

Px D y;

Py D ´;

Ṕ D �12´� .8yC siny/� .24xC
x

1Cx2
/C

Z t

t�r.t/

˚
8C cosy.s/

	
´.s/ds

C

Z t

t�r.t/

˚
24C

1�x2.s/

.1Cx2.s//2

	
y.s/ds�2x.t/ P!.t/:
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By comparing the above differential system (3.1) and taking into account the assump-
tions of Theorem 1.
The path of the function siny is shown in Figure 1. It follows that

aD 12; �.y/D 8yC siny;
�.y/

y
�8D

siny
y
;

then we find

�1�
�.y/

y
�8� 1:

Hence, we have

ˇ1 D 7; ˇ2 D 9; also j�0.y/j D j8C cosyj � 9DM:

The behaviour of x
1Cx2 is shown in Figure 2. Therefore we obtain

FIGURE 1. The behaviour of the function siny

 .x/D 24xC
x

1Cx2
;
 .x/

x
�24D

1

1Cx2
; then 0�

 .x/

x
�24� 1:

It tends to

˛1 D 24; ˛2 D 25;  
0.x/D 24C

1�x2

.1Cx2/2
; since

j
1�x2

.1Cx2/2
j� 1; then j 0.x/j � 25D L:

Therefore supfj  0.x/ jg D 25, then we obtain c1 D 50, and �D aˇ1Cc1

4ˇ1
D

67
14

.
It is obvious that

aˇ1� c1 D 34 and 2ˇ1C6D 20:
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FIGURE 2. The behaviour of the function x
1Cx2

Therefore

aˇ1� c1 > 2ˇ1C6; and 2˛1�a�ˇ1�2D 27 > �
2
D 9 .since � D 3/:

Thus, the above estimates show all the assumptions of Theorem 1 hold, so we can
prove that

LV.t;Xt /� .9�171/x
2
�

�
14

4
�
1

2
.163C2�/1

�
y2

�

�
10

14
� .17C�/1

�
´2C

�
85��.1�2/

�Z t

t�r.t/

y2.#/d#

C

�
30:5��.1�2/

�Z t

t�r.t/

´2.#/d#:

Let us choose

�D
85

1�2
> 0 and � D

30:5

1�2
> 0;

where 0 < 2 < 1.
Consequently, it follows for a positive constant �1 that

LV.t;Xt /� ��1.x
2
Cy2C´2/; (4.2)

provided that

1 <min
�
9

34
;

7.1�2/

326.1�2/C340
;

5.1�2/

14f17.1�2/C30:5g

�
:

Also, we can see that

V.t;Xt /�
1

14

�
7yC .x/

�2
C

�
67

14
yC

´

2

�2
C

�
xC

´

2

�2
C5:8 y2

C
17

14

Z y

0

 .�/d�:
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Then, there exists a positive constant �2 such that

V.t;Xt /� �2.x
2
Cy2C´2/: (4.3)

As well it can be shown that:

V.t;Xt /�
157

2
kxk2C

1

2

�
96C

25.�C2/

2.1�2/
21

�
kyk2C

1

2

�
95

14
C
9.�C2/

2.1�2/
21

�
k´k2:

Hence there exists a positive constant �3 satisfying

V.t;Xt /� �3.x
2
Cy2C´2/: (4.4)

Now from the results (4.2), (4.3) and (4.4), we note that all the conditions of Lemma
2 are satisfied, then the zero solution of (4.1) is stochastically asymptotically stable.
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[22] A. Rontó, M. Rontó, and I. Varga, “Partially solved differential system with two point nonlinear
boundary conditions.” Miskolc Mathematical Notes, vol. 18, no. 2, pp. 1001–1014, 2017, doi:
10.18514/MMN.2017.2491.

[23] A. I. Sadek, “On the stability of solutions of some non-autonomous delay differential equations of
the third-order.” Asymptotic Anal., vol. 43, pp. 1–7, 2005.

[24] P. Shekhar, V. Dharmaiah, and G. Mahadevi, “Stability and boundedness of solutions of delay
differential equations of third-order.” IOSR J. Math., vol. 5, pp. 9–13, 2013.
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[29] C. Tunç, “On the stability and boundedness of certain third-order nonautonomous differential
equations of retarded type.” Proyecciones, vol. 34, no. 2, pp. 147–159, 2015, doi: 10.4067/S0716-
09172015000200004.

[30] R. Wu and X. Mao, “Existence and uniqueness of solutions of stochastic differential equations.”
Stochastics, vol. 11, pp. 19–32, 1983.

http://dx.doi.org/10.9734/BJMCS/2016/23936
http://dx.doi.org/10.1023/A:1011261019736
http://dx.doi.org/10.18514/MMN.2017.2491
http://dx.doi.org/10.1007/s11071-008-9423-6
http://dx.doi.org/10.1016/j.jfranklin.2009.05.001
http://dx.doi.org/10.1007/s11071-010-9776-5
http://dx.doi.org/10.1007/s11071-010-9776-5
http://dx.doi.org/10.4067/S0716-09172015000200004
http://dx.doi.org/10.4067/S0716-09172015000200004


STABILITY OF THIRD-ORDER SDE WITH DELAYS 393

Authors’ addresses

Ayman M. Mahmoud
Ayman M. Mahmoud, Department of Mathematics, Faculty of Science, New Valley University, El-

Khargah 72511, Egypt.
E-mail address: math�ayman27@yahoo.com

Cemil Tunç
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