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 Abstract: The numerical examination of nonlinear oscillators is presented in this paper. First 
some methods of nonlinear system modeling are described then the numerical creation of phase-
plane, bifurcation diagrams and Poincaré sections are expounded in detail. The next part of the 
paper is the numerical examination of nonlinear oscillators, like the Duffing-Holmes oscillator 
and a mechatronic semi-active suspension system. The paper concludes with further development 
tasks. 
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1. Introduction 

 Due to the development of computer science, numerical methods can be used to 
examine complex nonlinear systems quickly and accurately. It has also become possible 
to study phenomena that could not be investigated earlier [1]-[4]. 
 Nonlinear vibrations occur in countless areas, like vehicle dynamics [5], 
transportation [6], machine tools [7] or electrical devices [8]. With simple nonlinear 
oscillators, like the Van der Pol oscillators complex systems and phenomena [9]-[13] 
have already been modeled. In this paper nonlinear oscillators are examined with 
numerical methods. First the examination methods of nonlinear systems are summarized 
then the numerical methods are described in detail. The next part of the paper is the 
numerical examination of a simple nonlinear oscillator, the Duffing-Holmes oscillator 
and a mechatronic semi-active suspension system. The paper concludes with further 
development tasks.  
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 To study nonlinear systems there are numerical, graphical (Cobweb plot [14]) and 
analytical methods (determination of the eigenvalues of the Jacobian determinant after 
linearization [15], perturbation methods [16]). With perturbation methods the 
approximate analytical solution of the Van der Pol oscillator and the Duffing-Holmes 
oscillator has already been determined [17]. As numerical simulations are very common 
nowadays in engineering numerical examination methods have been chosen for our 
research. Maple was used as it is a powerful tool for both symbolic [18], [19], and 
numerical [20], [21] calculations. 
 To study nonlinear dynamical systems one of the most effective method is the 
numerical creation of phase-plane diagrams, which shows 2 state variables and their 
trajectories in a diagram. Previously simple nonlinear systems like a tunnel diode circuit 
have been investigated with detailed phase-plane diagrams. With detailed phase-plane 
diagrams it was observed how the change in a system parameter affects the boundary 
line of sets of attraction [22]. This information can be useful to design a switching 
circuit. A trajectory in a phase-plane can be easily calculated. After solving the system 
of equations with a numerical solver the diagram of two system variables can be 
displayed. The numerical creation of phase-plane diagram of simple nonlinear systems 
has been speedup with a SIMD model based parallel algorithm [23].  
 For complex nonlinear systems the phase-space diagram can be difficult to study, 
especially in case of chaotic nonlinear oscillators. To simplify the examination Poincaré 
sections (Fig. 1 left) can be created. Poincaré section is the cross-section of a trajectory 
with a plane in the state-space [24]. Therefore Poincaré section is suitable to study 
systems with at least 3 state variables, but with a simple modification Poincaré section 
of systems with 2 variables can be created. The system of equations can be expanded 
with an additional variable, which is the angular velocity. Then the Poincaré section can 
be created in a way that the trajectory intersects a plane in a torus, which happens at 
every time period (Fig. 1 right) [20]. In numerical simulations this means that the result 
is calculated at every period time. 

  

Fig. 1. Creation of the Poincaré section (Chua’s circuit) (left) and expanding the 2 dimensional 
system to 3 dimensions (right) [19]  

 The bifurcation diagram shows the change in the topology of the system as the 
bifurcation parameter is varied [25]. It is especially useful for studying nonlinear 
oscillators as it shows when the system’s behavior is chaotic [26].  
 The bifurcation diagram of a tunnel diode circuit was previously created [27]. From 
the bifurcation diagram the number of equilibrium points could be determined as a 



 NUMERICAL EXAMINATION OF NONLINEAR OSCILLATORS 97 

Pollack Periodica 13, 2018, 3 

bifurcation parameter (e.g. resistance) was changed. As it is a simple nonlinear system 
Maple’s implicitplot command was sufficient. However to construct the bifurcation 
diagram of nonlinear oscillators is more difficult. A fast and efficient iterative program 
described in [20] can be used (Fig. 2). The bifurcation diagram can be created with 
another iterative method based on Poincaré sections [20].  

 

Fig. 2. Flow chart of creating the bifurcation diagram 

 The equivalent of the bifurcation diagram in the frequency domain is the frequency 
spectrum map, which represent the change of the frequency components, when a 
parameter is varied [28].  
 3D frequency response maps can be created if 2D frequency response diagrams are 
calculated at different parameter values. To create the frequency response diagram at a 
certain system parameter the time diagram is taken. At the time diagram normalized 
Fast Fourier Transform (FFT) was used [29]. From the transformed data the spectrum 
can be calculated. To get the amplitude values the spectrum data is square rooted. The 
values were scaled according to the sampling frequency [30], which was the time step 
of the numerical solution in this study. In this study the sampling frequency was 100 Hz 
and there were 213 samples. The flow chart to create the frequency diagram can be seen 
in Fig. 3. 

 

Fig. 3. Flow chart of creating the frequency diagram 
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 An effective method to study the systems stability is to determine its Lyapunov 
functions and exponents [31]. If a system has a Laypunov exponent t>0 there will be a 
chaotic attractor. The greater the value of the Laypunov exponent the more complex the 
attractor is [24]. It can be used for example to determine the stability of a cutting 
process, which is essential for manufacturing [32]. Lyapunov exponents can also be 
used to study the stability of human standing balance ability [33], which is useful 
information for example to design a walking aid device. 

2. Numerical examination of nonlinear oscillators 

 In this section nonlinear oscillators are examined with the previously presented 
methods. First a simple Duffing-Holmes oscillator found in the literature, and then a 
semi-active suspension system of a car is studied.  

2.1. Duffing-Holmes oscillator 

 The Duffing-Holmes oscillator is a well-known simple nonlinear system. The 
equation of the system is: 
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 From the differential equation it can be seen that there are several system 
parameters. The initial parameters are chosen to get a chaotic behavior. The aim of this 
study was to test the presented numerical methods with a known example and to 
examine some possibilities to avoid chaotic behavior. The initial parameters therefore 
were α=1, β= -1, γ=0.3, ω=1 and δ=0.15. The initial states were x(0)=1 and dx(0)=0.  
 Chaotic behavior can be observed in Fig 4: 

• in the time diagrams the waveform is different in every period time and the 
period time varies; 

• in the frequency response diagram there are several components and continuous 
parts; 

• in the phase-plane diagram the trajectory (limit cycle) is not steady; 
• there is a chaotic attractor at the Poincaré section. This attractor can be further 

examined with defining its fractal dimensions [24]. 

 Chaotic oscillation can be harmful [34], it is advisable to avoid it. Therefore some 
numerial experiments are carried out to examine some possibilities to avoid chaotic 
behavior. 
 To examine the behavior of the system with γ=0.3 the bifurcation diagrams with 
varying ω and δ are created, which can be seen in Fig. 5. 
 From Fig. 5 left it can be stated, that when δ is very small (<0.01) or 0.17<δ<0.4 
there is chaotic oscillation and when 0.01<δ<0.17 or 0.4<δ then there is harmonic or 
subharmonic oscillation. In Fig. 5 right it can be seen that changing ω results in 
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harmonic oscillation or stable limit cycle in most cases, chaos only occurs, when 
0.5<ω<1.5. 

 

   

Fig. 4. Time diagrams (up), frequency diagram (below left), phase plane diagram (below middle) 
and Poincaré section (below right) of the Duffing-Holmes oscillator in case of chaotic behavior 

(α=1, β= -1, γ=0.3, ω=1 and δ=0.15) 

  

Fig. 5. Bifurcation diagrams of the Duffing-Holmes oscillator  

 In linear case it is easy to define the harmful resonance frequency [35]. Resonance 
does not occur if the forcing frequency is different from the resonance frequency. 
Similarly in nonlinear case the chaotic oscillation can be avioded if the forcing 
frequency can be changed as it can be seen in the bifurcation diagram (Fig. 5 right). 
Numerical tests were carried out with ω=3. The time diagrams, the phase-plane diagram 
and the Poincaré section are shown in Fig. 6. 
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Fig. 6. Time diagrams (up), phase plane diagram (below left) and Poincaré section (below right) 
of the Duffing-Holmes oscillator in case of ω=3 (α=1, β= -1, γ=0.3, and δ=0.15) 

 It can be seen that in the phase-plane diagram there is a circle and in the Poincaré 
section there is only a single point. These are the signs of a harmonic oscillation. 
 As the frequency of the external force can not be modified in an easy way it is useful 
to change an other system parameter (e.g. damping δ). In Fig. 7 the change in the 
Poincaré section can be seen as parameter δ is modified from 0.1 to 0.45. It was 
examined how change in parameter affects the chaotic attractor. 

 

 

Fig. 7. Change in the Poincaré section as parameter δ is varied (δ=0.1···0.45) 
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 It can be seen that first there is harmonic oscillation, and then there is a chaotic 
attractor, which shape will be smaller as parameter δ is increased. When δ=0.3 a 
subharmonic oscillation occurs, then there will be chaos again. When δ=0.5 harmonic 
oscillation or a stable limit cycle occurs. With this test it was examined that with 
changing a system parameter the chaotic region can be avoided or another chaotic 
attractor can be achieved, which is easier to control. Possibilities of controlling chaos 
will be further research task. 

2.2. Numerical examination of a Duffing type mechatronic semi-active  

       suspension system 

 Duffing-Holmes oscillator is a forced oscillator with a nonlinear spring, whose 

restoring force is 3
xxFs αβ −−= , [36]. Several simple mechatronic devices have 

already been developed to examine the phenomena described by the Duffing-Holmes 
equation. Most of them are elastic mass vibrating in the magnetic field, like elastic beam 
[37], mass on a wire [38] or magnetic mass on a spring [39]. The Duffing-Holmes 
equation has already been used in real mechatronic systems, such as designing an 
electromagnetic generator [40] or modeling a semi-active suspension system [41].  
 In this study a semi-active suspension system with magneto-rheological damper of a 
vehicle is examined (quarter car model). It is assumed, that the spring has a nonlinear 
restoring force mentioned before and the damping is assumed to be constant.  
 The differential equation can be written: 
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where m is the mass of the vehicle; k is the damping coefficient; c is the spring stiffness; 
A is the amplitude of the road profile and ω  is the angular velocity of the external 
force, which depends on the velocity of the vehicle and the wavelength of the road [42]. 
Parameters k=35000 and m and c were varied. The road profile is assumed to be 
sinusoidal with A=0.2 and ω=2π. 
 It was examined how the change in mass and damping constant affects the behavior 
of the vehicle. The initial value are c=1000 and m=375 (based on [43]). The bifurcation 
diagrams can be seen in Fig. 8.  
 It can be seen that there is a chaotic behavior if the damping coefficient c≈0, which 
means a failure in the damper. If m>1000 there is also a chaotic behavior, which can be 
caused by increased load on the axle. The results for the chaotic behavior can be seen in 
Fig. 9 and Fig. 10 (c=0 left and m=1050 right). 
 Chaos can be observed in both cases. On the Poincaré sections there are 2 different 
chaotic attractors. In the first case (c=0) there is a main frequency component and 
several smaller amplitude frequency components. In the second case (m=1050) there are 
2 main frequency components and several smaller amplitude frequency components. 
There are continuous parts in the frequency diagrams, which is also a sign of chaotic 
behavior. 
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Fig. 8. Bifurcation diagrams of a semi-active suspension system 

 

 

 

Fig. 9. Time diagrams and frequency diagrams of a semi-active suspension system left  
(c=0, right m=1050 ) 

 With this test it was showed that the described methods can be used effectively to 
study chaotic behavior in case of nonlinear mechatronic systems too. It was also 
observed, that chaos can occur in real systems. In this case there was chaos in extreme 
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conditions (e.g. failure in the damper). Next task of the research is to study other cases, 
when chaotic behavior can occur (e.g. effects of road profile). 

 

 

Fig. 10. Phase plane diagrams and Poincaré sections of a semi-active suspension system left  
(c=0, right m=1050 ) 

3. Conclusion and further development 

 In this paper nonliear oscillators, like the Duffing-Holmes oscillator and a semi-
active suspension system were examined with numerical methods. Phase-plane 
diagrams, time diagrams, frequency response diagrams and Poincaré sections were 
created. It was observed when chaotic oscillation can occur. Some tests were carried out 
to examine how to avoid chaotic behavior. This study will be continued with examining 
the possibilities of controling chaos. Besides there are several research tasks.  
 The creation of numerical diagrams can be very time consuming, so one of the most 
important task is parallelization. With parallelization it will be possible to create 
diagrams with large calculation time, like 2 parametric bifurcation diagrams and 
frequency spectrum maps fast. Other tasks are to expand the presented methods to 
systems with more variables, like the Chua’s circuit or Lorentz attractor and to examine 
the sensitivity to initial conditions. A measure equipment will also be developed in the 
future to examine nonlinear vibratios in real mechatronic systems. Main goal is to 
examine more difficult nonlinear especially mechatronic systems with the presented 
methods. 
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