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Abstract

Background: Red wine polyphenols can prevent cardiovascular and inflammatory diseases. Resveratrol, the most
extensively studied constituent, is unlikely to solely account for these beneficial effects because of its rather low abundance
and bioavailability. Malvidin is far the most abundant polyphenol in red wine; however, very limited data are available about
its effect on inflammatory processes and kinase signaling pathways.

Methods & Findings: The present study was carried out by using RAW 264.7 macrophages stimulated by bacterial
lipopolysaccharide in the presence and absence of malvidin. From the cells, activation of nuclear factor-kappaB, mitogen-
activated protein kinase, protein kinase B/Akt and poly ADP-ribose polymerase, reactive oxygen species production,
mitogen-activated protein kinase phosphatase-1 expression and mitochondrial depolarization were determined. We found
that malvidin attenuated lipopolysaccharide-induced nuclear factor-kappaB, poly ADP-ribose polymerase and mitogen-
activated protein kinase activation, reactive oxygen species production and mitochondrial depolarization, while
upregulated the compensatory processes; mitogen-activated protein kinase phosphatase-1 expression and Akt activation.

Conclusions: These effects of malvidin may explain the previous findings and at least partially account for the positive
effects of moderate red wine consumption on inflammation-mediated chronic maladies such as obesity, diabetes,
hypertension and cardiovascular disease.
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Introduction

Malvidin and its glycosides are primary plant pigments playing

an important role to protect plants from microbial infection and

UV irradiation [1]. Malvidin is responsible primarily for the color,

and is included in the polyphenols of red wine together with other

anthocyanidins, phenolic acids, flavonoids and trihydroxy stilbenes

[2,3]. Recent findings indicate a potential preventive role of

dietary polyphenols against chronic inflammatory diseases such as

diabetes, hypertension and cardiovascular disease [4–7].

The inflammatory response was extensively studied in lipopoly-

saccharide (LPS)-stimulated RAW 264.7 macrophage cells, which

are very sensitive to LPS stimulation and respond by activation of

the pro-inflammatory transcription factors; nuclear factor-kappaB

(NF-kB) and activator protein-1 (AP-1) resulting in tumor necrosis

factor-alpha, interleukin-1beta (IL-1b), IL-6, IL-8 and nitric oxide

production [8–10]. These markers are associated with gram-

negative sepsis and other inflammatory diseases [11]. Further-

more, LPS also induces production of reactive oxygen species

(ROS) and activation of the nuclear enzyme poly ADP-ribose

polymerase (PARP) [12,13]. ROS are capable of eliciting a variety

of pathological changes, including peroxidation of lipids, proteins,

and DNA, and, as a signaling loop, an elevated level of ROS

activates mitogen activated protein kinase (MAPKs) and inflam-

matory transcription factors [14–16]. Probably as compensatory

mechanisms, LPS induces activation of the cytoprotective

phosphytidylinositol 3-kinase (PI3K)-Akt pathway [17] and

expression of MAPK phosphates (MKP)-1 [15]. All these processes

have significant role in innate immunity during the normal

immune response and in causing multiple organ failure and death

during severe sepsis or septic shock [11].

The most investigated nutritional polyphenol, resveratrol was

found to prolong lifespan, and was suggested as a potential anti-

inflammatory, anti-aging, anti-cancer and anti-cardiovascular

disease agent [18-20]. However, rather low bioavailability and

abundance of resveratrol implies that other components may

contribute substantially to the beneficial effects of red wine

[21,22]. A likely candidate is malvidin that exceeds resveratrol

content at least 100 times in red wines [23]. Recent data describe

its beneficial effects in cardiovascular disease [24]. On the other

hand, only limited data are available about effect of malvidin on

inflammatory processes and kinase signaling pathways [25–27].
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Therefore, in this study, we investigated the effect of malvidin on

LPS induced processes in RAW 264.7 macrophages.

Materials and Methods

Chemicals
Bacterial lipopolysaccharide from Escherichia coli 0127:B8, trans-

resveratrol and Malvidin chloride were purchased from Sigma-

Aldrich Co. (Budapest, Hungary). Protease inhibitor mixture was

purchased from Sigma-Aldrich Co. (Budapest, Hungary). Anti-

bodies against phosphorylation specific extracellular signal regu-

lated kinase (ERK1/2) Thr183–Tyr185, ERK1/2, phosphorylation

specific p38 MAPK Thr180–Gly–Tyr182, p38-MAPK, phosphor-

ylation specific c-Jun N-terminal kinase (JNK), JNK, phosphory-

lation specific Akt-1/protein kinase B-a Ser473, Akt1, phosphor-

ylation specific glycogen synthase kinase (GSK)-3b Ser9, NF-kB

p65 and phosphorylation specific NF-kB p65(Ser536) were

purchased from Cell Signalling Technology, Kvalitex Co.

(Budapest, Hungary). Antibody against N-terminal domain of

actin was obtained from Sigma-Aldrich Co. (Budapest, Hungary),

and MAPK phosphatase-1 (MKP-1), Histon H-1 antibodies were

from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Recombinant GSK-3b, c-Jun, myelin basic protein (MBP) and

myocyte enhancer factor (Mef)-2 was purchased from Abnova

Gmbh (Heidelberg, Germany). JNK Inhibitor II, SB 203580, PD

98059 and Akt Inhibitor IV were from Merck Hungary Ltd.

(Budapest, Hungary). Methylthiazolyldiphenyl-tetrazolium bro-

mide (MTT) was purchased from Sigma–Aldrich Co. (Budapest,

Hungary). The fluorescent mitochondrial dye 5,59,6,69-tetra-

chloro-1,19,3,39-tetraethyl-benzimidazolylcarbocyanine iodide

(JC-1) were from Molecular Probes (Leiden, Netherlands). All

reagents were of the highest purity commercially available.

Immunoblot analysis
RAW 264.7 murine macrophage (ECACC, Salisbury, UK) and

RAW-BlueTM (Cayla – InvivoGen, Toulouse, France) cells were

cultured in 5% CO2– 95% air at 37uC in Dulbecco’s Modified

Eagle’s Medium (DMEM–endotoxin tested) with 10% fetal calf

serum (FCS) and L-glutamine (Sigma-Aldrich, Budapest, Hun-

gary). The cells were seeded at a starting density of 26106 cells/

well to a 6-well plate, cultured overnight then treated or not with

1 mg/ml LPS together or without 0–100 mM malvidin or

resveratrol. We pre-incubated RAW 264.7 macrophages in the

presence or absence of malvidin or resveratrol for 30 min before

the LPS challenge. Cells were harvested in ice-cold lysis buffer

containing 0,5 mM sodium metavanadate, 1 mM ethylenedi-

aminetetraacetic acid (EDTA), protease inhibitor mixture and

phosphate-buffered saline, pH: 7.4. Proteins were precipitated by

trichloroacetic acid, washed three times with –20uC acetone, and

subjected to sodium dodecylsulphate (SDS) polyacrylamide

gelelectrophoresis. Proteins (30 mg/lane) were separated on 12%

gels and then transferred to nitrocellulose membranes. Mem-

branes were blocked in 5% low fat milk for 1 h at room

temperature, then exposed to the primary antibodies at 4uC
overnight at a dilution of 1:1,000. Appropriate horseradish

peroxidase-conjugated secondary antibody was used for 2 h at

room temperature in 1:5000 dilution (Sigma-Aldrich Co, Buda-

pest, Hungary). Peroxidase labeling was visualized with enhanced

chemiluminescence using the SuperSignal West Pico chemilumi-

nescent substrate (Pierce Chemical, Rockford, IL, USA). Devel-

oped films were scanned, and pixel volumes of the bands were

determined using NIH Image J software. All experiments were

repeated three times.

Cell viability assay
Cells were seeded to 96-well plates at a starting density of

26104 cells/well and cultured overnight. We pre-incubated RAW

264.7 macrophages in the presence or absence of 50 mM malvidin

for 30 min, then exposed or not the cells to 1 mg/ml LPS for 24 h.

Media were replaced for fresh one without any agentscontaining

0.5% of the water-soluble mitochondrial dye, MTT. Incubation

was continued for 3 more hours, and MTT reaction was

terminated by adding 1/10 volume of 10% of SDS solution

containing 0.1 M HCl. The amount of water-insoluble blue

formasan dye formed from MTT was proportional to the number

of live cells and was determined using a 96-well plate reader

(Anthos Labtech 2010; Vienna, Austria) at 550 nm wavelength

after dissolving the blue formasan precipitate in the acidic SDS

solution. All experiments were performed in at least four parallels

and repeated three times.

Determination of intracellular reactive oxygen species
Intracellular ROS were determined using the oxidation-

sensitive 2,4 dichlorodihydrofluorescein-diacetate (C-400, Invitro-

gen) fluorescent dye. Cells were seeded into 96-well plates at a

starting density of 26104 cell/well, then cultured overnight.

Culturing medium was replaced with a fresh one. RAW 264.7

cells were incubated or not in the presence of 1 mg/ml LPS

together with 0–50 mM malvidin or trans-resveratrol for 22 h.

Then C400 at a final concentration of 2 mg/ml was added to the

medium for an additional 2 h. Fluorescence was measured at

485nm excitation and 555nm emission wavelengths using Fluostar

Optima (BMG Labtechnologies) fluorescent microplate reader. All

experiments were performed in at least 6 parallels and repeated

three times.

NF-kB activation assay
RAW 264.7 macrophages were transiently co-transfected with

either NF-kB luciferase or control (TA-Luc) (Panomics, Santa

Clara, CA, USA), and SV-b-galactosidase (pSV-b-gal) (Promega

Corporation, Madison, WI, USA) plasmids by using Lipofecta-

mine 2000 transfection reagent according to the manufacturer’s

instructions. 24 h after the transfection, cells were treated as

indicated, and another 24 h later cell lysates were collected.

Cellular proteins were assayed for luciferase and b-galactosidase

activities according to the manufacturer’s instructions (Promega

Corporation, Madison, WI, USA, Luciferase Assay System

Technical Bulletin TB281). The ratio of luciferase to b-galacto-

sidase activity served to normalize the luciferase activity to correct

for any differences in transfection efficiencies.

Alternatively, RAW-BlueTM cells were treated as indicated for

24 h, then the medium was replaced by QUANTI-BlueTM

detection medium (Cayla – InvivoGen, Toulouse, France) for 1h.

RAW-BlueTM cells are permanently transfected with an NF-kB-

and AP-1-sensitive promoter-driven alkaline phosphatase. NF-kB

and AP-1 binds to the promoter upon nuclear translocation, and

induces the expression of alkaline phosphatase that is detected by a

dye-based assay and a plate reader.

Detecting mitochondrial membrane potential (Dy)
The changes in Dy were assayed using the Dy dependent

fluorescent dye, JC-1. RAW 264.7 cells were seeded at

16106 cells/well starting density to a six-well plate containing

coverslips and cultured at least overnight before the experiment.

After subjecting the cells to the appropriate treatment (indicated in

the figure legends), coverslips were rinsed twice in phosphate

buffered saline (PBS). Coverslips were placed face down on top of

Anti-Inflammatory Effects of Malvidin
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a microscope slide forming a small chamber filled with PBS

supplemented with 0.5% FCS and containing 5 mg/ml JC1

(Molecular Probes). Cells were imaged with a Zeiss Axiovert 25

fluorescent microscope equipped with a ProgRes C12 Plus CCD

camera using a 636objective and epifluorescent illumination. For

JC-1 fluorescence, cells were loaded with the dye for 15 min at

37uC, then the same microscopic field was imaged first with

546 nm bandpass excitation and 590 nm emission (green filter,

red fluorescence), then with 450–490 nm bandpass excitation and

520 nm emission (blue filter, green fluorescence). Resulting images

were merged. In control experiments, we did not observe

considerable bleed-through between the red and green channels.

RNA extraction and quantitative reverse transcriptase
polymerase chain reaction (Q-RT-PCR) amplification

Total RNA was extracted from RAW 264.7 cells using TRIZol

reagent (Sigma-Aldrich), according to the manufacturer’s protocol.

RNA (1 mg) was reverse-transcribed with MMLV RT (Rever-

tAidTM first-strand cDNA synthesis kit, Fermentas, Burlington,

Ontario, Canada) for 1h at 42uC; final volume was 20 ml. cDNA

(1 ml) was used for real-time PCR amplification on a Bio-Rad Mini

Opticon (MJ Mini) machine. PCR was conducted over 45 cycles of

95uC for 15 s, 55uC for 30 s, and 72uC for 45 s; three-step thermal

cycling preceded by an initial 95uC for 7 s using the iQ SYBR

Green Supermix kit (Bio-Rad, Hercules, CA, USA). PCR was

performed using the following primers:

MKP-1 forward, 59-GCATCCCTGTGGAGGACAACC-39;

MKP-1 reverse, 59-TCCAGCATCCTTGATGGAGTCTAT-

G-39;

b-Actin forward, 59-GCCACCAGTTCGCCATGGAT-39;

b-Actin reverse, 59-GCTTTGCACATGCCGGAGC-39.

Figure 1. Effect of malvidin on LPS induced activating
phosphorylation of NFkB. Total (phosphorylated and unphosphory-
lated) NFkB (t- NFkB) as well as the phoshorylated form of its p65
subunit (p-NFkB) was detected by immunoblotting of whole RAW 264.7
macrophage lysates after treating the cells for 1h as indicated. Actin
was used as a loading control. Representative blots (A) and
densitometric evaluations (B,C) of 3 independent experiments are
shown. Pixel densities were normalized to that of the actin. Values are
given as means 6 SEM. *** p,0.001 compared to untreated control,
### p,0.001 compared to LPS alone.
doi:10.1371/journal.pone.0065355.g001

Figure 2. Effect of malvidin on LPS induced nuclear transloca-
tion and DNA binding of of NFkB. RAW 264.7 macrophages were
treated for 1h as indicated, then nuclei were isolated and NFkB was
extracted by using magnetic beads baited with oligonucleotides of the
NFkB binding consesus sequence. Total (phosphorylated and unpho-
sphorylated) NFkB (t-p65) as well as the phoshorylated form of its p65
subunit (p-p65) was detected by immunoblotting in the samples eluted
from the beads. Histon H1 from the isolated nuclei was used as loading
control. Representative blots (A) and densitometric evaluations (B,C) of
three independent experiments are shown. Pixel densities were
normalised to that of the histon H1. Values are given as means 6
SEM. * p,0.05, ** p,0.01, *** p,0.001 compared to untreated control,
### p,0.001 compared to LPS alone. a.u.: arbitrary units.
doi:10.1371/journal.pone.0065355.g002

Anti-Inflammatory Effects of Malvidin
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Statistical analysis of relative expression of the target gene based

on comparative threshold values with efficiency correction was

made with the Relative Expression Software tool (Bio-Rad CFX

Manager Software), and was normalized to the housekeeping gene

b-Actin. All experiments were repeated three times.

Preparation of nuclear protein extracts
The nuclear extracts were prepared as described previously

[28]. Cells were harvested and suspended in hypotonic buffer A

(10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), pH 7.6, 10 mM KCl, 1 mM dithiothreitol (DTT),

0.1 mM EDTA, and 0.5 mM phenylmethylsulfonyl fluoride) for

10min on ice and vortexed for 10 s. Nuclei were pelleted by

centrifugation at 12000 g for 20 s. The supernatants containing

cytosolic proteins were collected. Nuclear pellet was suspended in

buffer C (20 mM HEPES, pH 7.6, 1 mM EDTA, 1 mM DTT,

0.5 mM phenylmethylsulfonyl fluoride, 25% glycerol, and 0.4 M

NaCl) for 30 min on ice. Nuclear protein containing supernatants

were collected by centrifugation at 12000 g for 20 min and stored

at 270uC.

DNA affinity protein binding assay
After the indicated treatment, cells were harvested in buffer A,

chilled on ice for 10 min and centrifuged at 12000 g for 20 s.

Pellets were suspended in 5 times volume of buffer C and

sonicated. A 200 mg aliquot of nuclear suspension was incubated

with 2 mg of biotinylated double-stranded oligonucleotyde corre-

sponding to the murine consensus NF-kB binding DNA sequence

(Biotin-CCTTGAAGGGATTTCCCTCC, Invitrogen) for 30 min

on a 4uC shaker-bath. Then, 30 ml streptavidin coated magnetic

micro particles (Sigma-Aldrich) were added, and incubation was

continued for an additional 30 min. Beads were pulled down,

washed 3 times with ice-cold PBS, and eluted in 25 ml

mercaptoethanol-free Laemmli sample buffer by a 5 min boiling.

Eluted samples were subjected to immunoblot analysis. All

experiments were repeated three times.

In vitro kinase assay
RAW 264.7 macrophages were exposed to 1 mg/ml LPS for 1

h, washed in PBS and harvested in ice-cold lysis buffer containing

0,5 mM sodium metavanadate, 1mM EDTA, protease inhibitor

mixture and 20 mM HEPES, pH: 7.4. Cell lysates were subjected

to overnight immunoprecipitation at 4uC with anti-p38 MAPK,

anti-JNK anti-ERK1/2 or anti-Akt antibodies. Precipitates were

collected on appropriate secondary antibody-coated magnetic

micro particles (Sigma-Aldrich) for 30 min. Beads were pulled

down, washed 3 times with ice-cold PBS, and incubated for 10 min

at 30uC in the presence or absence of 50 mM malvidin in 50 ml of

buffer containing 25 mM glycerophosphate (pH 7.3), 0.5 mM

dithiothreitol, 1.25 mM EGTA, 0.5 mM Na3VO4, 10 mM

MgCl2, 1 mg/ml bovine serum albumin, 1 mM okadaic acid,

0.1 mM [c-32P]ATP (250000 Bq/nmol; GE Healthcare Hungary

Ltd, Budapest, Hungary) and 50 mg of recombinant Mef-2, c-Jun,

MBP or GSK-3b protein. After incubation, aliquots were spotted

on p81 filter paper, washed and counted for 32P radioactivity.

Blank values were obtained by substituting a non-immune

antibody preparation for the immunoprecipitating antibodies. All

experiments were repeated three times.

Statistical analysis
Each experiment was repeated at least three times. Values in the

figures and text are expressed as mean 6 S.E.M. of n observations.

Statistical analysis was performed by analysis of variance followed

by Student’s t-test. Statistical significance was set at p,0.05. For

determining IC50 values from dose-response curves, the four-

parameter logistic function of GraphPad Prism software was used.

Results

Malvidin inhibited LPS-induced NF-kB activation in RAW
264.7 macrophages

Phosphorylation of NF-kB p65 on Ser536 upon LPS stimulation

enhances its transcriptional activity [29]. Therefore, we investi-

gated whether malvidin affects LPS induced NF-kB p65

phosphorylation. To this end, we pre-incubated RAW 264.7

macrophages in the presence or absence of 50 mM malvidin for 30

min, then exposed or not the cells to 1 mg/ml LPS for 1 h, and

determined steady state protein level and phosphorylation state of

NF-kB by immunoblotting from whole cell homogenates. As

demonstrated in Figure 1, LPS did not affect expression of NFkB,

but induced phosphorylation of its p65 subunit. Malvidin

effectively attenuated NF-kB phosphorylation both in the un-

stimulated and the LPS treated cells while did not affect expression

of the protein (Fig. 1).

Activation of NF-kB presumes its translocation to the nucleus

and its binding to the DNA. To determine nuclear translocation

and DNA binding of NFkB, we isolated and homogenized nuclei

of RAW 264.7 macrophages subjected to the aforementioned

treatment protocol, and pulled down nuclear proteins by magnetic

beads using oligonucleotides of the consensus NF-kB binding

sequence as bait. Proteins eluted from the beads were subjected to

Figure 3. Effect of malvidin on LPS induced activation of NFkB in
RAW 264.7 macrophages. Cells were pretreated with 0–100 mM
malvidin (black bars in B) or 0–100 mM trans-resveratrol (gray bars in B)
for 30 min as indicated. Activation of NF-kB was assessed by a luciferase (A)
or an alkaline phosphatase (B) reporter assay after 1 mg/mL LPS exposion
for 24 h. Values are given as means 6 SEM of 4 independent experiments
running in 3 parallels. ** p,0.01, *** p,0.001 compared to untreated
control, # p,0.05, ## p,0.01, ### p,0.001 compared to LPS alone. a.u.:
arbitrary units.
doi:10.1371/journal.pone.0065355.g003

Anti-Inflammatory Effects of Malvidin
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immunoblot analysis. Figure 2 demonstrates LPS induced nuclear

translocation and DNA binding of NF-kB. Malvidin attenuated

these processes in unstimulated and LPS treated cells. Further-

more, we found the same pattern of alterations in total

(phosphorylated and un-phosphorylated) and phosphorylated

NF-kB (Fig. 2). This indicates that most of the nuclearly

translocated NF-kBs were phosphorylated.

We confirmed the effect of malvidin on LPS induced NF-kB

activation using functional luciferase reporter assay. We transiently

transfected RAW 264.7 macrophages with NF-kB promoter

driven luciferase constructDue to technical reasons, we treated

the cells for 24 h instead of 1 before determining luciferase activity

using chemiluminescence assay. We normalized our assay by co-

transfecting the cells with a b-galactosidase expressing plasmid.

Similarly to our previous two experiments, we found LPS induced

the activation of NF-kB was attenuated by malvidin (Fig. 3A). In

this assay, malvidin failed to decrease NF-kB activation in

unstimulated cells (Fig. 3A).

We intended to compare NF-kB activation reducing effect of

malvidin with that of trans-resveratrol. To this end, we treated

RAW-BlueTM cells in the presence or absence of 0-100 mM

malvidin or resveratrol with 1 mg/ml LPS for 24 h. RAW-BlueTM

cells were permanently transfected with an NF-kB- and AP-1-

sensitive promoter-driven alkaline phosphatase. Upon nuclear

translocation, NF-kB and AP-1 binds to the promoter, and

induces the expression of alkaline phosphatase. Alkaline phospha-

tase activity proportional to NF-kB activation was detected using a

colour-changing subtrate containing assay medium. Malvidin

inhibited LPS-induced NF-kB activation with the apparent IC50

value of 18.163.2 mM. Trans-resveratrol failed to inhibit NF-kB

activation even at the highest concentration used (Fig. 3B).

Malvidin inhibited LPS induced ROS production and
PARP activation in RAW 264.7 macrophages

LPS is a well documented inducer of ROS production [30].

Therefore, we determined the effect of malvidin on ROS

production in LPS-induced RAW macrophages using an oxidation

sensitive fluorescent dye, C400. The cells were pre-incubated in

the presence of 0–50 mM malvidin for 30 min, then exposed or not

to 1 mg/ml LPS for 22 h. This was followed by additional 2 h

incubation after supplementing the media with C400 at a final

concentration of 2 mg/ml. Concentration of fluorescent C400

oxidized by the ROS was determined using fluorescence plate

reader. Malvidin inhibited LPS induced ROS production in a

concentration-dependent manner (Fig. 4A). We compared the

antioxidant effect of malvidin with that of trans-resveratrol, and

found it to be comparable (Fig. 4A). Apparent IC50 values for the

two polyphenols were 9.060.8 and 6.860.6 mM, respectively. We

investigated whether decreased ROS production was due to

cytotoxic effect of malvidin by using MTT assay. Wefound cell

viability was not affected by 50 mM malvidin during the 24 h

incubation period (Fig. 4B).

Figure 4. Effect of malvidin on LPS induced ROS production and PARP activation in RAW 264.7 macrophages. Steady state ROS
concentration in the culturing medium (A) and viability of the cells (B) was determined using the fluorescent redox dye C-400 and by the MTT
method, respectively after incubating the cells for 24 h in the absence and presence of LPS together with 0–50 mM malvidin (black bars in A) or trans-
resveratrol (gray bars in A) as indicated. Experiments running in 6 parallels were repeated 3 times. PARP activation was assessed by determining the
steady state level of PAR using immunoblotting from whole cell lysate after treating the cells for 1h as indicated. Actin was used as loading control.
Representative blots (C) and densitometric evaluations (D) of three independent experiments are shown. Pixel densities were normalized to that of
the actin. Values are given as means 6 SEM. ** p,0.01 *** p,0.001 compared to untreated control, ## p,0.01, ### p,0.001 compared to LPS
alone. a.u.: arbitrary units.
doi:10.1371/journal.pone.0065355.g004

Anti-Inflammatory Effects of Malvidin
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LPS activates PARP in RAW 264.7 macrophages as the

consequence of increased intracellular ROS induced breaks of one

or both strands of the DNA [13]. Therefore, we investigated the

influence of malvidin on LPS induced activation of PARP. We

exposed the cells to the aforementioned treatment protocol, then

assessed PARP activation by immunoblot analysis of the steady

state level of the enzymatic product, PAR from whole cell

homogenates. We found LPS induced PAR accumulation was

attenuated by malvidin (Fig. 4C, D). Malvidin did not affect PARP

activation in unstimulated cells (Fig. 4C, D).

Malvidin inhibited LPS-induced MAPK activation in RAW
264.7 macrophages

Binding of LPS to the TLR4 receptor activates multiple

intracellular signaling pathways including the MAPKs [31].

Therefore, we investigated the influence of malvidin on LPS

induced activation of ERK, JNK and p38-MAPK. We preincu-

bated or not RAW 264.7 macrophages with 50 mM malvidin for

30 min then treated them or not with 1 mg/ml LPS for 1 h. We

performed immunoblot analysis utilizing phosphorylation specific

primary antibodies from whole cell homogenates. Phosphorylation

and thereby activation of the studied MAPKs were increased by

LPS, which was attenuated by malvidin (Fig.5). This effect of

malvidin was the least effective in the case of ERK1/2 (Fig. 5A, B),

much more pronounced for p38 (Fig 5A, C) and the strongest for

JNK (Fig.5 A, D). Malvidin did not exert any effect on the

phosphorylation of MAPKs in unstimulated cells (Fig. 5).

Malvidin enhanced MAPK phosphatase-1 (MKP-1)
expression in unstimulated and LPS treated RAW 264.7
macrophages

MKP-1 dephosphorylates thereby down-regulates the activity of

all three branches of MAPKs [32]. Therefore, we determined how

malvidin affects MKP-1 expression in unstimulated and LPS

treated RAW 264.7 macrophages. We subjected the cells to the

aforementioned treatment protocol, and performed immunoblot

analysis from whole cell homogenates. After mRNA isolation and

cDNA transcription, we performed Q-RT-PCR amplification

assay. We found that LPS induced MKP-1 mRNA (Fig. 6C) and

protein (Fig. 6A, B) expression. Malvidin increased MKP-1

expression in unstimulated cells in a much lower extent than

LPS. In LPS stimulated cells, malvidin increased MKP-1 mRNA

and protein much above the level that of LPS alone (Fig. 6).

Malvidin enhanced PI-3-kinase-Akt pathway activation in
unstimulated and LPS treated RAW 264.7 macrophages

It was previously shown polyphenols modulate the phosphati-

dylinositol 3 (PI3)-Kinase-Akt pathway [33]. Furthermore, we

previously found that activation of this cytoprotective pathway was

a beneficial factor of PARP inhibition in a murine endotoxic shock

model [34]. Therefore, we investigated the effect of malvidin on

the phosphorylation of Akt and its down-stream target, GSK-3ß in

unstimulated and LPS treated RAW 264.7 macrophages using

immunoblot analysis. We followed the same experimental protocol

as we did for MAPK activation studies. We found LPS increased

Figure 5. Effect of malvidin on LPS induced activation of ERK, p38, JNK MAPK in RAW 264.7 macrophages. Steady state
phosphorylation of ERK, p38 and JNK was detected by immunoblotting from whole cell lysate after treating the cells as indicated for 1h. Actin was
used as a loading control. Representative blots (A) and densitometric evaluations (B–D) of 3 independent experiments are shown. Pixel densities were
normalized to that of the actin. Values are given as means 6 SEM. ** p,0.01, *** p,0.001 compared to untreated control, # p,0.05, ### p,0.001
compared to LPS alone.
doi:10.1371/journal.pone.0065355.g005

Anti-Inflammatory Effects of Malvidin
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activation of Akt as it was revealed by the phosphorylation of its

Ser473 and GSK-3ß (Fig. 7). Malvidin increased Akt (Fig. 7A, B)

and GSK-3ß (Fig. 7A, C) phosphorylation in unstimulated cells in

a lower extent than LPS. In LPS stimulated cells, malvidin

increased phosphorylation of both proteins much above the level

that of LPS alone (Fig. 7).

Malvidin protected mitochondrial membrane potential
from LPS induced depolarization in RAW264.7
macrophages

Increased ROS and MAPK activation damages while Akt

activation protects integrity of the mitochondrial membrane

systems [35]. To investigate the impact of LPS and malvidin on

mitochondrial membrane potential, we used a cell-permeable

voltage-sensitive fluorescent mitochondrial dye, JC-1, and fluores-

cent microscopy. After treating them according to the aforemen-

tioned protocol, we loaded the cells with JC-1 for 15 min, and

acquired fluorescence images of the same area of interest in the

Figure 6. Effect of LPS and malvidin on MKP-1 expression in
LPS treated RAW 264.7 macrophages. Effect of LPS and malvidin
on steady state MKP-1 protein level was assessed by immunoblotting
from whole cell lysate after treating the cells as indicated for 1h. Actin
was used as a loading control. Representative blots (A) and
densitometric evaluations (B) of 3 independent experiments are shown.
Pixel densities were normalized to that of the actin. MKP-1 mRNA
expression (C) was determined in another aliquot of cells treated as
above using Q-RT-PCR analysis. b-Actin was used as a housekeeping
control gene. Specific primer sequences and PCR conditions are
described in Materials and Methods. Values are given as means 6
SEM. * p,0.05, *** p,0.001 compared to untreated control, ## p,0.01
### p,0.001 compared to LPS alone.
doi:10.1371/journal.pone.0065355.g006

Figure 7. Effect of malvidin on LPS induced activation of Akt1
in RAW 264.7 macrophages. Steady state level of total (phosphor-
ylated and unphosphorylated) Akt1 (t-Akt) as well as phosphorylation of
Akt1 and its down-stream target GSK-3b was detected by immuno-
blotting from whole cell lysate after treating the cells as indicated for
1h. Actin was used as loading control. Representative blots (A) and
densitometric evaluations (B–C) of 3 independent experiments are
shown. Pixel densities were normalized to actin. Values are given as
means 6 SEM. *** p,0.001 compared to untreated control,
### p,0.001 compared to LPS alone.
doi:10.1371/journal.pone.0065355.g007
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green and red channels of the microscope. Mitochondrial

membrane depolarization was indicated by the disappearance of

the red component of JC-1 fluorescence while normal membrane

potential was demonstrated by balanced red and green color.

Figure 8 clearly demonstrates that LPS caused significant

mitochondrial membrane depolarization that was attenuated by

malvidin. Malvidin did not exert any effect on mitochondrial

membrane integrity in unstimulated cells (Fig. 8).

Malvidin, kinase inhibitors and N-acetyl cysteine (NAC)
attenuate nuclear translocation and DNA binding of NF-
kB in different extent

To establish the physiological significance of malvidin’s effects

on signalling pathways, we compared its effect with that of various

kinase inhibitors and the ROS scavenger NAC on nuclear

translocation and DNA binding of NFkB. To this end, we

preincubated or not RAW 264.7 macrophages with 50 mM

malvidin, 1 mM JNK Inhibitor II, 1 mM SB203580 (p38 inhibitor),

25 mM PD98059 (ERK inhibitor), 5 mM Akt Inhibitor IV or

3 mM NAC before 1 h exposure to 1 mg/ml LPS. We isolated

and homogenized nuclei of the cells subjected to the aforemen-

tioned treatment protocol, and pulled down nuclear proteins by

magnetic beads using oligonucleotides of the consensus NF-kB

binding sequence as bait. Proteins eluted from the beads were

subjected to immunoblot analysis utilizing anti-p65 primary

antibody. We found NAC abolished LPS induced nuclear

translocation and DNA binding of NF-kB. The other substances

but ERK inhibitor attenuated NF-kB activation in different extent

(malvidin .JNK,p38.Akt inhibitor, Fig. 9). ERK inhibition also

diminished NF-kB activation, however, it did not reach the

threshold of statistical significance.

Malvidin was identified as a rather potent inhibitor of cAMP

phosphodiestherase (IC50 2365 mM), thereby a potential indirect

regulator of MAPKs [36]. We performed in vitro radioactive kinase

assays utilizing enzymes immunoprecipitated from lysate of LPS

activated RAW 264.7 macrophages and recombinant substrates to

determine whether malvidin had any direct effect on the kinases

studied. We found malvidin did not exert any direct effect on the

MAPKs or Akt up to 50 mM concentration (data not shown).

Discussion

In response to LPS, nuclear localization signal of cytosolic NF-

kB becomes unmasked resulting in nuclear translocation of the

transcription factor. In the nucleus, NF-kB becomes phosphory-

lated and acetylated, thus activated to bind to its consensus

promoter DNA sequences. This binding triggers the expression of

its target genes (Fig. 10) including pro-inflammatory cytokines,

chemokines, adhesion proteins, COX-2 and iNOS [10,37,38].

These events are of pivotal importance in the development of

inflammation-related chronic diseases [39]. We demonstrated

malvidin attenuates activating phosphorylation, nuclear translo-

cation and binding to consensus DNA sequence of NF-kB. These

data are completely in line with the results of other groups

[8,26,40]. Furthermore, we found malvidin antagonised NF-kB

activation at much lower concentrations than trans-resveratrol.

This indicates malvidin could account for the beneficial effects of

red wine in inflammation-related chronic diseases. Furthermore,

these results explain the finding of the 1999–2002 US National

Health and Nutrition Examination Survey describing malvidin

intake negatively correlates with serum C-reactive protein levels

[25].

Binding of LPS to TLR4 receptor triggers activation of the

MAPKs (Fig. 10) via various signaling pathways such as the

myeloid differentiation primary response gene (MyD)88—inter-

leukin-1 receptor-associated kinase (IRAK)—tumor necrosis factor

(TRAF)-6—transforming growth factor-b activated kinase (TAK)

pathway [32]. In turn, MAPK pathways are involved in activation

of the pro-inflammatory transcription factors; NF-kB and AP-1

[32,37]. In the present study, we observed malvidin attenuated

LPS induced activation of all three MAPKs. However, this effect

differed for the three kinases (JNK.p38..ERK). By using

specific kinase inhibitors, we aimed to establish the significance of

these results. In agreement with others [41-43] we found JNK and

p38 inhibitors significantly reduce LPS induced nuclear translo-

cation and DNA binding of NF-kB. However, ERK inhibition was

ineffective. These data indicate early inflammatory response in

RAW 264.7 macrophages is mediated, at least partially, via the

aforementioned pathway. On the other hand, it is likely that

malvidin decreased LPS evoked MAPK activation undirectly since

in in vitro kinase assays malvidin did not exert any effect. Most

likely, it regulated MAPK activation by inhibiting other key

mechanisms; ROS production.

MKP-1 is the major enzyme responsible for the dephosphor-

ylation, thereby inactivation of all three MAPKs [44]. It is

critically involved in inflammatory signaling of macrophages, and

is responsible for switching off pro-inflammatory cytokine

production in vitro and in vivo [41,42]. In agreement with others

[44] we found increased expression of MKP-1 in the LPS

stimulated macrophages both at the mRNA and protein level.

However, this was accompanied by an elevated activation of the

MAPKs indicating MKP-1 induction was not sufficient to suppress

LPS-induced MAPK activation. Malvidin enhanced MKP-1

expression both in the unstimulated and LPS treated cells, which

was accompanied by decreased activation of the MAPKs. This

suggests MKP-1 expression, when augmented by malvidin, could

counteract the activating mechanisms induced by TLR4 signaling

(Fig. 10). However, we found significant differences among the

MAPKs regarding malvidin’s effectivity in reduction of their LPS

Figure 8. Effect of LPS and malvidin on mitochondrial
membrane potential of RAW 264.7 macrophages. Cells were
pretreated or not with malvidin for 30 min and exposed or not to LPS
for 1h. Medium was replaced to fresh one without any agents and
containing 1 mg/ml JC-1 membrane potential-sensitive fluorescent dye
for 15 min. Green and red fluorescence images of the same field were
acquired using a fluorescent microscope. Representative merged
images of three independent experiments are presented. Con: control;
Mv: malvidin.
doi:10.1371/journal.pone.0065355.g008
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induced activation. Furthermore, these differences were reflected

in the anti-inflammatory effect of MAPK inhibitors. All these data

indicate, the network of MAPK activation and inhibition signaling

is complex, and balance of the regulating processes differs for each

MAPK.

Previous studies established in vitro antioxidant characteristics for

malvidin [3,45]. In agreement with these results, we found

malvidin attenuates ROS production by LPS-treated RAW264.7

macrophages at an IC50 value comparable to that of trans-

resveratrol. At the same time, this modulated a complicated

network of processes produced and regulated by ROS (Fig. 10)

including mitochondrial integrity and activation of MAPKs, Akt

and PARP. It is feasible that LPS induced NF-kB activation in our

experimental system was mediated partially via the TLR4-

NADPH oxidases-ROS-PARP pathway. However, the complexity

of the involved networks made it hard to distinguish between cause

and consequence or identify up-stream and down-stream events.

Nevertheless, it is likely that due to its antioxidant property,

malvidin decreases ROS production, thereby reduces PARP and

MAPK activation as well as oxidative damage to MKP-1.

Reduced PARP activation leads to decreased NF-kB and MAPK

activation, increased expression of MKP-1 [15] and activation of

the PI3K—Akt pathway [34] that together with the decreased

ROS results in maintained mitochondrial integrity (Fig. 10).

Importance of the antioxidant mechanism in malvidin’s anti-

inflammatory effect is emphasized by us and others [46,47]

reporting NAC inhibits LPS induced NF-kB activation.

Recently it has been shown that Akt is a downstream target of

TRIF/TANK-binding kinase 1 (TBK1), and there is an associ-

ation between endogenous TBK1 and Akt in LPS treated

macrophages. TBK1 enhances phosphorylation of Akt on

Ser(473), and siRNA-mediated silencing or knocking out of

TKB1 compromises LPS induced Akt activation [48]. On the

other hand, elevated ROS also activates the PI-3K—Akt pathway

via oxidative inactivation of the phosphatase and tensin homolog

(PTEN) that inactivates the pathway by dephosphorylation [49].

Akt activation may result in mitochondrial protection by

phosphorylation, thereby inactivation of Bad, and indirect NF-

kappaB activation [50]. As we found, malvidin activated Akt both

in the unstimulated and LPS-treated macrophages. Most likely,

this effect of malvidin was also due to its antioxidant property. The

augmented activation of Akt was most probably involved in

malvidin’s protective effect on LPSinduced mitochondrial depo-

larization (Fig. 10).On the other hand, Akt was implicated in the

Figure 9. Effect of malvidin, kinase inhibitors and NAC on LPS induced nuclear translocation and DNA binding of of NFkB. RAW
264.7 macrophages were treated for 1h as indicated, then nuclei were isolated and NFkB was extracted using magnetic beads baited with
oligonucleotides of NFkB binding consesus sequence. Total (phosphorylated and unphosphorylated) NFkB (t-p65) was detected by immunoblotting
in the samples eluted from the beads. Histon H1 from the isolated nuclei was used as loading control. Representative blots (A) and densitometric
evaluations (B) of 3 independent experiments are shown. Pixel densities were normalized to histon H1. Values are given as means 6 SEM. * p,0.05,
** p,0.01, *** p,0.001 compared to untreated control, # p,0.05, ## p,0.01, ### p,0.001 compared to LPS alone. a.u.: arbitrary units; SB203580:
p38 MAPK inhibitor; PD98059: ERK inhibitor; NAC: N-acetyl cysteine.
doi:10.1371/journal.pone.0065355.g009
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phosphorylation thereby activation of NF-kB p65 [51]. Accord-

ingly and in agreement with Zhao et al. [52], we found that

inhibition of the PI-3K-Akt pathway attenuated NF-kB activation

suggesting a partial involvement of this pathway in mediating

LPS’s effect. All these data suggest Akt activating effect was

unlikely to be involved in malvidin’s anti-inflammatory effect.

In conclusion, malvidin, the most abundant polyphenol

ingredient of red wine, augments LPS-induced Akt activation

and MKP-1 expression and attenuates mitochondrial destabiliza-

tion, ROS production and activation of PARP as well as MAPKs

resulting eventually in diminished activation of NFkB. All these

data indicate malvidin significantly contributes to the antioxidant

and anti-inflammatory effects of red wine, and could, at least

partially, account for the positive effects of moderate red wine

consumption on inflammation-mediated chronic maladies such as

obesity, diabetes, hypertension and cardiovascular disease.
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