
POLLACK PERIODICA 
An International Journal for Engineering and Information Sciences 

DOI: 10.1556/606.2019.14.1.4 
Vol. 14, No. 1, pp. 35–46 (2019) 

www.akademiai.com 
 

HU ISSN 1788–1994 © 2019 The Author(s) 

IMPROVING GRAPHICS PROGRAMMING WITH 
SHADER TESTS 

 

Ádám István SZŰCS* 
 

Department of Computer Algebra, Faculty of Computer Science, Eötvös Loránd University 
Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary, e-mail: szaqaei@inf.elte.hu 

 
Received 30 December 2017; accepted 8 June 2018 

 Abstract: This paper presents an automated model and a project, Arrakis, for finding defects 
in shading algorithms for graphics rendering and compute workloads. A key challenge in shading 
algorithm testing is the lack of an oracle that can determine the quality and the output of a custom 
shading algorithm; this is crucial in graphics workloads because expensive assets are often wasted 
on solving these problems. A broad solution, Arrakis is developed, which builds on current 
graphics technology advances in Vulkan, SPIR-V and SPIRV-X by leveraging the standardization 
with mappings from SPIR-V and C++. Findings show that utilizing the demonstrated technology 
can improve quality whilst increasing productivity. 
 
 Keywords: Software engineering, Computing methodologies, Rasterization, Graphics 
programming, Shading  

1. Introduction 

 The fastest evolving hardware, the Graphical Processing Unit (GPU) is one of most 
popular computer components to program [1]. Its general purpose computational power 
is often multi-teraflops (floating operations per second), [2] furthermore it carries a 
significant amount of silicon to implement a partially fixed graphics pipeline.  
 GPU’s pipeline is powered by the technologies OpenGL [3], Vulkan [4] and 
Direct3D [5] Application Programming Interfaces (APIs). The applications vary from 
User Interface (UI) [6] to rendering of Volumetric Data for Medical Applications 

                                                           
* Corresponding Author 



36 Á. I. SZŰCS 

Pollack Periodica 14, 2019, 1 

(VDMA) with complex light simulations [7] or real-time games with outdoor and 
indoor scenes [8]. To harness the power of GPUs one needs to write programs known as 
‘shaders’. 
 Shader programs are often written in OpenGL Shading Language (GLSL) [9] or 
High-Level Shading Language (HLSL) [10]. These languages provide high level and 
portable constructs to program the Vertex, Tessellation, Pixel and Fragment stages of 
the rendering pipeline. 
 Execution of shaders is emitted in the GPU driver by dispatching API calls to the 
hardware. OpenGL drivers are complex programs running allocation optimizations with 
a built-in shader compiler [11]. In modern drivers for D3D12 and Vulkan, the 
programmer has broad control without a built-in compiler. Graphics compilation is the 
transformation that turns the shader code into GPU assembly. The shader is often 
directly compiled into Instruction Set Architecture (ISA) code. 
 The direct translations often lead to complicated and underperforming toolchains, 
therefore Khronos Group created a standardized intermediate language for shader 
compilers [12]. It is a binary intermediate language representing graphics-shader stages 
and compute kernels for multiple Khronos APIs, including OpenGL and Vulkan [13]. 
The success is represented by industry wide support including the open-sourcing of the 
latest Microsoft HLSL compiler [14].   
 Even though there is an industry-wide support for these GPU programming 
technologies, quality assurance remains unsolved. Despite there are implementations for 
unit testing [15], [16] supporting HLSL shaders [17], these technologies are no longer 
developed and can’t be applied on current problems of graphics and compute shader 
solutions. 

1.1. Contributions 

 The work is inspired by different projects on graphics programming, including 
testing of graphics shader compilers [11], high level constructions of rendering systems 
in modern game engines [18] and current advances in shader compilation [19]. A 
technique is presented - preliminary engine - Arrakis for testing and executing GLSL 
programs based on the intermediate representation [20] and Vulkan. 
 Arrakis changes the methodology of graphics development by combining test-driven 
development process with a construction of high-level descriptors in compute and 
graphics. Implementing rendering and compute solutions often started by writing the 
shaders based on a Single Instruction Multiple Thread (SIMT) programming model, 
followed by the construction of API calls on the CPU. Given there is no complete 
debugging and profiling tools for graphics programming, the solution detects bugs in 
early stages during development of complex rendering and compute scenarios. The 
solution aids Vulkan by generating C++ equivalence of shaders. Additionally, the 
developed solution, Arrakis, provides a high-level construction of resources and renders 
passes extracted as a graph. 
 The demonstration is a campaign where an example program was developed with 
the two aforementioned processes targeting a desktop, workstation environment. The 
implementation is a ray casting project rendering the voxel version of the Stanford 
Bunny [21] in a Cornell Box [21]. 



 IMPROVING GRAPHICS PROGRAMMING WITH SHADER TESTS 37 

Pollack Periodica 14, 2019, 1 

1.2. Key findings 

 During the development of the project utilizing Arrakis, many caveats have been 
found in graphics programming. Key findings are as follows: 

Most errors are introduced by changing the programming model  

 During manual development most of the errors have been identified which were due 
to the change of programming model between the shader and the host. The counter 
intuitive change from GLSL language to a CPU code often resulted in errors. The 
shader language constructions, layout qualifiers and explicit cache handling are 
different from host side code (C++ has been used to implement host code). Due to the 
complex nature of Vulkan with its’ low level handles and logic, this problem was even 
more challenging to solve [22]. 

Host and device setup mismatch results in poor quality and slow development times  

  Implementing rendering algorithms emitting the setup, parameter setting and 
draw calls from the host side is inevitable. The modern environment in Vulkan, the 
Validation Layers (VL) can be used, which can report code setups in many scenarios, 
incorrect descriptor set binding or update [23]. These tools are powerful but they cannot 
automatically generate the correct API calls for the shader code, pressuring the 
development time. 

Test-driven development of shaders can improve graphics development 

 In the scenario it has been found that utilizing Arrakis can yield many benefits in 
contrast to manual programming of compute and graphics programs. It is possible to 
generate most of the API setups and constructions from shaders without any additional 
extensions to GLSL. The automatic C++ ‘shader’ generation helped to develop 
rendering and compute modules with test-driven development. The campaign resulted 
in shorter development time and a significant improvement in quality [24]. 

In summary, the key contributions are: 

• An approach to test-driven development in graphics programming to increase 
quality and overcome manual testing of computer software; 

• An implementation as an engine, Arrakis, for testing and semi-automating 
development of graphics and compute workloads utilizing GLSL shaders in a 
Vulkan environment; 

• A project to render the Volumetric Stanford Bunny (VSB). 

The paper is accompanied by a series of posts and a poster detailing the journey to 
develop the technology [25], [26]. 

2. Background 

 In the project the focus is on Vulkan graphics and compute [23], which is the best 
cross platform, low driver overhead compute and graphics API. The shading language is 
GLSL version 460 (Table I). 



38 Á. I. SZŰCS 

Pollack Periodica 14, 2019, 1 

Table I 

Test bed for development 

Processor AMD Ryzen R7 1800X 
Motherboard Asus Crosshair VI Hero 
Memory G.Skill 16GB TridentZ DDR4 
GPU 2x AMD Radeon R9 Nano 4GB 
OS Windows 10 – Creators Fall Update 
Driver Radeon Crimson 17.7 
Vulkan LunarG SDK 1.0.61.1 

 Vulkan API only accepts SPIR-V [20] as a shading program language, which is low-
level and hardly human readable. Building on this fact, it has been generated from 
GLSL with the standard GLSlang compiler [12]. 
 Connecting to SPIR-V, Arrakis, is built on top of SPIRV-Cross, which can emit 
transformations on shader code accepting HLSL, GLSL or GLSL-ES [19]. It has an 
experimental C++ support, which is extended for the project’s purposes and utilized to 
generate compile time entities. 

2.1. Output problem 

 Testing a rendering algorithm or a simple stage of the rendering pipeline is a 
challenging task. It is often hard to find a ground truth for a given setup of virtual scene 
known as an oracle [11], (Fig. 1). The task of testing in graphics programming is often 
done by rendering engineers, who are manually adjusting algorithms to output 
debugging primitives. They simply check intermediate steps of their programs’ output 
by eye. This task is time consuming and can be error prone in a large code base. 

 

Fig. 1. Rendering error visualizing Volumetric Stanford Bunny in a Cornell Box 



 IMPROVING GRAPHICS PROGRAMMING WITH SHADER TESTS 39 

Pollack Periodica 14, 2019, 1 

 Another challenge is, between shader compilers, the results might not be consistent, 
which complicates the testing of programs [11]. 

2.2. Test-driven shader development and related work 

 To overcome the difficulties early in the project life-cycle the process test-driven 
development is often a viable solution. In Test-Driven Development (TDD) the program 
is written against the requirements, which are converted into very specific and bounded 
test cases. During the development the software is improved to pass the tests. This is 
opposed to the general approach of software development, where modules can be added 
without any additional tests. 

 Applying TDD to shader development is not straightforward and the current 
literature is moderate on addressing problems [22]. Solutions often test the final 
rendered images with a quality criteria or measure based on image quantities [27]. 
These solutions are powerful in capturing complex problems in the final rendered 
image; nevertheless, they are hard to apply early in the development process.  

 Smart image quality assessment algorithm is developed using a self-organizing map, 
which can handle random scene elements [24]. This method requires feature vectors for 
training the algorithm to find errors, which can be challenging in the early stages of the 
development. 

 Soft-based CPU Vulkan implementation, the project’s goal was to implement a 
software based Vulkan renderer bringing the API to non-supported systems. Although 
the project is not finished, it could be a viable future solution to test graphics programs 
on the CPU. The drawback of the solution is that every fixed function state and 
extensions affecting the states need to be implemented, which is hard to complete, 
whereas the hardware execution can lead to errors [28].  

 Automated testing of graphics shader compilers, a complete and extensive project is 
introduced by Donaldson et al. [11]. The approach focuses on automated tests of 
graphics compilers. The solution GLFuzz builds on recent advances in compiler testing, 
known as fuzzing. It automatically fuzzes shader code by creating equivalent graphics 
programs and testing against their output automatically. The solution is robust and 
showed success by finding more than 60 distinct bugs in different OpenGL shader 
compilers. Their findings show that shader compiler defects are prevalent, and that 
metamorphic testing provides an effective means for detecting them automatically. 
 The Arrakis project describes a broad testing solution, which can be applied for 
graphics programming. Based on SPIR-V mappings to C++ , it has been found that 
turning shader code into equivalent C++, whilst preserving the semantics is possible. 

3. Testing approach 

 An approach, Arrakis for testing of GLSL shaders with a Vulkan environment is 
presented (Fig. 2). Noting it is applicable to HLSL based on standardized intermediate 



40 Á. I. SZŰCS 

Pollack Periodica 14, 2019, 1 

representation (SPIR-V). Focusing on a ray casting solution for the Volumetric Stanford 
bunny in a Cornell box the techniques are physically based [29]. 
 Testing in Arrakis is the following: 

• Equivalent C++ shader generation. Automatically generate SPIR-V and C++ 
with the utilization of GLSlang and the extension of SPIRV-Cross from the 
shader programs; 

• Graphics resource generation. After the static analysis of the code it maps 
SPIR-V types to high-level constructs, Buffers or Textures based on Interface 
Blocks or Descriptor set bindings; 

• FrameGraph setup and execution. Building on compile time information, the 
developer can build up FrameGraphs, which can speed up development of 
graphics programs. 

 

Fig. 2. Steps with Arrakis developing shaders 



 IMPROVING GRAPHICS PROGRAMMING WITH SHADER TESTS 41 

Pollack Periodica 14, 2019, 1 

3.1. C++ shader generation 

 Equivalent code is generated from the original GLSL shader by mapping the SPIR-
V types to standard C++ types with an OpenGL Mathematics (GLM) [30] backend. It 
must be noted that the floating-point representation of numbers on Graphics Processors 
are different and modifiable, having a mathematically strict equivalent program is not 
guaranteed [11]. 
 The solution builds extensively on SPIRV-Cross. The compilation of SPIR-V to 
C++ works as follows. 

 Header emission and execution model decision. The first pass of the compilation 
includes the basic setup of headers and execution modes. The inclusion of headers is 
easy and straightforward because standard C++ types and interfaces are used only to 
communicate with the remainder of the renderer. In the next step traversal of the SPIR-
V binary with the functionality provided by SPIRV-Cross is performed until a necessary 
entry point is found to decide execution mode of a shader. This is an important step to 
complete because the type of the shader helps to determine, which stage special built-in 
functionality is required. It must be noted that if an execution mode is found, which is 
not supported an exception is thrown, helping the programmer to find compilation or 
setup errors in shader code. 

 Generation of resources. At this stage the solution is equipped with the knowledge 
of the shader execution type, and the construction of resources for the transformed 
shader can be started. The list of resources and their mappings are shown in Table II. 
This is a crucial part of the compilation because for testing and setting up of a 
FrameGraph Code I all the necessary types need to be generated and set up.  

 Emission of shader functions. The next step is the emittance of shader functions. It is 
a necessary step before emitting the main block because most of the shader code is often 
organized in functions to keep modularity and readability. Similar to the execution 
mode decision the solution looks for entries describing user defined functions based on 
the SPIR-V specification [20]. When a function entry is found the generation of the 
function body is started with all the local variables and optional control flows. These 
steps are repeated as long as there are unvisited function entries in the SPIR-V binary. It 
must be noted; these steps of the generation are only possible because SPIR-V is 
standard throughout all the vendors and implementations, so the solution can create a 
mapping between SPIR-V and GLM types. 

Table II 

Mapping of SPIR-V to Arrakis types 

SPIR-V Code Arrakis Types 
OpExecutionMode 
OpTypeImage 
OpTypeSampler 
OpVariable (Interface, Storage 
Buffer ) 

ArrakisShaderTransformed 
ArrakisTexture 
ArrakisSampler 
ArrakisBuffer 



42 Á. I. SZŰCS 

Pollack Periodica 14, 2019, 1 

Code I 

Programmer’s view of a FrameGraph 

ArrakisFrameGraph vFrameGraph; 

 

std::vector<ArrakisShaderTransformed*> vCubeShaders; 

 

ArrakisShaderStagev VertexStage=ArrakisShaderStage::VERTEX; 

ArrakisShaderStage vFragmentStage=ArrakisShaderStage::FRAGMENT; 

 

vCubeShaders = {new CubeVert(vVertexStage), new CubeFrag(vFragmentStage)}; 

 

std::vector<ArrakisShaderTransformed*> vGuiShaders; 

vGuiShaders = {new ImguiVert(vVertexStage), new ImguiFrag{vFragmentStage}}; 

 

ArrakisImGuiRenderModule::AddRenderGuiPass(vFrameGraph,vCubeShaders); 

ArrakisImGuiRenderModule::AddRenderGuiPass(vFrameGraph,vGuiShaders); 

 Emission of decorations and interface override parts. In the last step of the 
conversion the basic functionality to instantiate a transformed shader is emitted, 
including 

• Transformed shader constructor assembly; 
• Stage I/O emittance; 
• Interface function overrides. 

 During this step, finalization of all the setups is completed in the previous stages. At 
this stage we are assembling the constructor of the transformed shader to set the handles 
of each of the connecting resources. This is important because in future setups of the 
FrameGraph, a builder will traverse this list and will omit or occupy a particular 
resource. 
 The emission of stage I/O is built in preceding steps and emitted in this part of the 
solution. The stage inputs and outputs are represented by their transformed Arrakis 
types and stored as member variables in the generated entities. 
 After the transformed types and resources are built by Arrakis function overrides are 
created of a generated shader interface. These cover the main functionality to read, write 
resources as well as execution of the shader.  
 After the conversion of shaders from SPIR-V, debugging the transformed graphics 
programs using a regular unit testing library Google Test or Catch is feasible. 

3.2. FrameGraph ordering 

 During the project of implementing the ray caster with test-driven development 
obstacles has been found in the development. They were introduced due to the 
expressive nature of the graphics Vulkan API. During development of the system it was 
found that the implementation became tied to the rendering API and it became more 



 IMPROVING GRAPHICS PROGRAMMING WITH SHADER TESTS 43 

Pollack Periodica 14, 2019, 1 

limited in extensibility. Due to these shortcomings a FrameGraph architecture was 
implemented with a Rendering Hardware Interface (RHI) [18]. 
 The FrameGraph is an architecture, which abstracts how render passes and resources 
are set up and executed during the runtime. The foundation of the system is to represent 
resources and render passes (A render pass can be seen as a set of draw calls ) as nodes 
and the dependencies between them as edges of a graph can be seen in Fig. 3. With the 
utilization of FrameGraph the system can build up compile time knowledge of a frame 
before it is rendered or even dispatched for processing. It must be noted to reach the 
maximum level of modularity and extensibility, this part of Arrakis was strongly built 
on C++17 features. 

 

Fig. 3. A visual example of a FrameGraph 

 Using FrameGraph to implement the solution increased the productivity, while 
greater control over resources and frame times was reached. A Rendering Hardware 
Interface was also implemented to decouple the core from third-party headers and 
implementations. With this extension the solution can be extended to D3D12  
also [5], [31]. 

4. Development time evaluation and measurements 

 The project’s goal was to implement the same ray caster with two methodologies. 
The first was a manual implementation with no usage of shader transformation or either 
FrameGraphs, where the latter utilized both of shader transformation and FrameGraph 
technologies. 
 For the first approach the functionality with stand-alone classes and functions were 
implemented. In this scenario the solution was implemented by approximately 5000 
Sources Lines of Code (SLOC) excluding the shader programs. During the 
implementation severe bugs had to be overcome: 

• Mismatch between graphics code and CPU sided setup of shader parameters; 
• Incorrect allocations in texture and buffer memory; 
• Shader layout qualifier (e.g. std450) mismatch affecting byte offset in buffers. 



44 Á. I. SZŰCS 

Pollack Periodica 14, 2019, 1 

 One of the errors is demonstrated in Fig. 1, showing a bug introduced by incorrect 
interpolation in world coordinates. This approach took an experienced programmer 
almost 3 months to implement the necessary algorithms. During this programming 
phase all the caveats mentioned in the paper were collected, while developing the 
necessary technology to overcome these difficulties. 
 For the second approach both the FrameGraphs with a Rendering Hardware 
Interface and shader transformations were used. The effective implementation took 
around 500 SLOC to complete the task excluding the shader codes. For unit testing the 
graphics code, Google Test was used on the transformed shaders. By using test-driven 
development for GPU programs, overcoming the aforementioned bugs was possible. 
The results were significantly better due the high-level control and tests of shader and 
pipeline code. The entire implementation took 2 - 3 weeks to complete. 

5. Concluding remarks and future directions 

 A large project aimed at test-driven development of shaders was presented with 
high-level construct over a simple frame. Results show that bugs and errors are frequent 
due to the expressive nature of modern APIs with no direct control over quality, 
whereas the change in programming model makes it even harder to solve challenges. 
 A complex and comprehensive solution, which aims to solve the caveats in graphics 
programming with mostly compile-time constructs was demonstrated. The solution is 
broad; however, the Arrakis approach cannot solve all the difficulties in graphics 
programming. It was found that static generation of converted shaders has significant 
potential in aiding the programmer during short delivery times. The problem is for large 
codebases it has caveats, it assumes a well-built continuous integration system and an 
automated toolchain to compile large number of shaders, whereas handling their 
extensions is a challenging task. 
 The plan is to develop Arrakis to handle a broader set of extensions and to 
implement more scientific applications, as general number systems or partial differential 
equation solvers. Considering the solution of statically generating resources and 
modules of the FrameGraph will be kept, however on the execution of shaders a 
different approach might be taken by implementing a Vulkan layer to lower the 
toolchain pressure. This approach avoids the need to implement extensions and the 
execution would be running on the native hardware. 

Acknowledgements 

 This work was supported in part by Advanced Micro Devices Radeon Technologies 
Group. Information on the Radeon Technologies Group can be obtained from 
https://radeon.com/. This research was also supported by Zeno Vision Limited and 
ELTE EIT Digital and by the European Union, co-financed by the European Social 
Fund (EFOP-3.6.3-VEKOP-16-2017-00001). 
 



 IMPROVING GRAPHICS PROGRAMMING WITH SHADER TESTS 45 

Pollack Periodica 14, 2019, 1 

Open Access statement 

This is an open-access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited, a link to the CC License is provided, and 
changes - if any - are indicated. (SID_1) 

References 

[1] Tukora B. Szalay T. High performance computing on graphics processing units, Pollack 

Periodica, Vol. 3, No. 2, 2008, pp. 27‒34. 
[2] Magoulès F., Ahamed A. K. C., Putanowicz R. Fast iterative solvers for large compressed-

sparse row linear systems on graphics processing unit, Pollack Periodica, Vol. 10, No.1, 
2015, pp. 3–18. 

[3] Group K. OpenGL, 2017, https://www.khronos.org/registry/OpenGL-Refpages/gl4/, (last 
visited 1 November 2017). 

[4] Group K. Vulkan, 2017, https://www.khronos.org/vulkan/, (last visited 1 November 2017). 
[5] Microsoft, Direct3D 12 Programming Guide, 2017, https://msdn.microsoft.com/en-

us/library/windows/desktop/dn899121(v=vs.85).aspx, (last visited 1 November 2017). 
[6] Cornut O. dearImgui, https://github.com/ocornut/imgui 2017, (last visited 1 November 

2017).  
[7] Jönsson D., Kronander J., Ropinski T., Ynnerman A. Historygrams: Enabling interactive 

global illumination in direct volume rendering using photon mapping, IEEE Transactions 

on Visualization and Computer Graphics, Vol. 18, No. 12, 2012, pp. 2364‒2371. 
[8] Silvennoinen A., Timonen V. Multi-scale global illumination in quantum break, 2015, 

http://wili.cc/research/quantum_break/, (last visited 13 November 2017).  
[9] Group K. OpenGL shading language, 2017, https://www.khronos.org/opengl/ 

wiki/OpenGL_Shading_Language, (last visited 1 November 2017). 
[10] Microsoft, HLSL, 2017, https://msdn.microsoft.com/en-us/library/windows/desktop/ 

bb509561(v=vs.85).aspx, (last visited 1 November 2017). 
[11] Donaldson A. F., Evrard H., Lascu A., Thomson P. Automated testing of graphics shader 

compilers, Proc. of the ACM on Program. Lang, Vol. 1, No. OOPSLA, 2017, Paper No. 93. 
[12] Group K. GlSlang Compiler, 2017, https://github.com/KhronosGroup/glslang, (last visited 

1 November 2017). 
[13] Inc. L. Vulkan, 2017, https://vulkan.lunarg.com/, (last visited 1 November 2017). 
[14] Microsoft, DirectX Shader Compiler, 2017, https://github.com/Microsoft/Direct 

XShaderCompiler, (last visited 1 November 2017). 
[15] Google, GLSL unit is a testing framework in Javascript for WebGL, 2017, 

https://code.google.com/archive/p/glsl-unit/, (last visited 1 November 2017). 
[16] Rakos D. Unit testing OpenGL Apple, 2010, http://rastergrid.com/blog/2010/02/unit-

testing-opengl-applications/, (last visited 1 November 2017). 
[17] Jones T. SlimShader, 2014, https://github.com/tgjones/slimshader, (last visited 1 November 

2017). 
[18] O’Donnell Y. FrameGraph: Extensible rendering architecture in frostbite, 2017, 

https://www.ea.com/frostbite/news/framegraph-extensible-rendering-architecture-in-
frostbite, (last visited 1 November 2017). 

[19] Group K. SPIRV-Cross, 2017, https://github.com/KhronosGroup/SPIRV-Cross, (last visited 
1 November 2017). 



46 Á. I. SZŰCS 

Pollack Periodica 14, 2019, 1 

[20] Group K. Standard portable intermediate representation, 2017, https://www.khronos. 
org/registry/spir-v/specs/1.2/SPIRV.html, (last visited 1 November 2017). 

[21] McGuire M. Computer graphics archive, 2017, http://casual-effects.com/data/index.html, 
(last visited 1 November 2017). 

[22] Lauritzen A. Future directions for compute-for-graphics, 2017, 
https://www.ea.com/news/seed-siggraph2017-compute-for-graphics, (last visited 14 
November 2017). 

[23] Sellers G., Kessenich J. Vulkan programming guide: The official guide to learning Vulkan, 
Addison-Wesley, 2016. 

[24] Amann J., Weber B., Wüthrich C. A. Using image quality assessment to test rendering 
algorithms, In: 21st International Conference in Central Europe on Computer Graphics, 

Visualization and Computer Vision in cooperation with EUROGRAPHICS Association, M. 
M. Oliveira, V. Skala (Eds.), Plzen, Czech Republic, 24-27 June 2013, pp. 205‒214. 

[25] Szucs, A. I. Unit testing GPU code, 2017, https://www.hustef.hu/speakerslist/ 
speaker_adamistvanszucs/, (last visited 1 November 2017). 

[26] Gralia R. E. Zeno vision limited, 2017, https://www.zeno.ai, (last visited 1 November 
2017). 

[27] Herzog R., Čadík M., Aydčin T. O., Kim K. I., Myszkowski K., Seidel H. P. (2012). 
NoRM: No-reference image quality metric for realistic image synthesis, Computer 

Graphics Forum, Vol. 31, No. 2, part 3, 2012, pp. 545‒554. 
[28] Lifshay J. Vulkan-CPU, 2017, https://github.com/programmerjake/vulkan-cpu, (last visited 

1 November 2017). 
[29] Lagarde S., de Rousiers C, Moving frostbite to physically based rendering 3.0, Electronic 

Arts Frostbite, 2014, https://www.slideshare.net/DICEStudio/moving-frostbite-to-
physically-based-rendering, (last visited 12 November 2017). 

[30] Group K. OpenGL mathematics, 2017, https://glm.g-truc.net/0.9.8/index.html, (last visited 
1 November 2017). 

[31] Games O. Ashes of the singularity, 2016, http://www.ashesofthesingularity.com/, (last 
visited 1 November 2017). 

 
 
 
 
 


