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Our study focuses on some methods for identifying a ‘real’ cluster structure 
where objects are classified according to their value profile in a set of variables. In 
the present paper we test the usefulness of various coefficients used mainly in CA 
(cluster analysis) for evaluating the quality of a cluster solution, with an emphasis on 
the newly developed MORI coefficient (Vargha–Bergman–Takács [2016]; this coef-
ficient is described in a later section). Due to the high complexity of most classifica-
tion situations, it is extremely difficult to derive conclusions with a high degree of 
generalizability, and therefore, we chose to address only two classification cases, 
admittedly idealized but still of considerable interest. First, suppose that the objects 
to be classified (in our case, mostly persons) are characterized by p quantitative vari-
ables. This means that each object is a point in the p-dimensional Euclidean space. 
The number of objects can be arbitrary. The two classification cases are as follows: 

1. A perfect classification structure, where every object belongs to 
one of k possible classes (p-dimensional sets) and all objects in the 
same class have the same value pattern (falling into the same  
p-dimensional point). This theoretical, ‘true’ data set is regarded to be 
error free. Mathematically, this structure can be defined by k discrete 
points in the p-dimensional space, where these k discrete points, the 
theoretical centroids, define k different types. The totality/population 
of all objects in the p-dimensional space having the same type is re-
garded as a theoretical class. In practice, such a data set does not exist; 
there may exist only an empirical data set corresponding to the theoret-
ical one. The variables generating the empirical data set are identical to 
the theoretical variables except that a measurement error is added  
to each true score. If these errors are independent and normally dis-
tributed, the multivariate distribution of the empirical data set will  
follow a mixture of p-dimensional normal distributions with k compo-
nents, whose centres are the k theoretical centroids. 

2. A ‘bad’ alternative to Case 1, where there exists only a single 
point in the p-dimensional space where the objects accumulate. In this 
case, the data are distributed according to a unimodal p-dimensional 
distribution. This case will be represented in our study by a multivari-
ate normal distribution. The univariate normal components may or 
may not be correlated with each other. In each case, no real classifica-
tion structure exists, in the sense that the structure can be perfectly de-
scribed by the single centre of a multivariate unimodal distribution.  
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In Case 1, it is assumed that the data set subjected to empirical analysis reflects a 
theoretically ‘true’ data set but with errors of measurement added to the variable 
values. Two examples of a data set of this type are cluster-analysed. We then study 
the extent to which the size of QCs (quality coefficients) for solutions with different 
numbers of clusters indicates the ‘true’ TCLS (theoretical classification structure) 
with regard to the number of classes, degree of reproduction of its class centroids, 
and degree of correspondence between cluster membership and true class member-
ship of the objects. The emphasis is on the usefulness of the MORI coefficient for 
these purposes. Case 2 is examined by analysing a random sample from a bivariate 
normal data set with correlated variables.  

1. QCs and MORI coefficients 

In CA, after a cluster solution has been obtained, clustering QCs are often used to 
evaluate how good a cluster model is. In the abundant literature on classification 
analysis, many QCs have been introduced (e.g. Desgraupes [2017]). Different QCs 
focus on different aspects of a cluster structure; thus, it is very important to choose 
an appropriate set of QCs to evaluate a concrete model. In general, QCs try  
to measure one or both of two main characteristics of a cluster structure, namely, 
compactness (cohesion or cluster homogeneity) and separability (see Vargha–
Bergman–Takács [2016] for details). In the analyses described in the present study, 
the following QCs were used to evaluate the goodness of an ECLS ([empirical  
cluster structure]; see Vargha–Bergman–Takács [2016] and Bergman–Vargha–Kövi 
[2017] for detailed descriptions):  

1. HC (homogeneity coefficient) of a cluster. This is the average of 
the pairwise within-cluster distances of its cases. To evaluate a cluster 
solution, HCmean can be used as a QC. It is the weighted mean of the 
cluster HC values (the weights are the cluster sizes). If the input  
variables are not in standardized form, HCmean is highly dependent 
on the variances. For this reason, in this case, we suggest dividing 
HCmean by the average of the variances of the input variables, thus 
obtaining HCmeanS, a standardized form of HCmean. 

2. EESS% (explained error sum of square percentage). This is a 
multivariate generalization of eta-squared used in analysis of variance: 

                                 EESS% = 100(SStotal – SScluster)/SStotal,     /1/ 
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where SStotal is the sum, over the entire sample, of each case’s sum of 
squared deviations of each variable value from the mean for the  
entire sample in that variable, and SScluster is the sum, over the  
clusters, of the within-cluster sums of squared deviations of the cases 
from the variable centroids. 

3. PB (cluster point-biserial correlation). This is the Pearson corre-
lation, computed on the sample of all pairs of cases, between the  
binary variable of whether a pair’s cases belong to the same cluster (0) 
or not (1), and the distance between that pair’s cases. A well-known 
formula for PB (e.g. Glass–Hopkins [1996]) is: 

                                               1 0 1 0

 1

 
PB .

(  1)n

M M n n

s n n





 /2/ 

Here, M0 is the average pairwise within-cluster case distance; M1 is 
the average pairwise between-cluster case distance; ( 1) / 2n N N   

is the number of pairs of cases in the total sample of size N; 0n  and 1n  

denote the number of pairs of cases that belong to the same and to dif-
ferent clusters, respectively; and,  – 1ns  is the standard deviation of the 

pairwise differences between cases in the total sample of size n. 
4. CLdelta. Considering that PB depends primarily on the 

1 0M M-  difference, the first component in formula /2/ – being a kind 

of standardized difference of 1 0M M- – can also be used as a QC, 

called CLdelta. It can be explained analogously to the well-known  
Cohen’s delta effect size measure (Cohen [1977]). CLdelta indicates 
the extent to which cases are closer to their own cluster members than 
to cases from other clusters.  

5. A simplified version of the Silhouette coefficient (SC). This is  
defined as follows: First, compute SCi for each case i in the sample us-
ing formula /3/:  

                                              SC (  ) / max( ,  ),i B A A B   /3/ 

where A is the distance from the case to the centroid of the cluster 
which the case belongs to and B is the minimal distance from the case 
to the centroid of any other cluster. SC is the average of all the cases’ 
SCi values. A high SC value indicates that, on average, cases are sub-
stantially closer to their own cluster centres than to the nearest of the 
other cluster centres.  
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HCmean (or HCmeanS) and EESS% reflect the cohesion of an ECLS, whereas 
PB, CLdelta, and SC primarily reflect the extent of separability. Based on  
suggestions in the literature and on our own empirical experience, given a good 
structure, HCmeanS is expected to be well less than 1, EESS% > 65%, PB > 0.30, 
CLdelta > 0.80, and SC > 0.50. (See Table 1.)  

Table 1 

Basic features of the applied clustering quality coefficients 

Quality 
coefficient 

Minimum Maximum Indication of an acceptable cluster structure  

HCmean 0 no limit < 1 if the input variables are standardized – otherwise 

it depends on the scales of the input variables 

HCmeanS 0 no limit < 1 

EESS% 0 100 > 65% 

PB 0 1 > 0.30 

CLdelta 0 no limit > 0.80 

SC 0 1 > 0.50 

 
There are plenty of QCs (e.g. Desgraupes [2017], where 43 QCs are explained) 

and one may ask why we chose only these coefficients for our analyses, and not 
others. In a person-oriented context, it is not uncommon that two distinct types are 
relatively close to each other. Primarily, for this reason, cluster structures in such 
situations have to be evaluated primarily by cohesion indices, whose best representa-
tives are EESS% (measuring the explained variance proportion of the input variables 
through a cluster code variable) and HCmean or HCmeanS (directly measuring the 
average homogeneity of the clusters). Secondarily, cluster structures have to be eval-
uated by global separation indices (assessing both compactness and separability), 
from among which PB is a well-explainable correlation-type measure and CLdelta is 
a Cohen’s delta type coefficient used in two-group comparisons for assessing the 
effect size. Only in some special cases of person-oriented studies do separation indi-
ces carry relevant information. For this reason, in our analyses, we chose one well-
known representative, SC, from this class of QCs.  

To obtain further evidence for the quality of a cluster solution for real data, it is 
also important to show that the solution is – significantly and in a measurable way – 
better than a solution obtained on a random data set of the same size, with the same 
number of variables and same number of clusters. For this purpose, Vargha–
Bergman–Takács [2016] developed the MORI coefficient. MORI measures the rela-
tive improvement of an ECLS (as measured by a QC) obtained for real data com-
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pared to that obtained for the ECLSs resulting from analysing several types of ran-
dom data sets with the same general properties as the real data set. MORI is comput-
ed according to the following formula: 

                                            rand

best rand

QC – QC
MORI .

QC  – QC
  /4/ 

In this formula, QC is the quality measure of an ECLS that we would like to 
evaluate, QCrand is the average of the QCs of the ECLSs resulting from analysing 
simulated random data, and QCbest is the value of QC obtained when the cluster 
structure is perfect. Specifically, QCbest = 100 for EESS%, 1 for PB and SC, and 0 
for HCmean. If QCbest is theoretically infinitely large (as in the case of CLdelta), it is 
suggested that the denominator of /4/ be set equal to QCrand. In this case,  
MORI measures the improvement in QC relative to the base value of QCrand  
(Vargha–Bergman–Takács [2016]). 

 In the validation module of the ROPstat statistical package (Vargha–Torma–
Bergman [2015]), MORI can be computed for all the QCs presented above for each 
of these four options for the type of random control data set: 

1. independent random permutations of the values of the input  
variables, 

2. random data from independent continuous uniform distributions, 
3. random data from independent normal distributions, 
4. random data from correlated normal distributions, with intercor-

relations matching the correlations among the input variables. 
 
For each of the options above, significance levels and confidence intervals can be 

computed for the MORI coefficients. ROPstat allows at most 100 independent  
random Rep (replications).  

The aim of this study is also to compare the usefulness of these four types of  
random control data sets for identifying a TCLS.  

2. Creation of theoretical and empirical samples 

Suppose that each subject in a population of size N can be characterized by a set 
of quantitative traits (value pattern). A TCLS exists in this population if each sub-
ject´s value profile is identical to one of k value patterns of the given traits, called 
types, and k < N. Each type defines one class in the population. In psychology, k is 
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normally expected to be much smaller than N, say less than 10. Sometimes, we refer 
to a TCLS as a real or natural classification structure, considering the fact that it truly 
exists in nature and can potentially be detected. In practice, finding a TCLS is  
difficult because the data set for such a structure is not observed directly; there exists 
only an empirical data set that corresponds to the theoretical data set but with errors 
of measurements added to the variables in the theoretical data set.  

Below, we present examples of two concrete TCLSs with some continuous unob-
servable theoretical traits: one based on a real empirical study and the other a com-
pletely artificial example. For each example, we will construct observed variables 
(measurements of each trait) with an error component added to the original theoreti-
cal value (empirical data set). Then, analyses will be performed on this data set to see 
how well the studied TCLS can be identified by standard k-means CAs and by the 
QCs and the MORI coefficient introduced above. 

The first theoretical sample (Teo7types) was derived from a sociolinguistic  
classification study of Romanian ethnic minority persons living in Hungary  
(Vargha–Borbély [2017]). Five sociolinguistic variables were included in the value 
profile (minority language competence, language use in family, language use in 
church, minority identity, and attitude toward minority language) and a seven-cluster 
solution was found, with attractive MORI indices (see Table 8; Vargha–Borbély 
[2017]). The clusters identified seven types of speakers in the clearly nonlinear pro-
cess of language shift and assimilation from a bilingual minority status to a monolin-
gual Hungarian status. Based on these positive results, we chose as our artificial 
TCLS the centroids of this solution.1 (See Table 2.)  

Table 2 

Teo7types data set – centroids and sizes of the theoretical clusters derived from the Romanian sample 

Theoretical 
cluster 

Variable 
Cluster size 

V1 V2 V3 V4 V5 

TC1 1.84 2.64 1.86 1.67 1.95 195 

TC2 3.43 2.98 2.08 1.77 2.16 160 

TC3 2.62 4.23 2.05 1.86 3.10 175 

TC4 3.88 4.51 1.88 1.74 4.25 115 

TC5 3.86 4.70 4.56 1.71 4.27 95 

TC6 4.00 4.50 2.42 5.00 4.61 50 

TC7 3.61 4.63 4.71 4.49 4.32 115 

  
1 The original scales were modified by appropriate linear transformations to scales whose theoretical mini-

mum and maximum values were 1 and 5, respectively. 
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It consisted of 7 clusters based on 5 variables, as in Table 2. Each theoretical 
cluster was error-free, consisting of cases with the same value pattern, corresponding 
to the TCLS in Table 2. The relative cluster sizes were borrowed from Vargha–
Borbély [2017] but the sizes were multiplied by 5 to have a substantial sample size of 
905. (See the last column in Table 2.)  

 The second, simpler theoretical sample (Teo4types) was borrowed from  
Bergman–Vargha–Kövi [2017]. It is an artificial sample (  400N  ) consisting of 
4 clusters based on 4 variables, as in Figure 1. Each theoretical cluster was error-free, 
consisting of cases with the same value pattern corresponding to the TCLS of  
Figure 1. Cluster sizes were also borrowed from Bergman–Vargha–Kövi [2017]:  
160, 40, 160, and 40, respectively, for types A to D.  

Figure 1. Teo4types data set – artificial TCLS with four clusters (types) and four variables  

0

1

2

3

4

5

Type_A Type_B Type_C Type_D

Var1 Var2 Var3 Var4  

Note. Var: variable. 

 
For each theoretical sample, three artificial empirical samples (Emp7types1, 

Emp7types2, and Emp7types3 for Teo7types, and Emp4types1, Emp4types2, and 
Emp4types3 for Teo4types) were constructed in the following way: For each original 
(true) variable value in the theoretical data set, a new value was created by adding 
the value of an independent random N(0; SDi) variable, where SDi was set to 0.50, 
0.75, and 1 for the three samples, respectively. Then, each data value was rounded to 
the nearest integer. Data values less than 1 or greater than 5 were set to 1 or 5,  
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respectively. This algorithm yielded 5-point Likert-scale variables in the empirical 
samples, which is a common situation in practice. The three different SDi values 
yielded three levels of reliability for the derived variables. These levels were  
assessed by computing r2 values as explained variance proportions between the  
theoretical and the corresponding empirical variables, used as reliability estimates. 
These r2 values were between 0.65 and 0.81 (mean = 0.74) in Emp7types1, between 
0.52 and 0.71 (mean = 0.61) in Emp7types2, and between 0.40 and 0.57  
(mean = 0.50) in Emp7types3. Similarly, they were between 0.71 and 0.86  
(mean = 0.78) in Emp4types1, between 0.53 and 0.72 (mean = 0.65) in Emp4types2, 
and between 0.43 and 0.60 (mean = 0.50) in Emp4types3. These r2 means represent 
the three levels of reliability of the empirical variables (high, moderate, and low).  

3. Results 

In this session we will perform a CA within a bivariate random normal data set 
with  = 0.8 and will obtain some surprisingly high quality coefficients. Then results 
of analyses of two empirical data sets, each corresponding to a theoretical data set, 
will be presented. 

3.1. CA of a bivariate normal data set  

When a CA is performed on a sample, a certain ‘best solution’ is usually chosen, 
often based on the values of one or more QCs and on what appears meaningful and 
theoretically relevant. Since a CA will always provide a partition of the objects, it 
may be possible that the obtained solution is merely an artefact of the partitioning 
procedure. Our primary goal is to find a method that can identify these artefacts. 
Consider now the bivariate normal data case (Case 2). We generated a random sam-
ple of size 1,000 from a bivariate standard normal distribution with  = 0.8.  
(See Figure 2.) Based on this random sample, we conducted a hierarchical CA 
(Ward’s method with ASED [average squared Euclidean distance] of the cases), 
whose 4-cluster solution seemed to be the most promising (first large drop of 
EESS% occurring from k = 4 to 32 and clearly fulfilling the criteria mentioned in the 
previous section for all QCs; see Table 1).  

  
2 EESS% values in the hierarchical solution from k = 8 to k = 3: 87.29 (k = 8), 85.22 (k = 7), 83.02 (k = 6), 

80.53 (k = 5), 76.35 (k = 4), 69.50 (k = 3), and 50.29 (k = 2). 
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Figure 2. Scatter plot of a sample from a bivariate normal distribution with  = 0.8 
(N = 1,000) 
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Table 3 

Quality coefficients of the relocated 4- and 3-cluster solutions of 1,000 bivariate  

random normal data points with  = 0.8 

Cluster number 
Quality coefficient 

EESS% PB SC HCmean CLdelta HC range 

k = 4 79.89 0.395 0.706 0.403 0.876 0.33–0.56 

k = 3 73.09 0.446 0.746 0.545 0.922 0.43–0.66 

 
After performing a relocation on the obtained hierarchical solution (k-means CA), 

QCs improved even further (see the k = 4 row in Table 3) and indicated a good 
ECLS in terms of all the QCs (see Table 1). The centroids of the four clusters can be 
seen in Figure 3 (the two input variables are denoted here by Rnorm1 and Rnorm2). 
The cluster sizes of CL1 (cluster 1) to CL4 (cluster 4) were 155, 344, 343, and 158, 
respectively. To illustrate this solution, we created, once again, the scatter plot of 
Rnorm1 and Rnorm2, but used different shades (and/or forms) for the cases belong-
ing to the different clusters. (See Figure 4.) 
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Figure 3. The centroids of the 4-cluster k-means solution in a sample of 1,000 bivariate 

 random normal data points with  = 0.8 
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Note. CL1 to CL4 are clusters; Rnorm 1 and Rnorm 2 are input variables.  

Figure 4. The four clusters of Figure 3 on the scatter plot of Figure 2 
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Finally, using the MORI coefficient, we validated the 4-cluster k-means solution 
with types (1), (2), and (4) described below (in this case, type (3) is identical to type 
(1), so it was dropped), using Rep = 100. (See Table 4.) Here, recall that  
MORI measures the extent to which the QC value for an explored cluster structure is 
better than the average of the values of that QC (see Formula /4/) obtained for  
100 random control data sets of a certain type [(1), (2), or (4)], where k-means CAs 
are also performed with the same number of clusters (  4k  ) and variables (  2p  ). 
In type (1) (random permutation control), the random data file is generated by apply-
ing a random permutation on each column of the input variables in the original data 
file. This transformation leaves the distribution of the individual input variables  
unchanged but removes all the correlations among them. In type (2) (independent 
random uniform control), the random data file is created by generating a uniformly 
distributed random data sample of the same size. In type (4) (correlated random  
normal control), the random data file is created by generating a normally distributed 
random data sample of the same size, where the theoretical correlations between  
the generated random input variables are the same as the correlations between the 
original input variables. 

The MORI values obtained are summarized in Table 4. Based on these values, 
the following conclusions can be drawn: 

1. There is a large inconsistency among the MORI indices for the 
different types of the random control data set. 

2. In the correlated normal type (4), all the MORI values are around 
zero, as expected. 

3. However, if the QCs of the obtained 4-cluster k-means solution 
are compared to the average of the QCs of 100 4-cluster k-means solu-
tions of uncorrelated random data sets (see rows 1 and 2), the  
MORI values of the QCs measuring cohesion (EESS% and HCmean) 
increase substantially, especially with the random permutation option. 
This indicates that a strong relationship between the input variables 
can, in itself, be a factor that creates dense regions in the population, 
which, in turn, may be identified – certainly often falsely – as homo-
geneous clusters (see Figure 4) fairly better than those in random data 
sets of independent variables.  

4. The low – sometimes even negative – MORI values of the global 
separation indices PB and CLdelta seem to be able to indicate for all 
types of random control data sets that the explored ECLS is not better 
than the structure obtained from a random data sample.  
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Table 4 

MORI validation indices for five QCs for the k-means 4-cluster solution based  

on a data set with two correlated random normal variables with  = 0.8 
(Rep = 100) 

Type of random control data set 
Quality coefficient 

EESS% PB SC HCmean CLdelta 

(1) Random permutation* 0.44 0.03 0.16 0.44 0.02 

(2) Independent uniform  

distribution* 0.19 –0.26 –0.05 0.19 –0.27 

(4) Correlated normal  

distribution** 0.00 –0.01 0.01 0.00 –0.01 

* All positive MORI coefficients were significantly greater than 0 at the 1% significance level. 
** No MORI coefficients were significantly different from 0 at the 5% significance level. 
Note. Here and in the following tables, Rep: number of replications. Type (3) (independent random normal 

control) was dropped as it is identical to type (1). 
 
The behaviour of PB and CLdelta is, however, not always typical. It becomes obvi-

ous if we study the k-means 3-cluster solution3 based on the bivariate standard normal 
data set and validate it with the random permutation control (type (1)). In this case, the 
MORI values for PB (0.10) and CLdelta (0.14) are substantially above 0 at p < 0.01, 
and for EESS% (0.42) and HCmean (0.42), they are so high that they falsely suggest 
that the ‘real’ TCLS has been found. (The MORI value for SC is 0.25.) Similar results 
were obtained by Vargha and Borbély [2017] too when working with three correlated 
random normal variates. They showed that, despite the lack of a clear TCLS, the  
MORI values for EESS% and SC determined by all the types of random control data 
set, except for those for the correlated normal type, exceeded the 0.35 level substantial-
ly, sometimes exceeding even 0.50 (see Table 7; Vargha–Borbély [2017]). 

Summarizing the internal validation results of the explored 3- and 4-cluster solu-
tions based on the bivariate standard normal data set, we can conclude that only the 
MORI indices for the correlated normal random control data set could reliably indi-
cate that the explored 3- and 4-cluster solutions, despite exhibiting sufficiently high 
QC values, are mere artefacts. 

Without a clear definition of the concept of a TCLS, in general, we will not be 
able to assess whether cluster solutions similar to the ones obtained above are simply 
parsimonious descriptions of the data sets or classifications corresponding to existing 
theoretical models. Below, this issue is addressed by analysing two empirical data 
sets that correspond to two different theoretical structures. 

  
3 In this solution, approximately half of the subjects are included in a central cluster, one-fourth in a gener-

ally-low cluster, and one-fourth in a generally-high cluster. 
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3.2. Analysis of two empirical data sets,  
each corresponding to a theoretical data set 

 On each of the six empirical samples, we performed a hierarchical CA with 
Ward’s method, followed by relocations for k = 2 to 10 clusters. Then, a validation 
was performed for each solution, using all four types of random control data with 
Rep = 100 independent repetitions. MORI values were computed for all the five QCs 
defined earlier. Finally, at each reliability level, the best solutions were compared to 
the theoretical cluster structures of the theoretical samples (Teo7types and 
Teo4types). All these analyses were performed with the ROPstat statistical software 
(Vargha–Torma–Bergman [2015]).  

 The statistical analyses aimed to address the following three questions:  

Q1. Were the indicators able to identify the existence of some real 
cluster structure (i.e. reject the null hypothesis that the cluster structure 
found could have been generated by some type of random data)?  

Q2. Which indicators provided the most useful information for 
identifying the true number of clusters in the TCLSs? 

Q3. To what extent did the MORI coefficient reflect the degree of 
correspondence between the ECLSs and TCLSs? 

 
Which indicators indicated that some real cluster structure existed? (Q1.) Signif-

icance tests were performed for all the QCs and MORI coefficients for the all six 
empirical samples, and for each of the four options of random control data. All tests 
produced significant results at the 1% level. Hence, in this limited sense, all coeffi-
cients indicated that some real structure existed. 

Indicators for the true number of clusters. (Q2.) It is often suggested that the ana-
lyst should ‘choose the number of clusters k after which EESS% first decreases by a 
large amount’ (elbow method, see Thorndike [1953], Milligan–Cooper [1985],  
Myers [1996]). In the Emp4types samples, this suggestion seemed to work, but in the 
Emp7types samples, where the number of theoretical types was seven, it did not 
work. (See Figure 5.) For this reason, we sought a better procedure for determining 
the true number of clusters, which allows for less subjectivity and ambiguity. 

Analysing the MORI values for EESS% in the six empirical samples, we noticed 
a systematic behaviour. MORI often reached its maximum for the real type of control 
data set. (See Table 5.) This pattern was most salient in the high- and moderate-
reliability samples, with the random permutation option as the type of random con-
trol data. (See Figures 6 and 7.) In this situation, the five QCs were less useful. 

 



MORI COEFFICIENTS AS INDICATORS OF A ‘REAL’ CLUSTER STRUCTURE  17 

HUNGARIAN STATISTICAL REVIEW, VOLUME 2, NUMBER 1, PP. 3–23. 

Figure 5. EESS% in k-means cluster analyses performed  

in the three Emp7types samples for k = 3 to 10 
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Note. Here and hereinafter, HighRel: high reliability; ModRel: moderate reliability; LowRel: low reliability.  

Table 5 

MORI values for EESS% in the high-reliability Emp7types1 sample  

for the four types of random control data set 
(Rep = 100) 

Type of random control data set  
Cluster number 

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

(1) Random permutation 0.281 0.325 0.355 0.408 0.391 0.387 0.374 

(2) Independent uniform 

distribution 
0.368 0.406 0.434 0.468 0.450 0.438 0.416 

(3) Independent normal 

distribution 
0.475 0.511 0.539 0.575 0.566 0.562 0.553 

(4) Correlated normal  

distribution 
0.447 0.478 0.499 0.534 0.520 0.512 0.497 

Note. The highest MORI value in each row is denoted in bold. All the MORI coefficients were significantly 
greater than 0 at the 1% significance level. 

 

  k = 10           k = 9           k = 8           k = 7             k = 6            k = 5             k = 4            k = 3 
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Figure 6. MORI patterns of EESS% for the three Emp7types samples using  

the random permutation option 
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Figure 7. MORI patterns of EESS% for the three Emp4types samples using  

the random permutation option 
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Degree of correspondence between ECLSs and TCLSs. (Q3.) In Table 6, we 

summarized some adequacy measures of the best k-means and hierarchical cluster 

k = 2        k = 3        k = 4         k = 5         k = 6         k = 7        k = 8         k = 9        k = 10 

  k = 2        k = 3        k = 4         k = 5         k = 6         k = 7        k = 8         k = 9        k = 10 
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solutions reflecting how well they were able to reproduce the theoretical cluster 
structure. The main conclusions that can be drawn based on Table 6 are as follows: 

1. In four out of six samples, the relocation of the best hierarchical 
solution improved the quality of ECLS to a substantial extent (in terms 
of similarity to the TCLS types and in recovery of TCLS class member-
ships). However, in the Emp4types samples, where the number of theo-
retical types was smaller (4 compared to 7), in two out of three samples, 
the hierarchical solution was better. This means that a general preference 
for a k-means analysis instead of a hierarchical one was not justified.  

2. The recovery of the simpler Teo4types structure was more effi-
cient than that of Teo7types, which has more theoretical types. 

3. Both the hierarchical and k-means analysis were able, in our 
case, to recover the TCLS at least partially, even if the reliability level 
of the set of input variables was low. For example, in the Emp4types3 
sample with a reliability of 0.50, the best cluster solutions were able to 
correctly identify about 80% of the 400 cases. 

4. It can be seen from Figures 6 and 7 that the size of MORI for 
EESS% indicated well the degree of correspondence between the 
ECLS structure and TCLS structure reported in Table 6, and, as  
expected, the size of MORI and the structure correspondence de-
creased when the reliability of the studied sample decreased. 

Table 6 

Comparison of the best hierarchical and k-means cluster solutions  

for the theoretical structure, using two criteria 

Sample 

Percentage of correctly classified 
cases (Criterion 1) 

Pairwise ASED differences between original  
and explored cluster centres (Criterion 2) 

Hierarchical k-means Hierarchical k-means 

     

Emp7types1 83.6 91.3 0; 0; 0.004; 0.005; 0.013; 

0.031; 0.130 

0; 0.001; 0.001; 0.002; 

0.004; 0.007; 0.022 

Emp7types2 67.2 77.0 0.022; 0.022; 0.054; 0.071; 

0.084; 0.086; 0.110 

0.001; 0.008; 0.019; 

0.021; 0.024; 0.055; 0.058 

Emp7types3 60.8 66.6 0.007; 0.061; 0.065; 0.076; 

0.115; 0.201; 0.202 

0.035; 0.045; 0.055; 

0.089; 0.104; 0.182; 0.321 

Emp4types1 95.5 94.8 0; 0.001; 0.003; 0.013 0; 0; 0.011; 0.086 

Emp4types2 81.8 90.0 0.002; 0.012; 0.146; 0.176 0; 0.002; 0.093; 0.139 

Emp4types3 81.0 79.0 0.014; 0.033; 0.104; 0.183 0.005; 0.011; 0.176; 0.209 

Note. ASED: average squared Euclidean distance. 
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Replication of findings on a new ECLS sample. A limitation of our findings is 
that only one sample with errors added to the true scores was produced for each con-
dition. It is possible, but not probable, that, if we had replicated the simulations, the 
findings might have been different to a moderate extent. For this reason, as a partial 
check, we performed a replication of all three Emp7types samples with completely 
new random data and computed the MORI coefficients for all five QCs using the 
correlated random normal option. This was done for  4k   to 10 clusters. As can be 
seen in Table 7, the difference between the MORI values of the old and new empiri-
cal samples is small (especially for EESS% and HCmean).  

Table 7 

Absolute differences of the MORI indices for the five quality coefficients between the Emp7types data  

and the new randomized empirical data (averages and ranges for k = 4 to 10 clusters) 

Level of 
reliability 

Quality coefficient 

EESS% PB SC HCmean CLdelta 

 Average 

HighRel 0.010 0.007 0.026 0.007 0.003 

ModRel 0.009 0.010 0.016 0.027 0.025 

LowRel 0.013 0.016 0.017 0.019 0.026 

 Range 

HighRel 0.0020.017 0.0000.023 0.0090.044 0.0030.013 0.0010.005 

ModRel 0.0020.023 0.0010.019 0.0040.044 0.0100.051 0.0060.038 

LowRel 0.0000.048 0.0010.036 0.0030.043 0.0100.030 0.0120.065 

4. Conclusion 

It should be mentioned that, because only examples have been analysed, no gen-
eralization beyond them is feasible. However, we believe the examples are rather 
typical for a number of commonly occurring classification situations. In fact, 
the finding that certain procedures did not function well for the purpose of identify-
ing the true cluster structure in our examples might have a practical value. 
This strongly suggests these procedures are not generally useful. 

Among the studied QCs, the MORI index provided the most useful information 
regarding the existence and degree of a ‘real’ cluster structure. First, the MORI index 
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of EESS%, using the correlated normal random control option, was a good indicator 
that a real TCLS had been found in the empirical analysis, if the average MORI val-
ue had reached or exceeded 0.35 around the explored best number of clusters.  
(See Table 6.) In these situations, the true number of clusters is the value of k for 
which MORI reaches its maximum, using the random permutation option.  
(See Figures 6 and 7.) If the MORI value for EESS% around the explored best num-
ber of clusters using the correlated normal option is below 0.20, this may indicate the 
lack of a real TCLS or the low reliability of the variables used in the CA. (See the 
last row of Table 4.)  

Determining the ‘true’ number of clusters is not a simple task in CA. As indicated 
by Franke–Reisinger–Hoppe [2009], Milligan–Cooper [1985] investigated 30 stop-
ping rules to determine the number of clusters in an extensive Monte Carlo study and 
found that the Calinksi-Harabasz index [1974] proved to be one of the best criteria. 
However, in our study, the Calinksi-Harabasz index indicated k = 2 as the best num-
ber of clusters for all six empirical samples, obviously falsely (findings not reported 
in the Results section). We suggest that our stopping rule using MORI is better in 
many settings. 

Franke–Reisinger–Hoppe [2009] also developed a new ICA (index of clustering 
appropriateness), with the following formula: 

                                                        ICA = RS/MSRS,  /5/ 

where RS is the explained variation in a clustering solution and MSRS the mean SRS 
across a number of random experiments, with SRS being the simulated explained 
variation in one of these random experiments. ICA has a similar logic to MORI 
based on EESS%. (See Formula /4/.) ICA reflects the increased explanatory power of 
an explored cluster solution relative to the average result based on simulated random 
uniform data with the same number of clusters and variables. This corresponds to our 
type (2) random control data set. However, of the four types of random control data 
sets, type (1) (random permutation) and type (4) (correlated random normal) appear, 
in our case, to have been more useful. (See Figures 6 and 7, and Table 4.) These two 
types have complementary features. On the one hand, using the random permutation 
method, the distributions of the input variables are preserved and, thus, the cluster-
forming influence of the intercorrelations of the input variables can be assessed. 
On the other hand, with the correlated random normal method, the intercorrelations 
of the input variables are preserved and, thus, the cluster-forming influence of the 
special multivariate distribution of the input variables (specifically, its deviance from 
the multivariate normal) can be assessed. 
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Results from the analyses on the bivariate normal data set showed that a cluster 
structure of apparently high quality had been found, as shown by all five QCs. Even 
when the MORI validation indices were computed for these coefficients, the size of 
the cohesion coefficients indicated a good cluster structure, except when the random 
correlated normal control option was applied. These findings suggest that the appli-
cation of the MORI validation procedure using the correlated random normal control 
option can be useful for deciding whether a clustering structure is ‘real’ in the sense 
that it cannot be explained by an underlying data model of a multivariate normal 
distribution. This was also found in the analysis of the two examples of empirical 
data sets.  

Two limitations of the present study are that only one set of data was produced 
for each reliability condition and that all variables were 5-point scales. The results of 
the replication on a new set of random data support that the first limitation is not 
severe. The 5-point scale type of the variables is common in practice when items are 
used as variables, but it is possible that, if, instead, truly continuous variables had 
been analysed, it would have resulted in somewhat different findings. 
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