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Abstract— Model-based optimization and personalization of
tumor therapies require tumor growth models that reliably
describe the effect of the drug used during the therapy.
A key phenomenon in the drug effect mechanism is the
pharmacodynamics of the drugs which limits the maximal
effect of the drug. The pharmacodynamics can be modeled
with Michaelis-Menten kinetics, that can be realized in the
differential equations of the model as a Hill function or bilinear
functions with one extra state variable if we consider the quasi
steady-state approximation or use triplet motifs, respectively.
We use experimental data for a chemotherapeutic drug and
carry out parametric identification of our tumor model with
both Michealis-Menten kinetics models. The results show that
the quasi steady-state approximation has better modeling power
and less complexity.

I. INTRODUCTION

Tumor growth dynamics modeling under the effect of
different drugs is a key issue if we want to create personal-
ized, optimal tumor therapies. The tumor models potentially
enable us to use control engineering and mathematical meth-
ods to optimize the tumor treatment [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11]. A good tumor model captures
tumor dynamics and drug dynamics as well, with realistic
considerations, such as the effect of the drug on the tumor
growth dynamics has an upper limit, while keeping the model
structure as simple as possible. Simple structure is desirable
for model analysis, many model-based optimization and con-
trol design techniques and also for parametric identification.

The most popular tumor growth model modeling angio-
genic therapies is the Hahnfeldt model [12], which captures
the tumor and blood vessel dynamics, but lacks the modeling
of pharmacodynamics and dead tumor volume. Based on
experiments, the tumor contains dead and living regions in
the case of antiangiogenic therapy, and there is no washout
of the dead cells [13]. Moreover, the experiments have also
showed that the pharmacodynamics of the drug can not
be neglected, since giving one large dose according to the
protocol had the same effect as giving 1/180 of the dose each
day for an 18 days treatment period. This implies that after a
limit, increasing the dose of the drug does not result in linear
increase in the effect of the drug, but it has a plateau. This
phenomenon is captured by the pharmacodynamics, and is
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crucial for designing tumor therapies. The Hahnfeldt model
has been modified and extended by other authors several
times, but they did not incorporate neither pharmacodynam-
ics nor dead regions [14]. A model with pharmacodynamics,
dead regions and vasculature dynamics has been published
recently [15].

A second-order model capturing tumor growth dynamics
without dead regions and pharmacodynamics has been pub-
lished in [16], and has been used for controller design in [17],
[8], [18], [19], [20], [3]. The model has been extended with
pharmacodynamics, mixed-order pharmacokinetics and dead
tumor volume dynamics in [21]. This model uses Michaelis-
Menten kinetics to describe the pharmacodynamics and phar-
macokinetics as it will be described in Section II. Initially,
the model was created to describe antiangiogenic therapy,
thus it does not describe the dead tumor cell washout. The
washout process can be added to the model by a simple linear
term as suggested in [22].

There are two common methods to build-in Michaelis-
Menten kinetics into our model. The first approach, which
was used in [21], is the approximation of the Michaelis-
Menten kinetics which supposes that the substrate reaches
equilibrium much faster than the product, and results in a
velocity term that is described by a Hill function. Applica-
tion of the approximation of the Michaelis-Menten kinetics
results in a third-order tumor model described in Section
II. Another popular way to describe the Michaelis-Menten
kinetics is by using triplets, i.e., using the stoichiometric
equation of the Michaelis-Menten equation and consider
mass-action kinetics, which results in bilinear velocity terms
and an extra state corresponding to the enzyme-substrate
complex, thus increasing the order of the model by one. We
discuss this model in Section II and call it the fourth-order
model.

We use experimental data from the Membrane Protein
Research Group of the Hungarian Academy of Sciences
published in [23]. The experiments are carried out on nine
mice, using a cytotoxic agent called pegylated liposomal dox-
orubicin (PLD) dosaged according to a protocol described
in [23]. In some cases the mice in the experiments became
resistant of the chemotherapy, however, our model is not
capable to model this effect yet. Thus, we chose the set of
measurements where resistance did not seem to be present
(except for one case from the chosen measurement set).

We use mixed-effect models to carry out parametric iden-
tification for both model structures. The methods used for
identification are described in Section III, while the results
of the identification are provided in Section IV. We show
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that the third-order model which uses the quasi steady-
state approximation of the Michaelis-Menten kinetics has
much better modeling power. We end the paper with the
conclusions in Section V.

II. THE TUMOR GROWTH MODEL

We define the tumor growth model equations with the help
of stoichiometric equations using formal reaction kinetics
analogy [24]. For the third-order model, the fictive species
are X1, X2 and X3 that are the species representing the
proliferating tumor volume, the dead tumor volume, and the
drug level, respectively. The corresponding state variables x1,
x2 and x3 are the time functions of the proliferating tumor
volume, dead tumor volume and drug level, respectively. The
stoichimetric equations defining the underlying physiological
phenomena are

• X1
a−−→ 2 X1 that defines that the tumor cells proliferate

(divide) with a tumor growth rate a. The correspond-
ing term in the differential equation using mass-action
kinetics is ẋ1 = ax1;

• X1
n−−→ X2 that defines the necrosis (death) of tumor

cells with necrosis rate n, which is the tumor necrosis
that is independent of the treatment. Using mass-action
kinetics, this equation modifies the dynamics of the
proliferating and dead tumor volumes with the terms
ẋ1 = −nx1, ẋ2 = nx1;

• X2
w−−→ O that defines the washout of the dead tumor

cells with washout rate w. Using mass-action kinetics,
this reaction step has the rate wx2. This extension was
not present in [21], we use this term to define dead
tumor cell washout which is a relevant process during
chemotherapy, with the dynamics ẋ2 = −wx2.

• X3
c−−→ O that defines that there is an outflow of the

drug with a reaction rate coefficient c, i.e. the clearance
of the drug. We use the approximation of the Michaelis-
Menten kinetics in order to have a mixed-order model
for the pharmacokinetics, so this equations results in the
term ẋ3 = −cx3/(KB + x3), where the parameter KB

is the Michaelis-Menten constant of the drug;
• X1 + X3

b−−→ X2 that defines the effect mechanism of
the drug in a general way, i.e., if living tumor and drug
meets, they turn into dead tumor. The effect of the drug
is considered with the approximation of the Michaelis-
Menten kinetics with Michaelis-Menten constant ED50

resulting in the velocity term x1x3/(ED50 + x3). This
effect on the volumes is considered with reaction rate
coefficient b. The effect of this equation on the dy-
namics of the proliferating and dead tumor volumes is
expressed by the terms ẋ1 = −bx1x3/(ED50 + x3)
and ẋ2 = bx1x3/(ED50 + x3). We use the term ẋ3 =
−bkx1x3/(ED50 + x3) which expresses the effect of
this mechanism on the drug level dynamics, where the
rate coefficient bk has the dimension mg/(kg · mm3·
day).

The combination of these terms give the differential equation
of the system:

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(1)

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2 (2)

ẋ3 = −c x3

KB + x3
− bκ

x1x3

ED50 + x3
+ u, (3)

where x1 is the time function of proliferating tumor volume
in mm3, x2 is the time function of dead tumor volume in
mm3, x3 is the time function of drug level in mg/kg and u
is the input that is the time function of drug injection rate in
mg/(kg · day).

The output y of the system is the measured tumor volume
in mm3 that is the sum of the proliferating (x1) and dead
(x2) tumor volumes, i.e.

y = x1 + x2. (4)

The dynamics of the output is described by the differential
equation

ẏ = ax1 − wx2 (5)

that is the sum of (1) and (2), thus the change of the measured
tumor volume depends directly only on the tumor growth
rate constant a, the dead tumor washout w and the actual
volume of the proliferating tumor volume and the dead tumor
volume.

In the third-order model, we have used the approximation
of the Michaelis-Menten kinetics with quasi steady-state. The
model of the drug effect mechanism could be more accurate
if we used Michaelis-Menten kinetics by supposing that the
living tumor cell is the substrate, the drug is the enzyme,
and using the stoichiometric equations

X1 + X3
b1−−⇀↽−−
b−1

X4
b2−−→ X2 + X3

where X4 is a new species, the tumor-drug complex. This
equation can model that the effect of the drug is not imme-
diate, but there is an intermediate phase when the drug binds
to the tumor and exerts its effect. The resulting differential
equations of the fourth-order model are

ẋ1 = (a− n)x1 − b1x1x3 + b−1x4 (6)
ẋ2 = nx1 − wx2 + b2x4 (7)

ẋ3 = −c x3

KB + x3
− b1x1x3 + (b−1 + b2)x4 + u (8)

ẋ4 = b1x1x3 − (b−1 + b2)x4, (9)

where x1 is the time function of proliferating tumor volume
in mm3, x2 is the time function of dead tumor volume in
mm3, x3 is the time function of drug level in mg/kg, u is
the input that is the time function of drug injection rate in
mg/(kg · day) and x4 is the tumor-drug complex volume in
mm3.

The output y of the system is the measured tumor volume
in mm3 that is the sum of the proliferating (x1) and dead (x2)
tumor volumes and the tumor-drug complex volume (x4), i.e.

y = x1 + x2 + x4. (10)

D. A. Drexler et al. • Comparison of Michaelis-Menten Kinetics Modeling Alternatives in Cancer Chemotherapy Modeling

000028



The dynamics of the output is described by the differential
equation

ẏ = ax1 − wx2 (11)

that is the sum of (6), (7) and (9), thus the change of the
measured tumor volume depends directly only on the tumor
growth rate constant a, the dead tumor washout w and the
actual volume of the proliferating tumor volume and the dead
tumor volume. Thus, the output dynamics is described by the
same equation as in the case of the third-order model.

III. PARAMETRIC IDENTIFICATION
The differential equation systems were first converted to

a – nonlinear – model where the parameters were assumed
to be random effects. This means that every subject has an
own realization for each parameter which is assumed to be
a random draw from a given (usually normal) distribution,
so that the number of estimated parameters is always fixed
– two for normal distribution: mean and standard deviation
– irrespectively of the number of subjects [25]. The mean
measures the overall – population – value, while standard
deviation characterizes the between-subject variability. An
advantage of this model is that it handles the within-subject
correlations, therefore these models are widely used to
describe repeated-measures data and are also universally
applied in population pharmacokinetics [26], [27].

Independence of random effects was assumed. Parameters
were estimated on log scale, which ensures the positivity of
the parameters. For the third-order model (1)-(3), the initial
values were set to ln a = −0.5, ln b = −2, lnED50 =
−9.9, ln bk = −14, ln c = −2, lnn = −2, lnx1 (0) = −4,
lnKB = −0.5 and lnw = −1, while for the fourth-order
model (6)-(9), the initial values were set to ln a = −1.5,
ln b1 = −1.5, ln b−1 = −2, ln b2 = −1.5, ln c = −1.5,
lnn = −2, lnx1 (0) = −4, lnKB = −1.5 and lnw =
−0.5. Initial value for the standard deviation of the random
effect was set to 0.01 for all parameters. Error term was
assumed to be additive, with an initial value of 1.

Estimation was performed with Stochastic Approximation
Expectation-Maximization (SAEM) method which is one
of the modern methods to solve the likelihood equations
arising from the above-described nonlinear mixed effects
models [28], [29]. Calculations were carried out under R
statistical program package version 3.5.2 [30] using the
library nlmixr version 1.0.0-7 [31].

IV. RESULTS
Figures 1 and 2 show the individual predicted tumor

volume and the measurements for the third-order model
and the fourth-order model, respectively. The vertical arrows
indicate the days when the mice got injections, the dose was
8 mg/kg each time.

In the first case (PLD1 in the figures), the tumor acquires
resistance during the therapy. This phenomenon is not in-
corporated into the models, so the dynamics can not be
described by neither of the models, and we got bad fits
for both models. For cases 8 and 9 (PLD8 and PLD9),
the measurements contain many zero values, however, in

reality the tumor volume was not zero, but it was too small
for caliper measurements. These zero values complicate the
identification process, and we get bad fits for these cases
as well. For cases 2-6 (PLD2 - PLD6) we expect good fit
results, since we can not observe acquired drug resistance
and there are few zero measurements, so the models should
be able to describe the dynamics governing the measured
processes. Note that there is no case 7 (PLD7), since the
measurements for that case in [23] were unavailable.

The third-order model shows good fit for cases 2-6 (Fig.
1), and can capture the individual dynamics for all these
cases, even though it only uses an approximation of the
Michaelis-Menten kinetics. Figure 2 shows that the fourth-
order model could not capture the dynamics of the process,
thus application of a more complex model is not desirable.
Although, the fourth-order model can capture the tendencies
in the derivative, i.e., the increasing and decreasing segments
in the trajectory, the amplitudes in the trajectory are not
sufficient to describe the process.

Table I shows the estimation of the parameters for the
fourth-order model. The parameter b1 is only about one order
of magnitude larger than b−1, however, in the quasi steady-
state approximation the b1 parameter is supposed to be much
larger than b−1 (i.e., with large order of magnitude). The
value of these parameters may be responsible for the bad
fit of the model. Note that since the identification problem
is highly nonlinear, the result depends on the initial values
used during the identification process.

V. CONCLUSIONS

The results showed that the third-order model can suffi-
ciently describe the effect of chemotherapy on the tumor
growth dynamics. The results have also showed that the
fourth-order model is not able to describe the measurements.
This example has shown that increasing the model complex-
ity does not increase the model capability of describing the
measurements, on the contrary, it decreased the modeling
power.
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