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Abstract—The aim of this research is to introduce an advanced
controller design method which utilizes the Linear Parameter
Variable (LPV) and Linear Matrix Inequality (LMI) theorems
in order to control a given physiological model related to Diabetes
Mellitus (DM). The developed approach is applied on a modified
version of the so-called Minimal Model describes Type 1 DM
condition. Due to the applied LPV-LMI conditions the resulting
controller uses state feedback kind control rule. Further, robust
and optimal control requirements have been included during the
declaration of LMI rules allowing the formalization of complex
requirements. The resulting control structure is robust from the
considered disturbances points of view. During the validation
we have found that the controller was able to handle highly
unfavorable loads beside satisfying the predefined requirements.

Index Terms—Linear Parameter Varying, Nonlinear Systems,
Control Engineering

I. INTRODUCTION

Physiological systems do have nonlinear behavior in gen-
eral. This phenomena reflects in the properties of mathematical
models applied to approximate different behavior of such
systems. To apply control on them nonlinear methodologies
are needed or such solutions which exploit the properties of
specific methodologies in order to control nonlinear systems
by avoiding the use of nonlinear control tools [1]–[3].

One of the mostly applied tool of nonlinear control is the
adaptation of the methods of Lyapunov introduced originally
in [4], [5]. The Lyapunov methods can be applied to inves-
tigate the stability of general nonlinear systems. The tools
themselves are universal mathematical techniques adaptable
for control purposes. From controller design point of view
Lyapunov second method – or the direct method – grants a
possibility to determine if a nonlinear system is stable or not,
without analytically solving the motions of equations. Another
important aspect is that many physiological system models do
not have analytical solutions in closed form, and adding to
this, the validity of numerical solutions are limited [4], [5].
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During the last decade, several solutions have surfaced
based on Lyapunov’s framework, with sole purpose of de-
veloping generalized solutions for nonlinear control. Some of
them require the highly creative thinking of an expert designer,
and advanced, high computational capacity mathematical so-
lutions (eg. LMI) based optimizations. These solutions can
yield possibilities for a robust controller design, taking into
consideration several key restrictions, and still perform well.

Another approach can be trough LPV methodology. The
main benefit of using the LPV framework is, that it allows the
usage of linear controller design approaches, because it ”hides”
the nonlinearities of given systems [6]. However, in most
cases, the LPV methodology is combined with Lyapunov’s
theorems via LMI framework.

This paper is structured in the following way: first, we
introduce the basics of LPV systems; then, we present the
LPV controller in LMI framework and the ideas behind it;
afterwards, we demonstrate the developed method on given
nonlinear T1DM model; finally, we conclude our work and
present the future directions.

II. LPV BASED STATE FEEDBACK CONTROL

A. State feedback control

A possible representation of a given Linear Time Invariant
(LTI) system is the state space representation where the system
is characterized by its A ∈ Rk×k state, B ∈ Rk×m input, C ∈
Rl×k output and D ∈ Rl×m forward matrices, respectively.
The equation of motion of the given system is described as
follows: (

ẋ(t)
y(t)

)
=

[
A B
C D

](
x(t)
u(t)

)
= S

(
x(t)
u(t)

)
, (1)

where u(t) ∈ Rm is the control input, y(t) ∈ Rl is the output
and x(t) ∈ Rk is the state vectors, respectively.

In case of state feedback control, the control signal can be
realized as:

u(t) = −Kx(t) , (2)



where u(t) ∈ Rm is the control input vector, K ∈ Rm×n

is the feedback gain matrix. The K can be calculated with
different iteration-based methods [7].

Generally, this configuration modifies the open-loop Aopen

state matrix into Aclosed = Aopen − BK. The poles of the
characteristic equation of the closed loop can be calculated in
the following way:

| Iλ−A−BK |= 0 (3)

and the closed loop poles λclosed fulfill the stability require-
ments (or with other words they are Hurwitz) [7], [8].

B. Introduction to LPV systems

Definition 1 - a qLPV model in its state space(SS) form:
Considering a quasi-LPV model described in its state space
representation, the compact form of it is expressed in equation
4a by also considering the system disturbance as well:

ẋ(t) = A(p(t)) · x(t) + B(p(t)) · u(t) + E(p(t)) · d(t)
y(t) = C(p(t)) · x(t) + D(p(t)) · u(t) + D2(p(t)) · d(t)

(4a)

S(p(t)) =

(
A(p(t)) B(p(t) E(p(t))
C(p(t)) D(p(t) D2(p(t))

)
, (4b)

.
The D2(p(t)) ∈ Rl×h is the disturbance input forward

matrix and E(p(t)) ∈ Rk×h describes the disturbance as input
matrix. Furthermore, p(t) ∈ Ω ∈ RN is the so-called time de-
pendent parameter vector. In 4a-4b, the matrices introduced in
(7) do have p(t) dependency. The S(p(t)) ∈ R(k+l)×(k+m+h)

represents the parameter dependent resulting system matrix
consists of the given system matrices which equivocally con-
cludes the qLPV system. Additionally, the p(t) ∈ Ω ∈ RN is
the parameter vector which is time dependent.

Definition 2 - The Ω transformational space is the specif-
ically confined hyperspace with N dimensions, or the so
called hypercube, is factored by the scheduling parameters,
more exactly both its minimum and maximum values, as the
elements of the parameter vector p(t): Ω = [p1,min, p1,max]×
[p2,min, p2,max]× ...× [pN,min, pN,max] ∈ RN .

C. A modified bounded real lemma based LMI

The H∞ theory became a widely applied tool regarding
robust control in the last two decades. The bounded real
lemma (BRL) allows to transfer the H∞ robust control prob-
lem into an LMI problem through which the H∞ problem
is solved by using LMI based numerical optimization. The
lemma can be applied for LPV systems as well, however,
it’s conservativeness has only been relaxed in the recent
times [9]. By using the findings of [9] a state feedback kind
controller gain can be designed which is able to guarantee the
robust performance and other prescriptions for LPV systems,
however, the gain itself is not parameter dependent. The (5)
presents the LMI structure which need to be solved through
iterative optimization in order to get one feedback gain which
can be used in case of any parameter condition related to

the applied LPV model [9]. The LMI for that purpose is the
following:

minimize
M,Q,P

γ

subject to
Pi > 0
r > 0

AiQ + QT AT
i + B2iM + MT BT

2i Pi − Q + rAiQ + rMT BT
2i

Pi − Q + rQT AT + rB2iM −r(Q + QT )
CiQ + D2iM rCiQ + rD2iM

BT
1i 0

QT CT
i + MT DT

2i B1i

rQT CT
i + rMT DT

2i 0
−I D1i

DT
1i −γ2I



,

(5)
where i = 1, .., N .

The (5) LMI realized the BRL in a more relaxed way
compared to original descriptions [9].

In case of (5) the feedback gain which is able to satisfy
the prescribed LMI conditions in case of LPV system can be
calculated by:

F = MQ−1 (6)

III. THE USED MODEL AND ITS STATES

A. The extended minimal model

The applied model consists of different submodels. The
core is the minimal model describing the glucose-insulin
dynamics [10] ((7e)-(7g)), while the CHO and insulin ab-
sorption submodels are coming from [11] ((7a)-(7d)). The
application of mixed models are frequent in the scientific
literature [12]–[14]. The CHO and insulin sub-models have
been proposed by Hovorka et al. originally in [11], [15].
Both sub-models are two compartmental models. The CHO
submodel describes how the orally ingested CHO affects the
rate of appearance of glucose in blood. The insulin absorption
submodel describes the rate of appearance of insulin in the
blood injected subcutaneously. The submodels are represented
by (7a) - (7d). The core model – appeared in [10] – responsible
to describe the glucose-insulin dynamics (7e) - (7g).

Ḋ1(t) = −
1

τD
D1(t) +

1000Ag

MwGVG
C · d(t) (7a)

Ḋ2(t) = −
1

τD
D2(t) +

1

τD
D1(t) (7b)

Ṡ1(t) = −
1

τS
S1(t) +

1

VI
u(t) (7c)

Ṡ2(t) = −
1

τS
S2(t) +

1

τS
S1(t) (7d)

Ġ(t) = −(p1 +X(t))G(t) + p1GB +
1

τD
D2(t) (7e)



Ẋ(t) = −p2X(t) + p3(I(t)− IB) (7f)

İ(t) = −n(I(t)− IB) +
1

τS
S2(t) (7g)

The core model has three state variables, which are con-
nected to the blood plasma, these are: G(t) [mg/dL] the blood
glucose (BG) concentration, X(t) [1/min] insulin-excitable
tissue glucose uptake activity, I(t) [mU/L] the blood insulin
concentration. The glucose and insulin absorption submodels
consist of the D1(t) [mg/dL], D2(t) [mg/dL], S1(t) [mU/L]
and S2(t) [mU/L], respectively. The disturbance input d(t)
[g/min] represents the glucose intake which is transformed by
the

(
(1000Ag)/(MwGVG)

)
C complex into the appropriate di-

mension to fit to the D1(t). The control input u(t) [mU/L/min]
is directly connected to the S1(t). The detailed description of
the used model parameters can be found in Table ??.

Table I
THE APPLIED PARAMETERS OF THE MODELS [10], [11].

Notation Value Unit Description
GB 110 [mg/dL] Basal glucose level
IB 1.5 [mU/L] Basal insulin level
p1 0.028 [1/min] Transfer rate
p2 0.025 [1/min] Transfer rate
p3 0.00013 [L/(mU min)] Transfer rate

n 0.23 [1/min] Time constant for in-
sulin disappearance

BW 75 [kg] Body weight

VI 0.12 BW [L] Insulin distribu-
tion volume

VG 0.16 BW [L] Glucose distribu-
tion volume

MwG 180.1558 [g/mol] Molecular weight
of glucose

Ag 0.8 - Glucose utilization

C 18.018 [mmol/L]
Convert rate
between [mg/dL]
and [mmol/L]

τD 40 [min] CHO to glucose ab-
sorption constant

τS 55 [min]
Insulin
absorption
constant

The parameters shown in Table I above are the nominal
parameters applied at the controller design process [10].

B. Design of the Extended Kalman Fiter

Due to the only output is G(t) in case of state feedback kind
designs, estimation of other states are needed. In this particular
case we decided to apply a discrete Extended Kalman Filter
(EKF) which is need to handle the nonlinear behavior of the
model [16].

In the EKF design the following nonlinear system and noisy
observation model is considered:

xk = f(xk−1,uk) + wk

zk = h(xk) + vk
, (8)

where Table II introduces the terms in 8.

Table II
VARIABLES AND FUNCTIONS RELATED TO THE APPLIED EKF

xk n x 1 state vector
zk m x 1 observation vector
wk n x 1 process noise vector
vk m x 1 measurement noise vector
f() n x 1 nonlinear vector function of the process
h() m x 1 nonlinear vector function of the observation

The x0 is considered as an initial state, a vector with a
µ0 = E[x0] and a covariance of P0 = E[(x0−µ0)·(x0−µ0)ᵀ]
and uk is the control vector. The f function’s task is state
prediction based upon the previous estimate, while function h
gives a predicted measurement from that previously predicted
state. The prediction and update phases are described by (9) -
(10) [16].

x̂k/k−1 = f(x̂k−1/k−1,uk)
Pk/k−1 = Fk ·Pk−1/k−1 · Fᵀ

k−1 + Lk−1Qk−1L
ᵀ
k−1

(9)

ŷk = zk − h(x̂k/k−1)
Sk = Hk ·Pk/k−1 ·Hᵀ

k + Rk

Kk = Pk/k−1 ·Hᵀ
k · S

−1
k

x̂k/k = x̂k/k−1 + Kk · ŷk

Pk/k = (I−Kk ·Hk) ·Pk/k−1

, (10)

where I is the unit matrix in appropriate dimensions.
The prediction phase is presented in equation (9), firstly

the state estimate and after that, the estimated covariance is
predicted. In equation (10) the updating stage is presented. The
ŷ represents the measurement residual, while Sk is the resid-
ual covariance, this is used to calculate an optimal Kalman
gain (Kk) so that the state estimate (x̂k/k) and covariance
estimate (Pk/k) can be updated. The state transition (Fk) and
observation (Hk) are represented by the following Jacobian
matrixes [16]:

Fk = ∂f
∂x |x̂k−1/k−1,uk

Hk = ∂h
∂x |x̂k/k−1

(11)

IV. CONTROLLER DESIGN

Due to the state feedback kind controller applied in this
study the use of difference based control oriented model
form is beneficial. In this case reference compensation is not
need to be designed. The transformed model represents the
error dynamics, namely the deviation of state variables of the
transformed model from a given equilibrium. Thus, when the
state feedback kind controller forces the decay of the trans-
formed state variables it basically coerces the state variables
of the original system to converge the given equilibrium. In
this particular case the applicable formalism is the following:
∆x(t) = x(t)−x1,ref and ∆u(t) = u(t)−uref (t) instead of
the states from (4a)-(4b). These new states form the dynamics
of error and let to use the r = 02×1 reference signal. Hence
∆x(t) → 0, while t → ∞. The transformation of the states
can be done as it is detailed in 12 in case of (7a)-(7g) as well.



∆Ġ(t) = Ġ(t)− 0 =
−p1G(t)−X(t)(G(t) +Gb) + d(t)−[
− p1Gref −Xref (Gref +Gb) + href

]
=

−p1∆G(t) + ∆d(t)−Gb∆X(t)−X(t)G(t) +XrefGref

+XrefG(t)−XrefG(t)

∆Ġ(t) = −(p1 +Xref )∆G(t)−G(t)∆X(t) + ∆d(t)

(12)

.
The transformations are similar in case of other state vari-

ables as well.
To adapt the (4a)-(4b) to our case and extend it we applied

the following modification. The first two equations were al-
ready mentioned in (4a) as describing an LPV system, the third
equation below – refers to z(t) – represents the performance
output:

∆ẋ(t) = A(p(t)) ·∆x(t) + B(p(t)) ·∆u(t)+
E(p(t)) ·∆d(t)

∆y(t) = C(p(t)) ·∆x(t) + D(p(t)) ·∆u(t)+
D2(p(t)) ·∆d(t)

∆z(t) = C2,∞(p(t)) ·∆x(t) + D2,∞(p(t)) ·∆u(t)+
E2,∞(p(t)) ·∆d(t)

(13)
where C2,∞(p(t)) ∈ Rq×m, D2,∞(p(t)) ∈ Rq×m and
E2,∞(p(t)) ∈ Rq×h. In this study we have considered that
the input, output and performance related matrices are not
parameter dependent, also do have constant values. Hence,
th following system obtains in the form of (13):

S(p(t)) =

A(p(t)) B E
C D D2

C2,∞ D2,∞ E2,∞

 =

=



−
1

τD
0 0 0 0

1

τD
−

1

τD
0 0 0

0 0 −
1

τS
0 0

0 0
1

τS
−

1

τS
0

0
1

τD
0 0 −(p1 +Xref)

0 0 0 0 0

0 0 0
1

τS
0

0 0 0 0 1
0 0 0 0 1

0 0 0
1000Ag

MwGVG
C

0 0 0 0

0 0
1

VI
0

0 0 0 0
−G(t) 0 0 0
−p2 p3 0 0

0 −n 0 0
0 0 0 0
0 0 d2,∞ 0


(14)

.
The d2,∞ is applied as a scaling parameter determining the

weight of the control signal’s effect in the performance output.
The (IV) has applied during the optimization process of (5)

in order to get one F controller gain.

We have investigate four scenarios, however. The scenarios
have been the following:

1) The p(t) = G(t) and p = [70, ..., 300].
2) The p(t) = G(t) and pI = [70, ..., 120] and pII =

[120, ..., 300]. The parameter domain have been divided
into two parts and two FI,II has been designed for the
two subdomains.

3) The p(t) = [G(t), p1(t)]> and p1 = [70, ..., 300].
4) The p(t) = [G(t), p1(t)]> and p1,I = [70, ..., 120]

and p1,II = [120, ..., 300]. The G(t) related parameter
domain has been divided into two parts and two FI,II

have been designed for the two subdomains.
With d2,∞ the scale of the control signal can be managed

and reduced. Trough this LMI, it is possible to minimize
the control signal while designing a robust controller. In the
performance output, it is taken into consideration, to have as
good disturbance suppression as possible, but also to have as
small control signal as possible. This double criteria could
be realized with the chosen LMI parameters. Moreover, these
restrictions are applied on the difference based model which
allow us to define interpret them to ”as small difference from
a given BG level as possible” and ”as small control signal
from the a given level as possible”.

Figure 1 shows the control structure of the complete TP-
LMI-LPV system.

Figure 1. The control system

V. RESULTS

In the following examples a normal daily eating routine
of a human is taken as disturbance. Breakfast, lunch and
dinner serve as the main calorie intakes, in between them,
there are two smaller meals consumed, serving as snacks.
The disturbance for the system in each scenario is the same
and can be seen on figure 2. Numerically, it is 250 grams of
carbohydrate from which 210 g is divided in three making up
the three main meals of the day while the remaining 40 g is
divided in two serving as the snacks.

In the following four figures, the results of the four control
scenarios are displayed. Each figure has three separate sub-
figures incorporated one over the other, these represent the
model states with the blood glucose level highlighted and
the input signal respectively. For the controller design and
calculation of the feedback gains, MOSEK Apps. solver [17]
and the YALMIP toolbox [18] were used.
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Figure 2. The applied glucose intake as disturbance
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Figure 3. Results for scenario 1

In the first scenario, the only variable parameter is G and
the domain is not split into two parts, namely, G = [70, 300].
The parameters of the LMIs shown in the previous section
were: γ = 38.72 and d2,∞ = 0.97, r = 0.35. The lowest
value it got, with this controller was 70.0270 [mg/dL]. The
following feedback gain occured, as it can be seen in equation
(15):

F =

[
0.0003 0.0004 −0.0002 −0.0004

−0.0004 −2.0476 −0.0001

]
· 103 .

(15)
In the second scenario the parameter domain was divided

in two, and a standalone controller was designed for both
partitions, arguably a more robust controller can be obtained
en-bloc this way. The first partition of G is between 70 and
120 and naturally, the second one is [120, 300]. Two different
controllers were designed with different feedback gains (FI

and FII , equations 16 and 17 respectively) for the partitions,
with differing parameters for the LMIs. The LMI parame-
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Figure 4. Results for scenario 2

ters concerning the first controller were: d2,∞ = 0.6555,
γ = 23.45 and r = 0.30. The LMI parameters concerning the
second controller were: d2,∞ = 1.2, γ = 37.41 and r = 0.35.
The lowest value it reached, with this controller is 70.0708
[mg/dL].

FI =

[
0.0002 0.0004 −0.0002 −0.0004
−0.0008 −1.4042 −0.0007

]
· 103 .

(16)

FII =

[
0.0003 0.0005 −0.0004 −0.0008

0 −3.35 −0.0017

]
· 103 .

(17)
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Figure 5. Results for scenario 3



In the third scenario, a second system parameter was in-
troduced, p1. The parameter domain is a bounded hypercube
equal to G = [70, 300] and p1 = [0.0050.1]. The parameters
concerning the LMIs were: γ = 114 and d2,∞ = 2.5, r = 2.2.
The lowest value it reached, with this controller was 70.3781
[mg/dL]. The following feedback gain occured, as it can be
seen in equation 18:

F =

[
0.0002 0.0003 −0.0003 −0.0004
−0.0001 −1.1694 −0.0006

]
· 103 .

(18)
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Figure 6. Results for scenario 4

In the fourth scenario, two system parameter-variables were
used within a divided domain, the division was the same as
seen during the second scenario. The LMI parameters for the
first controller were: d2,∞2.6, γ = 89.16 and r = 1.8. The
LMI parameters for the second controller were: d2,∞ = 5.6,
γ = 90.55 and r = 2.7. The lowest value it reached, with
this controller was 70.0138 [mg/dL]. The following feedback
gains occured:

FI =

[
0.0003 0.0004 −0.0004 −0.0005

0 −1.3396 −0.0007

]
· 103 .

(19)

FII =

[
0.0348 0.0424 −0.0815 −0.1096
−0.1340 −306.2058 −0.1670

]
.

(20)

VI. CONCLUSION

The goal of this study was the design of an LPV-LMI based
state-feedback controller by using the findings of [9] that is
as robust as possible in order to map whether the design
procedure and application of the relaxed BRL are possible
regarding T1DM research. Four steps were taken to obtain
a more robust controller, that resulted in four scenarios with

four different results. In either of the scenarios, hypoglycemic
values were not registered, but a minor crossing into hyper-
glycemic territory was inevitable due to the complexity of
the system. It was more relevant to concentrate on avoiding
hypoglycemia rather than hyperglycemia because in the short
term, only hypoglycemia is deadly the latter only has long
term complications. The objectives of stabilizing the blood
sugar level at 110 [mg/dL] while not reaching hypoglycemic
levels (below 70 [mg/dL]) were met. We have found that
all of the developed controllers were able to meet with the
predefined criteria as it can be seen in Figs 3-6. The BG level
have been higher than the critical 70 [mg/dL]. We have found
that splitting the parameter space into two parts did not provide
significant changes in the results.
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