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Abstract 
Marker based optical motion capture systems use 

multiple cameras to determine the 3D position of 
markers. The precise knowledge of the position and 
orientation of the cameras plays a crucial role in 
precise marker recognition and position calculation. 
There are three camera calibration methods 
presented in this paper, including a new projector 
based method. The three calibration methods give 
different precision. Results of measurements will be 
presented and compared. 

1. Introduction 
Motion Capture systems are used to record the 

movement of actors and to translate the captured 
movement on to a digital model. These systems are 
used in the video game and movie industry. Other 
uses include military, entertainment, sports, medical 
applications, computer vision and robotics. There 
are multiple motion capture technologies available, 
but this article focuses on marker based optical 
motion capture systems. 

The system used in this article is a custom system 
developed by us. There are 10 cameras placed 
around a 4.4x3.4x2 meters room. The exposure time 
of the cameras are lowered, so only the self-
illuminated markers are visible on the images. The 
camera images are processed real-time on 5 
computers by utilizing the GPUs to extract the 
marker positions. Based on that data the 3D position 
of the markers are reconstructed. 

For high quality results precise knowing of the 
camera parameters are required, which can be 
determined with camera calibration. This article 
compares multiple camera calibration methods, and 
presents the results. 

In section 2 the camera parameters and the 3D 
reconstruction method is presented. Section 3 details 
the calibration methods, and compares these by 
measurements. 

 
 

2. Point reconstruction 

2.1 Camera parameters 
A camera can be described with two sets of 

parameters: intrinsic and extrinsic parameters. 
The intrinsic parameters describe the internal 

structure of a camera: principle point (ܿ௫, ܿ௬), the 
focal length ( ௫݂, ௬݂), and the distortion [2]. In the 
camera coordinate system the camera is placed at the 
origo and it faces towards the +Z axis. The (1) 
equations define the projection between a point (X, 
Y, Z) in the camera coordinate system, and the pixel 
coordinates (x, y) on the image plane (Fig.1). 
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௑

௓
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௓
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Fig.1. Projection in the camera coordinate system 

The distortion has two main components: radial-
distortion (݇ଵ, ݇ଶ, ݇ଷ), and tangential distortion (݌଴, 
 ଵ). Equations (2) define the transformation from݌
pixel coordinates (ݕ ,ݔ) to normalized pixel 
coordinates (ݔො, ݕො). 

ොݔ  ൌ
௫ି௖ೣ
௙ೣ

 (2) 

ොݕ  ൌ
௬ି௖೤
௙೤

  

The distortion can be described in normalized 
pixel coordinates, where ݎ ൌ ඥݔො ൅  ො. The offset ofݕ
a point caused by the radial distortion is the 
following (3): 
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௫ݎ݀  ൌ ଶݎොሺ݇ଵݔ ൅ ݇ଶݎସ ൅ ݇ଷݎ଺ሻ (3) 
௬ݎ݀  ൌ ଶݎොሺ݇ଵݕ ൅ ݇ଶݎସ ൅ ݇ଷݎ଺ሻ  

The offset of a point caused by the tangential 
distortion is defined by equations (4): 

௫݌݀  ൌ ොݕଵ݌2 ൅ ଶݎଶሺ݌ ൅  ොଶሻ (4)ݔ2
௬݌݀  ൌ ଶݎଵሺ݌ ൅ ොଶሻݕ2 ൅   ොݔଶ݌2

Finally, the position of a point after distortion in 
normalized pixel coordinates (ݔොᇱ, ݕොᇱ) can be 
calculated with equations (5): 

ොᇱݔ  ൌ ොݔ ൅ ௫ݎ݀ ൅  ௫ (5)݌݀
ොᇱݕ  ൌ ොݕ ൅ ௬ݎ݀ ൅   ௬݌݀

The distortion of one of the cameras can be seen 
on Fig.2. 

 
Fig.2. Distortion of one camera 

The extrinsic parameters describe the camera pose 
in the world coordinate system with position and 
orientation [2]. By using these parameters a point in 
the world coordinate system can be transformed to 
the camera coordinate system, where the projection 
and distortion can be applied to the point to get the 
resulting pixel coordinates. 

2.2 Point reconstruction 
From a camera image, the marker position on the 

image plane can be determined with image 
processing. After that, the marker position must be 
undistorted. 

By originating a ray (ࢊ૚) from the camera focal 
point (࢕૚) directed towards the 2D point (࢖૚) on the 
image plane we get a half-line. All of the points of 
the half-line projects to the same point on the image 
plane. 

The intersection of at least two different rays give 
the 3D position (࢖) of the marker (Fig.3). However 
due to inaccurate measurements or noisy data, 
usually these rays do not intersect each other [1]. The 
point closest to all the rays approximates the 3D 
position of the marker. This can be calculated by 
solving the system of linear equations (6) in the least 
squares manner with SVD. 

 
Fig.3. Point reconstruction 

 o1 ൅ ଵݐ ∙ ૚ࢊ ൌ  (6) ࢖
 o2 ൅ ଶݐ ∙ ૛ࢊ ൌ   ࢖

2.3 Point correspondence 
When multiple markers are visible, the points 

must be matched on different image planes in order 
to successfully reconstruct the 3D positions. 

 
Fig.4. Epipolar geometry 

Epipolar geometry simplifies this task (Fig.4). 
The focal point of a camera (࢕૚, ࢕૛) projected onto 
the other image plane is the epipole (ࢋ૚, ࢋ૛). The line 
that connects the epipole with the marker projection 
 is the epipolar line. This is also the projection (૛࢖ ,૚࢖)
of the line connecting the marker (࢖) and it’s image 
 ૚ on࢖ on the other camera. The projection of (૚࢖)
the other camera lies on the corresponding epipolar 
line (ࢋ૛, ࢖૛). This is the epipolar constraint [2]. 

Point matching is simplified into a 1D search by 
using the epipolar constraint. For a given point on 
one camera, the corresponding point on the other 
camera must lie on the corresponding epipolar line. 

However due to inaccurate calibration the 
projected point and the epipolar line will not 
coincide, so the region of the epipolar line must be 
searched. 

3. Calibration methods 
In section 2 the 3D point correspondence and 

3D reconstruction was presented. It can be seen that 
the camera calibration highly influences both the 
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correct point matching between different image 
planes, and the 3D reconstruction of the points. 

3.1 Basic method 

 
Fig.5. Intrinsic camera calibration with OpenCV 

OpenCV [3] has a built in method for finding 
both the intrinsic and extrinsic parameters of a 
camera. 

The intrinsic parameters can be found from 
multiple images of a chessboard pattern (Fig.5). The 
algorithm requires known 3D points of the 
calibration object, which are the inner corners of the 
chessboard. Also it requires the pixel coordinates of 
these points. The 3D points and the 2D points are 
matched with each other. The outputs are the 
intrinsic parameters, and the extrinsic parameters for 
every image [3]. 

The algorithm first estimates the initial values of 
the intrinsic parameters. For every image it computes 
the camera pose, or extrinsic parameters based on 
the initial values of intrinsic parameters. Finally it 
uses the Levenberg-Marquardt optimization 
algorithm to minimize the reprojection error by 
adjusting both the intrinsic and extrinsic parameters. 
In this step the algorithm projects the 3D points of 
the calibration pattern to the image by using both the 
estimated intrinsic and extrinsic parameters. It 
calculates the distance between the projected point 
and the input of the 2D points. Then both the 
intrinsic and extrinsic parameters are adjusted to 
decrease the reprojection error [3]. The Levenberg-
Marquardt algorithm [5] is a non-linear optimization 
method, it numerically finds the local minimum and 
uses both the Gauss-Newton and gradient descent 
methods. 

Technically at least 2 different views are required 
with a 5x5 chessboard. However, in practice for high 
quality results 10 different images of a 7x8 
chessboard is required due to noise and numerical 
stability [2]. On Fig.6 a camera image can be seen 
before and after the intrinsic calibration. 

 
Fig.6. Camera distortion before and after calibration 

After the intrinsic parameters are known the 
extrinsic parameters can be found similarly. By 
giving at least 4 different points both in pixel 
coordinates and in the world space the extrinsic 
parameters can be computed by using OpenCV. The 
same algorithm is used as the algorithm for the 
extrinsic parameter estimation in the intrinsic 
calibration method. 

3.2 Projector based method 
The problem with the previous method is that it 

is easy to introduce noise into measurements. This is 
especially true for the extrinsic calibration where it is 
hard to click on the exact pixel. So the calibration 
algorithm works with noisy data. 

Both the intrinsic and the extrinsic calibration are 
automated. For intrinsic calibration a big dot is 
shown on the monitor, which is captured by a 
camera which faces the monitor. From the captured 
image the point of gravity of the shown blob is 
extracted. By taking multiple images the extracted 
positions are averaged. Both the points of the 
calibration object (3D positions) and their pixel 
coordinates in sub-pixel precision are known exactly. 
After this points are gathered the same algorithm can 
be used to calculate the intrinsic parameters. 

The extrinsic parameters are calibrated in the 
same way. A projector was installed on the ceiling 
which projects the circles on the floor in known 
positions. The same way both the 3D positions and 
their 2D positions are known. The extrinsic 
parameters are calculated with the same algorithm 
used in the previous method, but less noise was 
added to the measurements due to automation. 

However, the extrinsic calibration algorithm 
minimizes the error in the known positions which 
are at the floor level. The distance between the rays 
used for reconstructing the marker positions are 
minimal at this level of height. But at higher 
positions, e.g. at 1.5 meters up from the ground, the 
distance between the rays grows. This can result in 
wrong point correspondence where the markers are 
near to each other. To solve this problem a 1 meter 
height table was put in the active space and the 
projected points were measured both at the floor 
and at the table level. That way the camera 
parameters were optimized to minimize the error at 
both level of heights. This decreased the average 
distance between the rays in the whole active area. 

3.3 Bundle Adjustment 
In the previous methods the cameras were 

calibrated separately, not as a system. 
By using the results of the previous methods the 

camera parameters can be further refined. A marker 
is moved around in the whole active area (wanding) 
and the 2D and estimated 3D positions were 
captured. The camera parameters can be further 
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refined with the Levenberg-Marquardt algorithm [5] 
by minimizing the reprojection error on all the 
cameras. That way all the cameras are considered as 
a system and the whole system is optimized globally. 
When the whole active area is covered by the marker 
both the intrinsic and extrinsic camera parameters 
are tuned that the projection rays distance is the 
smallest in the area. For bundle adjustment we used 
the SBA library [6]. 

3.4 Comparison 
For measurements a marker was moved around 

in the whole active area for about 2 minutes. Then 
both the reprojection error, and the distance 
between the reconstructed point and the projection 
rays were calculated for every sample, and the 
summed squared error was calculated. The results 
are shown on table 1. 

Tab.1. 

Comparison of the calibration methods 

 reprojection 
error [px] 

average ray-point 
distance [cm] 

manual 15,598 4,066 
floor 4,077 1,324 
floor + table 2,282 0,780 
bundle adj. 0,705 0,233 

 
Intrinsic calibration have given very good results 

with the first method. The other methods 
significantly didn’t influence the intrinsic parameters, 
so the errors come from the inaccurate extrinsic 
calibration. 

The first, manual method gives poor results. This 
is due that the user must manually select the pixels 
with the known positions. The second method, 
where a projector projected the calibration pattern, 
gives better results especially at the level of the floor. 
However for the whole active area the average ray 
distance is about 1.3 cm. By using the same method 
with a table at a known height, the error is halved.  

Finally with bundle adjustment the best result can 
be achieved. The average ray-point distance is under 
0.5 cm in the whole active area. 

4. Conclusion 
The paper have covered four different calibration 

methods for optical motion systems. We use the 
combination of the first manual method and bundle 
adjustment to fully calibrate the camera system with 
less than 0.5 cm error. 

However, camera calibration can be thought also 
as art besides science, because some unexpected data 
can badly influence the bundle adjustment. At that 
step local minimization is done, and if the starting 
values are bad, the algorithm can drift into a local 
minimum far from the global minimum. Also some 
noise during sampling can influence badly the error 

of the whole measurement, so the results are again 
far from the global minimum. 

Accurate camera calibration requires some 
manual labor as well beside the automatic methods. 
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