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Introduction

Natural resource surveys have long been engaged in characterizing the
spatial fand temporal/ variability of Earth /surface/ features. Since data
collection and the handling of the spatial information inherent in the data
are cumberscome and particularly problematic in large area resource assess—
ment, methods of interpolation and classification have come into the focus
of interest. This process has naturally increased the role of statistics.
However, the validation of models that provide a description of error leads
out of the area of statistics and [re-/defines the problem of capturing mea-
sures of spatial information [sampling/ in an environmental or geoscientific
context.

The fundamental principles applied in this paper to determine the spa-
tial characteristics of variables related to natural phenamena have been
labelled raster—-oriented in the GIS and quantitative modelling community.

The importance of this distinction is primarily due to the fact that the last
two decades have provided a number of new data sources and processing tech-
nicues in spatial data handling, where even the assumption of having contours,
polygons and the like is not necessary. Geographers, cartographers, remcte
sensing scientists and others have been working on the exploitation of tools
and methods in quantitative resource mapping, which have had a significant
impact on cartography [BURRCUGH, 1987; CSILIAG, 1987; MORRISON, 1986/, as
well as on a mumber of geosciences [BURROUGH, 1986; HAWKINS and MERRIAM,

1974; KITANDIS and VONVORIS, 1983; WEBSTER, 1985/.

A number of authors have proved the potential of the  sampling theory
applied for mapping, in particular in experiment design /McBRATNEY et al.,
1981/, the calibration of remotely sensed data [CURRAN and WILLIAMSON, 1986/,
the performing and testing of interpolation /RIPIEY, 1981/ and/or classifica-
tion /CORDON, 1987; ROSENFIEID et al., 1982/. These results provide means of
determining strategies for better sampling to achieve higher accuracy for
~ in general - a ketter [i.e. cuantitative/ description and understanding of
spatial phenomena leading to more reliable maps.

ne of the most important and popular keywords used by those involved
in this type of research 1s spatial variability. This paper reviews some
statistical models for capturing information on spatial variability, outlines
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a methed to deal with it quantitatively in terms of resolution and estima-
tion variance, and finally raises the issue of incorporating this knowledge
of spatial variability in a geographical information system [GIS/. The ap-
proach is illustrated with examples and is thought to be appropriate for a
wide variety of applications.

In the first part of the paper sampling as such is reviewed comparing
ideal vs. field or remote data collection and signal reconstruction with
given constraints. Next, a concise surmary of nested sampling is given, by
which the most informative sampling distance can be effectively selected in
terms of variance in a pilot study prior to the detailed sampling. The sec—
ond part presents cptimal interpolation teciniques with special reference
to spatial resolution and estimation variance. Finally, in the third part a
prototype soil mapping experiment in Hmgary demonstrates the potential of
the approach.

Sampling revisited

In general there is no a priori information basis for the opt imum
sampling distance. A convenient way to determine a reascnable sampling dis-
tance is the nested model of variance, recently described by CLIVER and
WEBSTER /1986a/, which partitions the total variance by distance-stages in
a hierarchical manner. Thus, the distance most sensitive to variability can
ke considered as characteristic of the spatial phenomena being sampled.

Many properties of the Earth’s surface features can be treated as con-
tinuous signals: however, scientists need to describe their pattems using
generally sparse point observations. Field sampling in this respect can be
represented as seen in Fig. 1.
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Fig. 1
Schematic representation of: a/ a variable as a continuous signal; b/ its
ideal; c/ real in-situ, and d/ remote sampling

716



Having a continuous signal g(x), where x denotes spatial coordinate/s/,
point sampling can be approximated with a Dirac-d series:

g(x)Eka(x—kd) = Ekg(x) 8 (x-kd) 11/

where d denotes the sampling distance. From a number of illustrative tri-
als one receives the impressicn that the shorter the sampling interval, the
better the reconstruction of the signal, although the right hand side of
equation [1/ is egual to zero at every x # kd.

The exact relationship between the sampled and original signal is de-
fined by the sampling theorem /e.g. TOBLER, 1969; MESKO, 1984/. Recalling
the Fourier-transformation of the Dirac-4 series, the Fourier-transformation
of equation /1/ can be written as

G(E)#(1/d)z, 8(£-[k/d]) = (1/d)L, G(£-(k/d]) 12/

where * denotes convolution, f stands for spatial frequency and the ex—
pression gives the sampled spectrum G (f). sampling leads to a spectrum,
which is pericdic by the Nyquist interval, i.e. by its [-1/2d, 1/2d] pri-
mary part. The summed terms of the right hand side may overlap, however:

if |f]> £

o & Dnyuier = 128 /3]

then G_(f) = 0 for [£] > fup

meaning that the original signal can be reconstructed without any lcss of
information if the period of the highest spatial frequency is sampled at
least twice. If the sampling distance is selected arbitrarily and is great—
er than half the distance corresponding to the Nyguist interval, aliasing
will significantly distort the spectrum.

(nce having the Fourier-transformation of g(x), the autocovariance
function can be derived as follows:

y(h) = F H{|cteN?) /4l

from which spatial pattems je.g. dominant frequency/ can be computed.

Optimal interpolation

The interpolation of staticnary data can be optimized, for instance,
in terms of RMS-error with Wiener-filters [KENDALL and STUART, 1966; CLEAR-
BOUT, 1976/. This leads to the solution of a set of linear equations, and
allows us to determine the minimm error in the following form:

E in = ®(0)-L,c, @ (k) /5]
where ¢ denctes the autocovariance of the measured data [i.e. @(0) is the
power/, ¢. is the cross-covariance of the signal-component and the measared
data, while ¢, is the filter-coefficient. The practical limitaticn of this
estimate is tﬁat it is heavily dependent on the covariance function estimate
based an a limited sample of realizations as well as on a priori informaticn
about the form of signal and noise. /an exanple may serve to illustrate the
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the importance of the "meaningful" assumptions: considering non-correlated
signals and measurements, the ¢, = O values for all k values are the opti-
mim interpolator Wiener-filter coefficients. /

Besides the practical limitations, there are theoretical anes, too.
Bquation /4/ implies that the process for which the g(x) signal is recorded
should be stationary in both mean and covariance. As it happens, many pro-
perties of the land appear not to be stationary in this sense [OLIVER and
WEBSTER, 1986b/. This led MATHERON /1965/ to consider the scmewhat weaker
assumptions of stationarity:

E{g(x) - g(x+h})} =0 16/

and 5
E{lg(x)-g(x+h)]“} = 2-vh) 17/

where E denotes expectation and the function ¥ (h) is called the semi-vario—
grem. Tts existence is based on the stationarity of the differences between
sanples.

If the process is second-order staticnary, then the semi-variogram is
related to the autocovariance fuinction as: y(h) = @(0) —¢(h), and either
¥(h) or ¢(h) can be used to describe the spatial process. If, however, only
the so-called intrinsic hypothesis holds (c.f. equations /6/ and [7/), then
the covariance is undefined and g(x) is called a regionalized variable. The
semi-variogram can be estimated without bias according to the definition im-
plicit in equation [6/, or to the formulae for two or more dimensions and
irregular sampling /WEBSTER, 1985/.

The method of estimation embodied in regionalized variable theory is
known in earth sciences as kriging /JOURNEL and HUIJBREGTS, 1978/. It is
essentially a means of weighted averaging:

9'ly) = LLalx) /8/

in which the weights (I ) are chosen so as to give unbiased estimates at
y f{gly)).
It is optimal in the sense that it minimizes the estimation variance:

2

og (¥) = Ellgly)a' ()] } = 50,9 0 ,¥)-7 () 191

where oo, (v) is the estimation variance at y Jwhich can be either a point or
a block?, E denotes expectation, ?’*(Xk,y) stands for the semi-variance

of the property estimated by all pomt—pairs*between % and y, taking into
account both the distance and angle, while ¥ (y) denotes the average semi-
variance within the block. The latter term can be omitted, being zero for
points. For formulae to cbtain the estimation varisnce, see e.g. JOURNEL and
HUIJBREGIS (1978/. Xriging alsc requires the estimation of a set of linear
squations. Besides its advantage of weaker assumptions, it should be noted,
from a practical point of view that given the semi-variogram, the kriging
matrix is dependent only an the location of the samples /SZIDAROVSKY and
YAKOWITZ, 1985/.
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Quantitative soil moisture mapping — An example

large area surveys of natural rescurces, in general, require many
samples when applying systematic sampling. Remote sensing technicues, how-
ever, confine ground sampling to training /and test/ areas. Nevertheless,
neither of these approaches provide "autamatically" reasonable tocls for
adjusting errors [in terms of estimation variances/ to equally reliable
mapping of natural variables. The above-cutlined geostatistical approach,
however, assures sufficient information for such a purpose while construct-
ing the map, and may alsoc increase the efficiency of data processing in
ways which have been implemented in the following experimental project.

The proplem of defining optimum data content in attributes and space
and suitable data structure is crucial for soil information systems in par-
ticular. The Hungarian Soil Information System /TIR=HunSIS/ [CSILLAG et al.,
1986; VARALIYAY et al., 1985/ is at present capable of handling point and
polygon data on a quadtree-based data base with a finest resolution of 25 m.
These data contain conventional basic [static/ soil property and soil type
descriptions. The study from which soil moisture data are partly presented
below has been focused on spatial and temporal variability and interrela-
tionships.

First of all, measurement accuracy was estimated for the given sam-
pling area and equipment /detailed methodology in CSILIAG and SZABG, 1987/.
From the point of view of spatial uncertainties, first the optimal sampling
distance had to be determined [i.e. the distance to which most of the vari-
ance can be assigned over several orders of magnitude/ based on ©- and 4-
stage nested sampling from 1 to 100 metres. Based cn the results of nested
analysis of variance, sampling was carried out based on a regular grid.
This data set could be used for computing the semi-variogram or the power-—
spectrum, which can serve as the kernel-functicn in interpolaticn. Once
varying size block-estimates are made, the estimation variances can be
plotted against block-size [resolution/, and the evaluation of such func-
tions can determine the maximum permissible resclution of the data in terms
of acoeptable error. This information can also be used to determine the op—
timal pixel-size for remotely sensed data as well as to be incorporated in
a GISs.

Measurement accuracy

The determination of measurement accuracy for natural variables pro-
vides an additive term in the final variance estimates as a contrilution
to the zero-lag /i.e. nugget/ variance. The reasons why it is briefly men—
tioned here are twofold:

- ane should never neglect the definite limitations of a map derived
from measurement [i.e. cuantized/ data, especially in the case of new
types of devices [BERNARD et al., 1984/, and

- if spatial and non-spatial covariances are to be used in further in-
ferences, the uncertainties related to each variable must be taken into
consideration /McBRATNEY and WEBSTER, 1983/.

In cur case a novel, fast, capacitance-type soil moisture meter
JVARALIYAY and RATKAI, 1987/ was tested in the laboratory and under a range
of field conditions against conventional methods and reproducibility. With-
out going into details of soil moisture measurements, it should be noted
that field methods generally require more samples than laboratory measure-
ments for the same error level [VACHAUD, 1978; HAWLEY et al., 1982/. This
is particularly true when one campares moisture per weight /laboratory/
with moisture per volume [field/ data with conversion using hulk density
values. As expected, the hicher variances obtained with the volumetric me-
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thod still pay off in the field for the instantaneous measurement capability.
With a rise of an order of magnitude in the number of samples per point in
the field /~50/, an acceptable error level [~10%/ could ke achieved under
several soil conditicons.

Nested sampling and analysis of variance

Two study areas were selected for test purposes, where spatial inter-—
relationships were to be evaluated cartographically and in terms of soils.
At both study areas, samples were collected at 72 locations and variance was
analyzed according to 3-stage and 4-stage junbalanced/ nested design /as
described by OLIVER and WEBSTER, 1986a/.

For illustration purposes let us take just one of the soil moisture
data sets /neglecting temporal variations, mechanical composition and vege-
tation data/. Nested design for analysis of variance is an efficient way to
cbtain rough estimates for the proportions of variance that can ke assigned
for a given distance [lag/. There is no way to predict a priori decamposi~
tion of variance /except through field experience/, so the way of accepting
models is based on the significances of the F-tests between stages. [Note
that the highest significance values do not necessarily coincide with the
highest variances./ The 3-stage model provided acceptable /i.e. significant/
differences between variances, so the highest proportion of variance assigned
to a 5 m lag was taken into consideration for detailed sampling. Figqure 2
demonstrates proportional cumilative variance and significance in nested
analysig of variance for soil moisture measurements.
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Proportional cumulative variance and significance in nested analysis of vari-

ance for soil moisture measurements. A. 4-stage model /distances were 1, 5,

25 and 100 m, respectively, and the model was rejected due to the significance

values of F-ratios between stages/. B. 3-stage model with the amission of the

25 m-gpart stage /suggesting that the most characteristic distance lies between
5 and 25 m/ [the curves are just to quide the eye/
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Detailed sampling for defining functions describing spatial character-
istics and testing the accuracy of interpolation was carried cut on a 4
metre 32#64 grid /again at different depths and for various variables, too/,
and soil moisture data is presented in Fig. 3. The selection of 4 metres
as the sampling distance was based on the sampling theorem and the nested
analysis of variance, since the latter suggests that the characteristic dis-
tance is around 5 m jpossibly a little more, according to the 4-stage model/,
while the former suggests to sample that twice.

N2
NN

Fig. &
Raw data set on a 4-metre grid [moisture in thousands/

Defining functicns of spatial characteristics

Based on the detailed data set, the eemi-variogram was estimated assum-
ing a spherical model. In the case of moisture, there are certain implica-
tions of this model Jje.q. superimposition of point sources; McBRAINEY and
WERSTER, 1986/, nevertheless, our interest is not focused on the "exact" mod-
el, hut rather on using it for interpolation. Fig. 4 agrees with previous
assumptions: the range of the semi-variogram is 2.5~times the sampling dis-
tance.

Interpolation — block-variance estimates

To study the effects of spatial decomposition on the estimation of vari-
ance, the scheme shown in Fig. 5 was used.,

The estimates obtained by different resoluticns make it possible to
examine functions relating resolution to estimation variance. Fig. 6 con-
tains same examples.
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Semi-variogram determined for scil moisture data measured on 4 metre grid
/the curve is the result of fitting a spherical model with the following pa-
ramaters: nugget variance = 3.0 [tmoisture?], sill = 6.0, range = 10, where
the last term means a characteristic distance of 2.5 lags /sampling intervals/
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Scheme of spatial decomposition for a study area Joriginal resolution [32#16
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Fig. 6
Same functions relating resolution to variance [the functions are positioned
to their approximate location and the curves are drawn based cn 3 points to
guide the eye/

Dzfining optimal resolution based onm functions velating resolution to
variance

Some publications seem to suggest monotonically decreasing block-vari-
ance /e.g. BURRCUGH, 1986/. However, this is not the case. Some intuitive
ideas altout these functions were presented by the author, but further theo-
retical work is still needed to interpret and predict their different shapes.
Nevertheless, as one might expect, in same instances the curves have well-
defined minima, kut not at the finest resolution. This enables us to produce
maps with either locally minimum uncertainty, or maps with equal variances,
but with varying resolution. As Fig. 7 suggests, this can be incorporated
with the internal data structure /[say, quadtree/ of a geographical informa-
tion system even in such a way that no query is accepted for data with less
confidence than a given limit.

Conclusions and supggestions

The solution of the problem of making reliable maps has to be accam—
panied by the recognition that "accurate" and “erronecus" are not disjunct
sets, but can rather be viewed as a continuum. The methodology presented
here is suitable for the determination of spatial characteristics of vari-
ables related to natural phenamena, and applying that information for areal
interpolation and variance estimate can lead to homogenecus variance maps
with varying resclution, or vica versa.

The contradiction between the requirements of constant accuracy and
constant resolution will necessitate significant contributions fram differ-
ent hranches of science for modelling co-regionalized variables and/or
elaborating classification strategies that can lead from rasters to vectors,
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Fig. 7
Variable resolution sanple map of soil moisture where all variances are be—
low 5%. A. Shades represent variance; B. Shades represent moisture
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or fram vectors to rasters. It is also understood that at present, whenever
a choice is made conceming data representation, it implies a particular
model which is further used to estimate accuracy. A unified approach to spa-
tial error modelling seems to be inevitable, to combine the advantages of
vector- and raster-based models. Furthermore, once errors are determined
their role in further processes /cognition or error absorption — BEDARD,
1987/ should be studied in more detail. These studies can link sampling me-—
thodology with error modelling, variance estimates with data structures, and
cansequently provide a basis for upgrading geographical information systems
to geographical expert systems.
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