Carbon Requirements of Leguminous Plants Receiving Different Nitrogen Nutrition

W. MERBACH

Research Centre for Soil Fertility of the Academy of Agricultural Sciences,
Müncheberg /GDR/

There are different opinions concerning the carbon requirements of legumes at symbiotic dinitrogen fixation in comparison to mineral nutrition. Besides information on equal C-demands /HARDY and HAVELKA, 1975/ results were published about higher energy requirements of air dinitrogen binding by legume-Rhizobium symbioses /SILSBURY, 1977/. In the present paper the carbon consumption of $\rm N_2$ fixation and nitrate assimilation is compared taking white lupin /Lupinus albus L./ as an example in experiments carried out at the University of Halle.

Materials and methods

White lupins /var. kievskij mutant/ were cultivated in Mitscherlich vessels containing soil as substrate until they had 8-10 leaves each /MERBACH, 1982/. After this the plants were kept for several days under the conditions of 12 h light /40 klx/ and 12 h dark in order to obtain a steady state balance. According to MCCREE and SILBBURY /1978/ in this case the following equation is valid:

$$D_O = \Delta TS + N_W + N_E$$

where: D_O = apparent CO₂ assimilation in light /mg CO₂ influx per light period of 12 h/;

ATS = dry matter increase per day in CO2 equivalents;

 $\rm N_E$ = maintenance respiration /mg CO₂ efflux per dark period of 12 h after prolonged darkness of > 24 h and consequently after consumption of short time assimilate reserves/ and $\rm N_W$ = growth respiration /use for biosynthesis processes/.

From these components $D_O,\ N_E$ and ΔTS were determined experimentally, N_W was calculated after $N_W=D_O-(N_E-\Delta TS).$ The estimation of D_O and N_E was carried out by means of CO_2 gas exchange analysis /IRGA method, open system/. Root respiration $/N_{WU}/$, too, was measured. ΔTS was obtained as the difference between the plant dry matter yield at the termination and beginning of the experiment /preharvest as starting point/. In order to convert

 ΔTS into CO, equivalents the carbon content of dry matter was determined using the method described by JACKSON /1958/. The carbon content of the lupin dry matter amounted to 39.1% and consequently, the conversion factor from dry matter to CO, was 1.43.

Results

As it is evident from Table 1, the $\rm N_2$ fixing plants showed a significantly higher apparent CO₂ assimilation /D₀/, growth respiration /N_W/, and

Components	NO ₃ nutri- tion /0.4 g N as NaNO ₃ per pot/	N ₂ fixation without N, inoculation with Rhizobium lupini	/N ₂ -NO ₃ /
D _o mg CO ₂ /12h/ ⁻¹ .g ⁻¹ ΔTS	2135 /100/	2365 /111/ ^x	230
N_E mg $CO_2/12h/^{-1}.g^{-1}\Delta TS$	230 /100/	232 /101/	2
N_{tr} mg $CO_2/12h/^{-1}.g^{-1}\Delta TS$	312 /100/	527 /169/ ^x	215
$N_{\text{Wu}} \text{ mg } \text{CO}_2^2/12\text{h/}^{-1} \cdot \text{g}^{-1} \Delta \text{TS}$	236 /100/	461 /195/ ^x	225
g C per g N	3.6 /100/	7.0 /194/ ^x	3.4

 $x = vs. NO_3^-$ variant with $\alpha = 0.05$ significant /variance analysis, t-test, single calculation/

root respiration $/N_{WU}/$ than the nitrate assimilating plants while synthesizing l g dry matter. In contrast, the values of maintenance respiration $/N_E/$ did not differ between the two variants. It is interesting to note that the increases $/N_2 - NO_3$ / in D_O , N_W and N_{WU} /Table l/ were nearly equal. The C demand per g of fixed N_Z /7 g/ was much higher than the C

The C demand per g of fixed N_2 /7 g/ was much higher than the C requirement per g of assimilated nitrate-N /3.6 g/. Similar information is given by other investigators /PATE et al., 1979; MINCHIN et al., 1980/. Consequently, the actually assayed carbon requirement for symbiotic N_2 fixation was higher than the theoretic values calculated to 2.57 until 4 g C /PHILLIPS, 1980; HARDY and HAVELKA, 1975; SHANMUGAN et al., 1978/. This is caused mainly by the energy demands, necessary for nodule formation and maintenance /MERBACH, 1982/. The dinitrogen fixing plant needs consequently more energy /carbon/ than the nitrate assimilating plant to synthesize the same amount of substance although NO_3 nutrition demands relatively much energy. Therefore effective N_2 fixation requires essentially sufficient assimilate providing. This fact has to be considered at the development and selection of more productive Rhizobium-plant-symbioses.

References

- HARDY, R. W. F. and HAVELKA, U. D., 1975. Nitrogen fixation research: a key to world food. Science. 188. 633-643.
- JACKSON, M. L., 1958. Soil chemical analysis. Englewood Cliffs. 211-214.
 MCCREE, K. J. and SILSBURY, J. H., 1978. Growth and maintenance requirement of subterraneum clover. Crop Sci. 18. 13-18.
- MERBACH, W., 1982. Untersuchungen über Stickstoffumsatz und symbiontische Nz-Fixierung bei Körnerleguminosen. Dissertation B Univ. Halle.
- MINCHIN, F. R., SUMMERFIELD, R. J. and NEVES, M. C. P., 1930. Carbon metabolism, nitrogen assimilation and seed yield of cowpea /Vigna unguiculate L. Walp./ grown in an adverse temperature regime. J. exp. Bot. 31. 1327-1345.
- PATE, J. S., LAYZELL, D. B. and ATKINS, C. A., 1979. Economy of carbon and nitrogen in nodulated and non nodulated /NO3 grown/ legume. Plant Physiol. 64. 1083-1083.
- PHILLIPS, D. A., 1980. Efficiency of symbiotic fixation in legumes. Annu. Rev. Plant Physiol. 31. 29-44.
- SHANMUGAN, K. T. et al., 1978. Biological nitrogen fixation. Annu. Rev. Plant Physiol. 29. 263-276.
- SILSBURY, J. H., 1977. Energy requirement for symbiotic nitrogen fixation. Nature. 267. 149-150.