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Varieties generated by completions

Andréka, H. and Németi, I.

Abstract

We prove that persistently finite algebras are not created by com-
pletions of algebras, in any ordered discriminator variety. A persis-
tently finite algebra is one without infinite simple extensions. We
prove that finite measurable relation algebras are all persistently fi-
nite. An application of these theorems is that the variety generated
by the completions of representable relation algebras does not contain
all relation algebras. This answers Problem 1.1(1) from R. Maddux
[21] in the negative. At the same time, we confirm the suggestion in
that paper that the finite maximal relation algebras constructed in M.
Frias and R. Maddux [5] are not in the variety generated by the com-
pletions of representable relation algebras. We prove that there are
continuum many varieties between the variety generated by the com-
pletions of representable relation algebras and the variety of relation
algebras.

1 Introduction

Completions of partially ordered sets are obtained, intuitively, by filling-in
non-existent suprema. Various kinds of completions are in use, for example
in a join-completion we fill-in all suprema, and in an ideal-completion we fill-
in the suprema of nonempty directed sets only. For Boolean algebras, most
of these various kinds of completions coincide with the so-called Dedekind-
MacNeille completion that we will simply call completion. Completions were
generalized from Boolean algebras to Boolean algebras with operators by J.
D. Monk [22], where he also showed that the completion of a relation algebra
is again a relation algebra. It was natural to expect that the completion of a
representable relation algebra is again representable. To a great surprise, this
was disproved by I. M. Hodkinson [12]. Maddux [2I] began to investigate
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what kind of structures can a non-representable completion bring in. He
exhibits infinitely many finite non-representable relation algebras that can
be embedded into a completion of a representable relation algebra. He then
asks if the variety Var(RRA®) generated by all the completions of representable
relation algebras contains all relation algebras [21, Problem1.1(1)].

In this paper, we deal with structures that cannot be created by comple-
tions. We prove that in ordered discriminator varieties, completions cannot
create persistently finite algebras (Theorem [21]). In Frias-Maddux [5], an
infinity of maximal, finite, integral relation algebras are constructed. Since
these are all persistently finite, they are all outside of Var(RRA). With this
we confirm the suggestion in [21] that these might be outside of Var(RRA?).
In this paper, we present another sequence of persistently finite relation al-
gebras that are not integral. Namely, we prove that being finite measurable
is a persistent property (Theorem Bl). All this gives a negative answer to
Problem 1.1(1) in [21I]. More can be proved: there are continuum many vari-
eties between Var(RRA®) and the variety RA of all relation algebras (Theorem
41).

Section [2] deals with discriminator varieties. We define a general notion
of density, and we prove that in ordered discriminator varieties, dense exten-
sions do not create new persistently finite algebras. Sections [B] and @ deal
with relation algebras. In section [3] we prove that finite measurable relation
algebras are all persistently finite, and we list some consequences of this. In
section (4], we use the theorems proved in the previous sections to show that,
in a sense, there is much room between Var(RRA®) and RA: there are contin-
uum many varieties between the two. However, this leaves open the question
of how far these varieties are from each other, that is whether Var(RRA®) is
finitely axiomatizable over RA (this is [2I], Problem 1.1(2)]).

2 Dense extensions in discriminator varieties

We recall the notion of a discriminator variety from [3]. All what we need
in the present paper from this fascinating branch of universal algebra is
contained in [3| section 1] (a summary which is taken from Werner [24]). A
variety V is called a discriminator variety if it is generated by a class K of
algebras as a variety, and there is a term ~ in the language of the variety
that represents the quaternary discriminator function g on each member of



K, where the function g on a set A is defined by the property that
g(z,y,u,v) =u when z =y and ¢(z,y,u,v) =v when = #y

for all x,y,u,v € A. We will not distinguish the function ¢ from the term ~
that defines it.

In this section we deal with ordered discriminator varieties as defined
in [3, section 4]. This is a discriminator variety where a partial order < is
defined by a finite set of equations:

<y iff Ti(x,y) = oi(x,y) for i <n

for some number n and terms 7;,0;, ¢ < n in the language of the variety.
Discriminator varieties of Boolean algebras with operators are ordered dis-
criminator varieties where < is defined as the Boolean ordering, in particular
all varieties of relation algebras or all varieties of finite dimensional cylindric
algebras are ordered discriminator varieties.

Since in ordered discriminator varieties the ordering can be an arbitrary
partial order, there is a great variety for the notion of a completion (see, e.g.,
[23]). We will use a general notion of density that covers most of completions.

Definition 2.1 We say that X C A is dense in (A, <) when for all a € A
there is x € X with x < a, and for all x € X,z < a there is y € X with
z<y<a.

This density property is stronger than join-density (which means that each
element of A is the supremum of the elements of X below it), but weaker
than ideal-density (which means that each element of A is the supremum
of its downset intersected with X that is in turn an ideal, i.e., a nonempty
directed downward closed set). In particular, a Boolean algebra is dense in
the above sense in its completion, see |8, Lemma 15.1] or Lemma ATl

Usually we denote the universes of algebras 2,8, ... with A, B, ....

We say that an ordered algebra B is a dense extension of 2, or that A
is a dense subalgebra of B, when A is dense in B. For a class K of similar
algebras, K¢ denotes the class of dense extensions of members of K and VarK
denotes the variety generated by K.

Let 2 be an algebra and K a class of similar algebras. We say that 2 is
persistently finite in K if 20 is finite, and all its simple extensions that are in
K are finite.

The following theorem says that dense extensions do not generate new
persistently finite algebras, in an ordered discriminator variety.



Theorem 2.1 Assume that V is an ordered discriminator variety of finite
similarity type. Assume that A is simple and persistently finite in V. Then
2 € Var(K* NV) implies that A € VarK, for any subclass K of V.

Proof. Let V, K and 2 be as in the statement of the theorem. Assume
that 2 € Var(K? NV), we will show that 2 € VarK. Let HL, SL and PL
denote the classes of all homomorphic images, all subalgebras and all direct
products, respectively, of members of L, for L a class of similar algebras.
Thus, VarL = HSP L, for any class L. If ©, is a dense subalgebra of &; for
all 7+ € I then the direct product of the ®;,7 € I is a dense subalgebra of
the direct product of the &;, 7 € I, this is straightforward to check. Thus we
have

(1) P(K'NV) C (PK)INV.

By 2 € Var(K*NV) and (@) we have that 2 € HS((PK)?¢ N V), so there are
algebras 8, € © and a homomorphism h such that

e h B — A is a surjective homomorphism,
e B is a subalgebra of € € V,
e © is a dense subalgebra of € and 2 € PK.

Note that € ¢ VarK may be the case. We will show that 2 € SH{®} C VarK.

Let aq,...,a, be a repetition-free listing of the elements of A. There
is such a listing because 2l is finite. Since 2l is simple, it has at least two
elements, so n > 2. Let by,...,b, € B be such that h(b;) = a; for all
1 < 5 < n. There are such elements because h is surjective. We may
assume that 9B is generated by {b1,...,b,}, because of the following. 2 is a
homomorphic image of the subalgebra B’ of B generated by b, ...,b, and
B’ is a subalgebra of € by B’ C B C €&, so we can choose this B’ in the first
step. In the following, assume that B is generated by by, ..., b,.

By [3l Lemma 2.1], the kernel ker(h) of h is a compact congruence of
B. Since V is a discriminator variety, compactness implies that ker(h) is
principal, see [3, Thm.1.1.ITL.(iii)]. Let r,s € B be such that

(3)  ker(h) is generated by the pair {(r,s)} as a congruence in 8.

We want to use the property of 2l that all its simple extensions in V are finite.
To this end, let us take a subdirect decomposition of & to simple factors, say,
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¢ is a subdirect product of (€; : i € I) with projections m; : € — &; where
each €; is simple. There is such a decomposition by Birkhoff’s subdirect
decomposition theorem and because in discriminator varieties the subdirectly
irreducible algebras are exactly the simple ones, see [3, Thm.1.1.11]. Let

Iy={iel:m(r)=m(s) and m;(by) # m;i(b2)}.
We show that
(4)  hi = {(h(b),m (b)) : b € B} embeds 2 into m;[B| C &;, for all i € I.

Indeed, let i € Iy. Then (r,s) € ker(m;) by the definition of ;. Thus
ker(h) C ker(m;) because ker(h) is generated by this pair as a congruence
inB C & Now, m : B — ¢ since B C ¢ and m; : € — ;. Therefore
hi A — m[B], by ker(h) C kerm; and h : B — 2. Since 2 is simple,
then either h; is an embedding, or h; maps 2l onto the one-element algebra.
However, this latter case would entail 7;(b;) = m;(b2), which is not the case
by the definition of Iy and i € Iy. Thus h; is an embedding, and the proof of
(@) is complete.

Now, by using persistently finiteness of 2, we show that there is a natural
number £ such that

(5) the cardinality of €; is smaller than k, for all i € I.

Indeed, €; is simple and &; € V for all ¢ € I by our assumption & € V.
Then h; : A — ¢&; implies that €; is finite. However, we have to show
more, we have to show the existence of the finite upper bound k. Proving
by contradiction, assume that 2 has ever larger simple extensions 91, in V.
Then 2l is embeddable into an infinite ultraproduct 2N of these. Now, 9t € V
because V is a variety, so it is closed under taking ultraproducts. Since V is a
discriminator variety, the class of its simple members is closed under taking
ultraproducts ([3, Thm.1.1.I1.(iv)]), and hence 91 is simple. This contradicts
persistently finiteness of 2, and so there is a finite upper bound k for the
simple V-extensions of 2. This proves (5).
Next we show that

(6) Iy # 0.

Indeed, let b* = g(r, s, b1, by), where g is the quaternary discriminator term.
Now, b* € B by its definition, and h(b*) = g(h(r), h(s), h(b), h(by)) because
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h is a homomorphism and ¢ is a term in the language. Since ker(h) is
generated by (r,s), we have that h(r) = h(s). Thus, h(b*) = h(b) = ay,
by the definition of g. Assume that i ¢ I,. Then either m;(r) # m(s) or
mi(b) = mi(be). In either case, m;(b*) = m;(by). Assume that Iy = (), then
mi(b*) = mi(by) for all @ € I, which implies b* = by. This is a contradiction,
since h(b*) = a; while h(by) = ay # a;. Thus, Iy # 0 and (6) has been
proved.

We begin a “transit” from € to ©. So far, (4) implies that h;[A] C
™ [B] C m;[€]. Note that © is a subalgebra of € and © € PK. Our plan is to
find an ¢ € Iy such that h;[] C m;[®]. This would show that 2 € SH{®} C
VarK. To this end, we want to find di,...,d, € D such that there is an
i € Iy such that m;(by) = m(dy), ..., m(b,) = m(d,). This would imply that
mi[B] C m[D] because B is generated by by, ..., b,, and then () implies that

From now on, the following notation will be convenient to use. Let
a(ey,...,e,) be a conjunction of equations and non-equations of terms of
elements from E. These are all open Horn formulas. I(«) denotes those
factors from I where « is true under taking the projections:

I(a(er,... em)) = {i € I:€ | almer), ... mlem))}.

With this notation, Iy = I(r = sAby # by). We say that J C [ is definable if
Jis I(a(eq,. .., ey)) for some open Horn formula o and elements e, ..., e,
of E. In discriminator varieties, to each open Horn formula « there is an
equation e such that in each simple member of the variety, o and e have
the same truth-evaluations, see [3 Thm.1.1.V.]. Therefore, there are terms
p,0 such that I(a(ey,...,en)) = I(p(er,....em) = d(er,...,em)). Since
pler,....en),d0(e1,...,e,) are elements of F, we have that J is definable
exactly when there are p,q € E such that J = {i € I : m(p) = m(q)}.
In this case, we say that J is defined by p = ¢. Assume that J C I. By
“a(eq,...,ey) holds on J” we understand that o(m(e1),...,m(em)) holds
for all 7 € J. We note that in ordered discriminator varieties, 7 < ¢ counts
as an equation, because < is defined by a finite set of equations which is an
open Horn formula.

We say that J C [ is bounded if there is a natural number k£ such that
|C;| < k for all i« € J. Finally, when a,b € F and J C I, we say that
a approximates b in J if there is j € J such that a; = b;. To find our
dy, ..., d,, we will use the following statement (7) repeatedly. We note that
this statement is the “heart” of the proof of Theorem 2.1]
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(7) Each element of E can be approximated by an element of D in any
nonempty definable bounded subset of I.

Indeed, to prove (7), let b € E and let J be a nonempty definable bounded
subset of I. By density of D in E, there is an a € D such that a < b. If a

approximates b in .J then we are done. Assume that a does not approximate
b in J, then

(8) a<b on J.

Define by = g(p, ¢, b, a), where J is defined by p = ¢q. Then by is b on J and b;
is a outside J and a < by by (8). Choose a; € D such that a < a; < by, there
is such an a; by Definition 2.1l If a; approximates b on J, then we are done.
So, assume that a; does not approximate b on J and let J; = I(a < ay).
Then J; is a subset of .J because a < a; < by but a and b, agree outside of J.
(We note that the purpose of using b; in place of b was to achieve J; C J.)
By a < a; we have that J; is nonempty. J; still has the bound k because
it is a subset of J. Also, J; is definable by J; = I(a < ay). Thus, J; is a
nonempty, definable bounded subset of J and

a<a; <b on Ji.

We proceed this way: assume that for m we already defined aq,...,a,, € D
and a nonempty definable subset .J,, of J such that

a<a << ay,<bon J,.

Having this, by a,, < b and Definition 2.1l we can find an a,,;1 € D such
that a,, < a1 < b. If a,,,.1 approximates b on J,,, then we are done. If
not, then let by,11 = g(Pms Gm, b, @my1) where J,, is defined by p,, = ¢,,. Let
Jms1 = I(ay < amy1), this is a nonempty definable subset of J,, such that

9) a<ap < <y < pp <b on Jyiq.

In particular, (9) implies that |C;| > m + 3 for all i € J,,;;. Because J
is bounded, this process cannot be continued ad infinitum, so at one of the
steps we have to find an approximation of b as desired. This proves (7).

We turn to finding dy, . . ., d,, € D such that I(by = dyA---Ab, = d,)NIy #
(). We have seen that I, is a nonempty definable bounded subset of I, see
(5), (6). Assume that p = ¢ defines Iy. We begin with b;. By (7), there is

7



dy € D which approximates b; on Iy. Let Iy = I(by = dy Ap = q). Then I,
is a nonempty definable bounded subset of . By (7), there is dy € D which
approximates by in I1. Let Iy = I(by = dy Aby = dy Ap =¢q). Then I, is a
nonempty definable bounded subset of Iy, and so on. In the last step we get
a d, € D such that d, approximates b, on I, 1 = I(by =d; A+ - ANb,_1 =
dpaAp=q). Let J=1(by =dyN---Ab, = d,Ap = q). Then J is nonempty,
let i € J be arbitrary. Then, m;(by),...,m(b,) € m[D] by dy,...,d, € D and
Wi(b1> = 7Ti(d1> Ce ,Wi(bn) = Wl(dn) By (4) we have that hi(aj) = Wi(bj) for
all 1 < j < n, thus h;[2A] C m;[D] because A = {a4,...,a,}. By assumption
we have that ® € PK, so 2 € SHPK C VarK. With this, the proof of
Theorem [2.1] is complete. O

3 Persistently finite non-representable rela-
tion algebras

An algebra 2 = (A, 4+, —,;, 7, 1") is a concrete algebra of binary relations if 2
is a set of binary relations with a biggest one, and the operations +, —,;,~, 1’
are, respectively, the following natural operations on binary relations: union
of two relations, taking the complement of a relation with respect to the
biggest relation, relational composition of two relations, converse of a rela-
tion, and the identity relation on the domain of the biggest relation. The
class of all algebras isomorphic to concrete algebras of binary relations is
denoted by RRA. This is a variety which is not definable by a finite set of
equations (classic results due to A. Tarski and J. D. Monk, respectively).
The variety RA D RRA of relation algebras is a finitely axiomatized variety
that approximates RRA surprisingly well: an algebra 24 = (A, +,—,;,7, 1)
is a relation algebra if (A,;,~, 1) is an involuted monoid, (A, 4+, —,;,”) is
a Boolean algebra with normal and additive operators, and one more iden-
tity true of concrete algebras of binary relations also holds in it, namely
r7;—(r;s) < —s. We use <,0,1,- with their usual definitions in a Boolean
algebra. The elements of RRA are called representable relation algebras and
the elements of RA \ RRA are called non-representable relation algebras. If
2l € RA, we assume that its operations are as above.

Assume that 21 € RA and y € A. We say that y is a functional element if
¥y ;y < 1. A relation algebra 2l is called measurable, if the identity constant
17 is the supremum of atoms, and each atom z < 1’ is measurable in the



sense that x;1;z is the supremum of the functional elements below it. The
number of the functional elements below x;1;x is called the measure of x.
These names reflect their meanings in concrete algebras of binary relations.
Namely, assume 2 is such. Then y € A is functional exactly when y is a
function as a relation, a subidentity element z corresponds to a subset X
of the domain of the biggest relation via x = {(u,u) : u € X}. When the
biggest element of 2 is of form U x U then x; 1; x is just the square X x X
and it can be showed that the measure of a measurable atom z coincides
with the size | X| of X.

The following theorem says that the property of being finite and mea-
surable is persistent in RA, i.e., this property is preserved by simple relation
algebra extensions.

Theorem 3.1 Assume that 9 is a finite measurable relation algebra. If M
can be embedded into a simple relation algebra A, then A itself is finite and
measurable.

Proof. Assume that 91 is a finite measurable relation algebra and 99T C
2l € RA where 2 is simple. Let I denote the set of the subidentity atoms—
atoms below the identity 1'— of 91, and for all x € I, let F, denote the set
of functional elements below z;1;x. Then I is finite, and for all x € I, the
set F), is finite, too, because 9 is finite. Further, z;1;x is the sum of F.
Temporarily, let us fix x € I.

By 9 C 2, we have that e = x;1;2 is an element of 2, too, and it is
an equivalence element, that is to say, e~ = e = e;e because 2 € RA, see
[7, Lemma 5.64]. Then the relativization (e) of 2 to e is also a relation
algebra [7 Theorem 10.1]. Tt is simple because 2 is simple and z;1;z is a
nonzero square [7, Theorem 10.8]. We note that the universe of 2(e) is the
downset of e in 2, and the operations +,;,~ of 2(e) are the same as those of
20 while —, 1" in 2(e) are the relativized versions of those in 2 which means
that —(a) = e — a and the identity of A(e) is 1" - e.

Each g € F, is functional in 9, so ¢ is functional in A, and functional
in 2A(e), too. In M we have that e = ) F,, so this same is true in 2 and
in 2A(e), since F, is finite. Thus, in 2A(e) the unit, e is a sum of finitely
many functional elements. Therefore, 2((e) is representable on a finite set
because it is simple, by [16, Theorem 4.32]. This means that A(e) can be
represented such that the unit has the form of U x U for some finite set U. A
finite relation has only finitely many subsets, so, 2(e) is finite and so atomic.



Since subsets of functions are functions and the unit in 2(e) is the sum of
finitely many functional elements, we have that each element in 2A(e) is the
sum of functional elements. In particular, 2((e) is measurable with finitely
many subidentity atoms of finite measure. Since the universe of 2(e) is the
set of all elements of A that are below e, we get that in 2, too, the identity
element x of 2(e) is the sum of finitely many subidentity atoms of finite
measure.

A relation algebra is called finitely measurable if it is measurable and each
subidentity atom has finite measure in it. The identity element of 2 is the
sum of I, the set of subidentity atoms of 901, since this is true of 9T C A. We
have seen that each x € I in 2 is the finite sum of measurable atoms of finite
measure. So in 2, too, the identity element 17 is the sum of finitely many
atoms of finite measure. Thus, 2 is finitely measurable. Then 2 is atomic
by [10, Theorem 8.3]. We do not know yet whether it is complete or not
because we do not know yet that it is finite, since in principle, there might
be infinitely many atoms below z; 1;y for distinct subidentity atoms z, y.

We now use the representation theorem Theorem 7.4(ii) from [10]. It says
that the completion € of 2l is a coset relation algebra that is determined by
a group coset frame (G, p,S) distilled from 2. We are going to show that
¢ is finite. The system G of groups is (&, : © € J) where J is the set of
subidentity atoms of 2l and &, is the group of functional elements below
x;1;x for x € J. We have already shown that .J is finite and &, is finite for
all z € J. Now, the atoms below z; 1;y in € are in one-to-one correspondence
with &,/H,, where H,, is a normal subgroup of &,, by the definition of an
algebra determined by G (see [10, p.1171]). Since &, is finite, this means
that there are finitely many atoms below x; 1;y, for any z,y € J. Since J is
finite, this means that € is finite. Since 2l is a subalgebra of €, we have that
2l is finite and we have already shown that 2l is measurable. ([l

There are many finite and infinite representable measurable relation al-
gebras, these are described in [6]. Also, infinitely many finite and infinite
non-representable measurable relation algebras are constructed in [2] sec-
tions 3, 4]. (We note that these are not weakly representable, either.) By
using Theorem [B.J] the non-representable measurable algebras can be used
to give answers to Problems 2,3,4 from [3] (see also Problems P5,P6,P7 in
[19]). These problems were already solved in [5], but measurable algebras
provide a different kind of examples for their solutions. Below, we elaborate
on this.
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A relation algebra is called mazimal if it is finite, simple and has no
proper simple relation algebra extension. It is known that the representable
maximal relation algebras are exactly the finite full set relation algebras, that
is to say, the concrete algebras of all subsets of U x U for some finite set U.
Until 1997, these were the only known maximal relation algebras.

Problem 3 in [3] asks whether there are any non-representable simple
absolute retracts in RA (or in the variety SA of semi-associative relation
algebras). In semi-simple varieties V, being an absolute retract and being
maximal among the simple algebras are equivalent [3, Lemma 3.3]. This
problem was solved in [5], Frias and Maddux constructed infinitely many
non-representable maximal relation algebras. These algebras are integral,
i.e., the identity constant 1’ is an atom in them. Theorem Bl together
with [2, Theorem 4.2], provide different, non-integral maximal examples for
Problem 3, as follows.

We have seen when proving (5) in the proof of Theorem 2] that a per-
sistently finite algebra can have only finitely many simple extensions (up to
isomorphism, in a discriminator variety of finite similarity type). Therefore,
each simple persistently finite algebra can be extended to a maximal one.
The maximal extension of a representable measurable relation algebra is a full
set relation algebra, this provides many persistently finite and non-maximal
simple relation algebras. On the other hand, the maximal extension of a non-
representable measurable relation algebra is also non-representable, and thus
provides new solutions for [3, Problem 3]. The simple non-representable mea-
surable relation algebras are all non-integral, because in an integral simple
measurable relation algebra the square 1’;1;1" = 1, and thus measurability
implies that the unit is the supremum of functional elements and these are
known to be all representable.

Problem 4 in [3] asks whether for an atom in a relation algebra satisfy-
ing the equality p;1;p~ < 17 is necessary or not for being persistent. We
note that any maximal non-representable relation algebra gives a negative
answer for this problem, because a finite algebra is atomic, if it is maxi-
mal, then all its atoms are persistent, and it is known that if all atoms p
in an algebra satisfy the given equality p; 1;p~ < 1’, then the algebra must
be representable. This problem was solved in the negative in [5], too, and
the maximal non-representable measurable relation algebras provide further
examples disproving an affirmative answer.

Problem 2 in [3] asks whether there exists a simple relation algebra that is
not embeddable into a one-generated relation algebra. Any maximal relation
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algebra that is not one-generated gives a negative answer to this problem.
Indeed, [5] gave such integral examples. We believe that the smallest non-
representable measurable relation algebra constructed from the two-element
group in [I} section 5] and in [2, sections 3,4] is maximal, 2-generated but not
one-generated. (However, we did not check the details of this claim.) That
would provide a new example for a negative answer to [3, Problem 2].

We note that Problem 5 from [3] has been solved recently by Mohamed
Khaled. He proved that the finitely generated free non-associative relation
algebras are not atomic [I8], and the finitely generated finite dimensional free
non-commutative cylindric algebras are not atomic, either [I7]. Problem 1 of
[3] asking whether the free m-generated and free n-generated pairing algebras
may be isomorphic for distinct m,n is still open, to our best knowledge.
With this, we surveyed the present-day statuses of all the problems given in
[BL section 11].

4 Completions of representable relation alge-
bras

In this section we are going to apply Theorem 2.1]in the context of relation
algebras. We begin with showing that the notion of a dense extension as
defined below Definition 2.1] in this paper is equivalent with the one most
widely used in the literature, for Boolean algebras with additional operators,
and in particular, for relation algebras. (See, for example, [8, Definition
15.4(ii)], [I3, Definition 2.6], [20], p.237].) Let < denote the Boolean ordering,
ie., x <y is defined by x +y = y.

Lemma 4.1 Assume that 2 and B are Boolean algebras with operators and
A CB. Then (i) and (ii) below are equivalent.

(i) A is a dense subalgebra of B.

(ii) For all nonzero b € B there is a nonzero a € A such that a < b.

Proof. Assume (i) and let 0 < b € B. Since 2 C B, we have that 0 € A.
Then, 0 € A, 0 < b € B and (i) imply, by Definition 1], that there is a € A
such that 0 < a < b, and we are done.

Assume now (ii), we want to show that A is dense in B. Each element of
B has an element of A below it, namely 0 € A. Assume that a < b € B and
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a € A. Then 0 < b—a € B, so by (ii) there is z € A such that 0 < z < b—a.
Then a +x € A and a < a+ x < b, and we are done. OJ

A completion R of a relation algebra R is defined as a complete, dense
extension of R; this exists and is unique up to an isomorphism that leaves
R fixed. (See, for example, [§, Definition 15.17], [I3], Definition 2.25, Lemma
2.26], [20, p.323].) For a class K of relation algebras, let K denote the
class of completions of elements of K. The following lemma implies that
Var(K?) = Var(K®) for any K C RA.

Lemma 4.2 SK? = SK® C RA for any K C RA.

Proof. To show K¢ C SK¢, let 2 € K and let 8 be a dense extension of 2.
We want to show that 8 € SK®. Let 98B be a completion of 98, this exists by
K C RA. Then 93¢ is a dense extension of 2 and it is complete, thus B° is
a completion of 2, and therefore B C B° € K°. The other direction follows
from the definition of a completion, this definition immediately implies that

K¢ C K% Since RA is closed under completions, we immediately get K¢ C
RA¢ = RA. O

It is well known that the variety RA of relation algebras is a discriminator
variety (see, for example, [3, Corollary 5.7], or [13, Theorem 3.19], |20} p.386],
[14]). Since RA has a Boolean reduct, it is an ordered discriminator variety
with letting < be the Boolean order. Thus, Theorem 2.1l can be applied with
taking V to be the variety of relation algebras. We are ready to state the
theorem that gives an answer to [2I], problem 1.1(1)].

Theorem 4.1 Var(RRA®) # RA. Moreover, the following (i)-(iv) hold.

(1) There are infinitely many finite simple integral relation algebras which
are not in Var(RRA®).

(ii) There are infinitely many finite simple non-integral relation algebras
which are not in Var(RRA®).

(iii) There are continuum many varieties W such that Var(RRA®) C W C RA.

(iv) A finite measurable relation algebra is in Var(RRA®) ezactly when it is
representable.
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Proof. First we prove (iv). Assume that 91 is a finite measurable rela-
tion algebra. If 90T is representable, then it is its own completion since it
is complete, and so it is in RRA®. In the reverse direction, assume that
M € Var(RRA®), we will show that 9t is representable. Since RA is a dis-
criminator variety, 91 is a subdirect product of some simple algebras €;. We
will show that each €; € RRA, this will imply that 9t € RRA. Now, ¢; is
in Var(RRA®) since it is a homomorphic image of 9 € Var(RRA®). Each ¢;
remains measurable, this is easy to check directly by using the definition of
a measurable relation algebra, but this fact also follows from [I1], Theorem
3.1] and [Il Theorems 6.1, 6.2]. Thus, each €; is persistently finite in RA
by Theorem 3.l Thus, we can use Theorem 2.1 with substituting RA, RRA
and €; in place of V, K and 2 and using that RA is an ordered discriminator
variety and Var(RRA) = Var(RRA?). We get that ¢; € VarRRA = RRA, as
we wanted, and so 9t € RRA since it is a subdirect product of the €;s.

(i) follows from (iv) by using the main result of [2] that there are infinitely
many simple finite non-representable measurable relation algebras. All these
algebras are non-integral. This can be seen by looking at the construction, or
by noticing that simple integral measurable relation algebras are functionally
dense and hence representable.

The proof of (i) is similar to that of (ii): in place of the non-representable
persistently finite measurable relation algebras of [2] we use the infinitely
many non-representable integral simple maximal relation algebras constructed
in [5].

To prove (iii), we can use any infinite sequence (2; : i € I) of simple,
persistently finite non-representable relation algebras. We have seen in the
proofs of (ii) and (i) that there is such a sequence. We have seen that each
persistently finite relation algebra has only finitely many simple extensions
(see the proof of (5) in the proof of Theorem 2.1)). Therefore, there is an
infinite sub-sequence (2; : j € J) of the original one such that no 2; can be
embedded into Ay for distinct j, k € J. Having this sequence, we will repeat
the proof of [2, Theorem 5.1] with the necessary modifications. For S C .J
let

V(S) = {8 € RA: 2, cannot be embedded into B, for all n € S}.

First we show that V() is a variety. By [15, Theorem 7.1], each finite simple
relation algebra is splitting in the class RA of all relation algebras, thus the
biggest variety of RA not containing 2, is the class of all relation algebras
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into which 2(,, cannot be embedded. This is called the conjugate variety of
2., let us denote it by V™ (2l,,), then

V(S) = |V (%) :ne S}

This shows that V(S) is a variety since it is an intersection of varieties.
All the 2, are simple, persistently finite and non-representable, so none
of them can be embedded into an element of Var(RRA®), by Theorem 2.1
Thus
Var(RRA®) C V(S) C RA.

We are going to show that V(S) is distinct from V(Z) for distinct subsets
S, Z of J. This will suffice, because J is countably infinite, and so it has
continuum many subsets. Indeed, let S, Z be distinct subsets of J. Then
there is an n € J such that, say, n € S and n ¢ Z. Then 2, ¢ V(5) since
it can be embedded into itself and n € S. On the other hand, 2, € V(Z)
because n ¢ Z, so no A, with m € Z can be embedded into 2,,. This shows
that V(S) # V(Z) and we are done with proving (iii). O

The splittable relation algebras, see [4 Definition 4], all fail to be persis-
tently finite, because once an algebra has a splittable atom, this atom can
be split to arbitrarily many parts (see [4, Theorem 3]). On the other hand,
the non-representable relation algebras that are shown to be in Var(RRA®)
are gotten by splitting finite simple relation algebras [21]. Perhaps, the next
question to ask is the following.

Problem 4.1 Is every finite simple splittable relation algebra in Var(RRA®) ?
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