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A REPRESENTATION THEOREM FOR MEASURABLE

RELATION ALGEBRAS WITH CYCLIC GROUPS

HAJNAL ANDRÉKA AND STEVEN GIVANT

Abstract. A relation algebra is measurable if the identity element is a sum of
atoms, and the square x; 1; x of each subidentity atom x is a sum of non-zero
functional elements. These functional elements form a group Gx. We prove
that a measurable relation algebra in which the groups Gx are all finite and
cyclic is completely representable. A structural description of these algebras
is also given.

1. Introduction

Relation algebras were defined by Tarski as a class of abstract algebras satisfying
ten equations, to serve as an algebraic counterpart of logic. They are Boolean
algebras with operators where the extra-Boolean operators ; ,`, 1’ form an involuted
monoid (satisfying some further equations). In particular, the complex algebra
of a group is a relation algebra. Algebras of binary relations with standard set
theoretic Boolean operations and relation-composition, inverse of a relation and set
theoretic identity relation as the extra-Boolean operations are called set relation
algebras. These are relation algebras, and a relation algebra isomorphic to a set
relation algebra is called representable. In particular, the function assigning the
Cayley-representation to each element of a group extends to a representation of the
complex algebra of the group.

Measurable relation algebras were introduced in [6]. In a relation algebra, a
subidentity atom x is defined to be measurable if x; 1;x is the sum of functional
elements and a relation algebra is measurable if 1’ is the sum of measurable atoms.
(Atoms below the identity 1’ are called subidentity atoms, and an element f is
called functional if f`; f ≤ 1’.) Measurable relation algebras are closely related
to groups. They are put together from various groups as follows. The non-zero
functional elements below x; 1;x are atoms and they form a group Gx with identity
element x under the operations of ; and `, and the atoms below x; 1; y specify
isomorphisms between quotient groups Gx/Hxy and Gy/Kxy, when x, y are distinct
subidentity atoms (see [6, p.53], [3] and Section 4 in this paper).

A group pair is defined as a system of groups Gx with normal subgroups Hxy

and Kxy, and isomorphisms ϕxy between quotient groups Gx/Hxy and Gy/Kxy,
for x, y ∈ I. When the isomorphisms are linked by certain natural conditions, we
can put together the Cayley-representations of the various groups occurring in the
group pair F to get a set relation algebra G[F ]. A group frame is a group pair
that satisfies the natural conditions, given in this paper as Definition 3.7. The
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2 HAJNAL ANDRÉKA AND STEVEN GIVANT

algebras G[F ] constructed from group frames are called (generalized full) group
relation algebras. Group relation algebras are all measurable, atomic, complete set
algebras, with all suprema being union in them (i.e., completely representable). For
examples and illustrations see [6] and [3].

An immediate question is whether group relation algebras exhaust the examples
of all atomic complete measurable relation algebras.

This paper proves that indeed this is the case when all the groups Gx in the
measurable relation algebra are finite and cyclic (Representation Theorem 5.7).
Even the conditions of being atomic and complete can be omitted: all measurable
relation algebras A with finite cyclic groups are atomic and essentially isomorphic
to group relation algebras. This latter means that the completion (the minimal
complete extension) of A is isomorphic to a group relation algebra. The passage to
the completion of A does not change the structure of A, it only fills in any missing
infinite sums that are needed in order to obtain isomorphism with the necessarily
complete full group relation algebra. We note that an atomic measurable relation
algebra is essentially isomorphic to a group relation algebra if and only if it is
completely representable ([7, Theorems 7.4, 7.6]).

In the case when all the groups are cyclic, the group frame conditions consider-
ably simplify, see Definition 4.1 here. This fact gives measurable relation algebras
with finite cyclic groups an especially clear structural description.

The algebras that come up in Theorem 4.30 of Jónsson-Tarski [9] are all mea-
surable with associated groups being one-element. Hence, the hard direction (ii) ⇒
(i) of [9, Theorem 4.30] follows from our Theorem 5.7. Algebras with all the asso-
ciated groups being cyclic of order one or two also have come up in the literature.
We show, in Lemma 5.8, that among atomic relation algebras they are exactly the
pair-dense algebras of Maddux [10]. This gives a possibility for giving a new proof
for [10, Theorem 51].

An extension of Representation Theorem 5.7 is known. If A is a measurable
relation algebra in which the group Gx is a product of two finite cyclic groups for
each subidentity atom x, then A is essentially isomorphic to a group relation algebra
(this is announced in [6, Theorem 6]). The proof of this extended theorem (due to
the authors) is complicated, and will not be given here.

The theorem cannot be extended to the case in which the groups Gx are allowed
to be products of three finite cyclic groups. Indeed, an example is presented in
[6, pp.56-59], and proved to be nonrepresentable in [1, Theorem 5.2], of a finite
measurable relation algebra with five measurable atoms x such that, the group Gx

is isomorphic to Z2 × Z2 × Z2, for all x.
There are several other instances in which an atomic measurable relation algebra

is essentially isomorphic to a group relation algebra. This proves to be the case,
for example, if there are at most four measurable atoms in all. It is also the case if,
for every measurable atom x, every chain of normal subgroups of Gx has length at
most three (so that there cannot be normal subgroups H and K of Gx such that
{x} ( H ( K ( Gx). Another case is when the normal subgroups Kxy and Hyz

are always the same. See [6, pp.56-59].
As an application of some of these ideas, let us paraphrase Maddux’s terminology

by calling a relation algebra n-dense if it is measurable, and if, for each measurable
atom x, the group Gx has cardinality at most n. Every group of cardinality at most
7 is either cyclic, the product of two cyclic groups, or has no normal subgroup chains
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of length more than three. As a result, we obtain that every 7-dense relation algebra
is representable, but there exist 8-dense relation algebras (with five measurable
atoms) that are not representable.

The above results are summarized in [6] (without proofs), along with detailed mo-
tivation and many illustrations. Readers who wish to learn more about the subject
of relation algebras are recommended to look at the books by Hirsch-Hodkinson [8],
Maddux [11], or Givant [4], [5].

The remainder of the paper is divided into four sections. Section 2 reviews
the necessary relation algebraic background for reading the paper. Throughout
the paper, there are references to the earlier papers [3], [1], and [7]; the results
needed from those papers are explained as they are encountered. In Section 3, a
characterization is given, in terms of a system of simple invariants, of when it is
possible to construct a full group relation algebra from a given system of mutually
disjoint, finite, cyclic groups. Section 4 discusses the notion of a regular element—a
kind of generalization of the notion of an atom—and of the index of such an element.
Some important properties of indices are formulated and proved. Finally, Section 5
is devoted to a proof of the main theorem of the paper, namely to Representation
Theorem 5.7.

2. Relation Algebras

In the next few sections, most of the calculations will involve the arithmetic of
relation algebras. This section provides a review of the essential results that will
be needed.

A relation algebra is an algebra of the form

A = (A ,+ ,− , ; , ` , 1’),

where + and ; are binary operations called addition and relative multiplication,
while − and ` are unary operations called complement and converse, and 1’ is a
distinguished constant called the identity element, such that ten equational axioms
hold in A. The exact nature of these axioms is not important for the present
discussion. Further operations and relations such as Boolean multiplication · and
the Boolean partial order relation ≤ are defined in the standard way. The following
laws, which are either members of Tarski’s ten axioms or are derivable from them,
play a role in this paper. For their derivation, see e.g., [4].

Lemma 2.1. If A = (A ,+ ,− , ; , ` , 1’) is a relation algebra, then (A ,+ ,−) is a
Boolean algebra, and the operation of converse is an automorphism of this Boolean
algebra . In particular, the following laws hold .

(i) (a+ b)` = a` + b` .
(ii) (a · b)` = a` · b`.
(iii) a ≤ b if and only if a` ≤ b`.
(iv) a is an atom if and only if a` is an atom.
(v) x` = x and x;x = x whenever x is a subidentity element.

Properties (i) and (iii) are called the distributive andmonotony laws for converse.

Lemma 2.2.

(i) r; (s; t) = (r; s); t.
(ii) r; 1’ = r.
(iii) r`` = r.
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(iv) (r; s)` = s`; r` .
(v) (r + s); t = r; t+ s; t.
(vi) If a ≤ b and c ≤ d, then a; c ≤ b; d.

These properties are commonly referred to by the following names: the as-
sociative law for relative multiplication, the (right-hand) identity law for relative
multiplication, the first involution law, the second involution law, the (right-hand)
distributive law for relative multiplication, and the monotony law for relative mul-
tiplication. An element x in A is called a subidentity element if it is below the
identity element, in symbols x ≤ 1’. Whenever parentheses indicating the order
of performing operations are lacking, it is understood that unary operations have
priority over binary operations, and multiplications have priority over addition.

A square is an element of the form x; 1;x for some subidentity element x, and a
rectangle is an element of the form x; 1; y for some subidentity elements x and y.
The elements x and y are sometimes referred to as the sides of the rectangle.

Lemma 2.3. Let x, y, z, w be subidentity elements.

(i) (x; 1; y)` = y; 1;x.
(ii) (x; 1; y); b ≤ x; 1; z for every b ≤ y; 1; z, and equality holds whenever x, y,

and z are atoms, and x; 1; y and b are both non-zero .
(iii) If x and y are subidentity atoms, and if 0 ≤ b ≤ x; 1; y, then x; b = b; y = b.

3. Group relation algebras with finite cyclic groups

Let G = 〈Gx : x ∈ I 〉 be a system of pairwise disjoint, finite, cyclic groups
(Gx , ◦ ,−1 , ex), and

m = 〈mxy : (x, y) ∈ E〉,

a system of positive integers indexed by an equivalence relation E on the index set
I. We may assume that for each x in I, the cyclic group Gx is a copy of the cyclic
group Znx

of integers modulo nx for some positive integer nx. We shall usually act
and write as if the two groups were identical, although technically it is important
to pass to a copy of Znx

in order to achieve the assumed disjointness of the groups
in the system G. The greatest common divisor of two numbers m,n is denoted by
gcd(m,n). For the following definition see also [6, p.51].

Definition 3.1. The system of indices

m = 〈mxy : (x, y) ∈ E〉,

is said to satisfy the index conditions if the following conditions hold.

(i) mxy is a common divisor of the orders of Gx and Gy .
(ii) mxx is equal to the order of Gx .
(iii) myx = mxy .
(iv) gcd(mxy,myz) = gcd(mxy,mxz) = gcd(mxz,myz).

Assume m does satisfy the index conditions, and write

d = gcd(mxy,mxz) = gcd(mxy,myz).

This equation holds because of index condition (iv). For each pair (x, y) in E , take
Hxy and Kxy be the respective subgroups of Gx and Gy that consist of the multiples
of mxy. This definition makes sense because of the first index condition. It follows
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that Hxy and Kxy have index mxy in Gx and Gy respectively, that is to say, they
each have mxy cosets, in symbols,

mxy = |Gx/Hxy| = |Gx/Kxy|.

Notice that these subgroups are always normal, since the groups in the system G
are all cyclic, and hence Abelian. Because mxy is the index in Gx of the subgroup
Hxy, this subgroup must consist of the multiples of the integer mxy modulo nx. In
particular, the cosets of Hxy are the sets of the form

Hxy + ℓ = {pmxy + ℓ : p < nx/mxy}

for ℓ < mxy.
The composite group

Hxy
◦Hxz = {h ◦k : h ∈ Hxy and k ∈ Hxz}

consists of the multiples of d modulo nx, and the cosets of Hxy
◦Hxz are the sets

of the form

Hxy
◦Hxz + s

for 0 ≤ s < d.

Lemma 3.2. For each integer s with 0 ≤ s < d,

Hxy
◦Hxz + s =

⋃

{Hxy + ℓ : 0 ≤ ℓ < mxy and ℓ ≡ s mod d}

=
⋃

{Hxy + qd+ s : q < mxy/d}.

Proof. Each non-negative integer ℓ < mxy can be written in one and only one way
in the form

ℓ = qd+ s

for some integers s and q satisfying 0 ≤ s < d and 0 ≤ q < mxy/d, by the division
algorithm for integers, so the second equality of the lemma is clear.

Observe that Hxy is included in the composite group Hxy
◦Hxz. Also, d gener-

ates the composite group, so qd is in the composite group for every integer q with
0 ≤ q < mxy/d. Combine these observations to see that

Hxy + qd ⊆ Hxy
◦Hxz,

and therefore

Hxy + qd+ s ⊆ Hxy
◦Hxz + s,

for every s < d and every q < mxy/d. It follows that

(1)
⋃

{Hxy + qd+ s : q < mxy/d} ⊆ Hxy
◦Hxz + s,

for every s < d.
The cosets that make up the union on the left side of (1) partition Gx as q and s

vary, since there are assumed to be mxy such cosets, one for each ℓ = qd+s < mxy.
Also the cosets on the right partition Gx as s varies. It follows that equality must
hold in (1). In more detail, if f belongs to the right side of (1), then f ≡ s mod d.
Consequently, f cannot belong to any of the cosets Hxy + qd+ t for 0 ≤ t < d and
t 6= s, since the elements in these cosets are congruent to t modulo d. Thus, f must
belong to Hxy + qd+ s for some q with 0 ≤ q < mxy/d. �
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One sees in a similar fashion that the subgroup Kxy has ny/mxy elements and
mxy cosets, which have the form Kxy + ℓ for ℓ < mxy. The composite subgroup
Kxy

◦Hyz is generated by d, and has ny/d elements and d cosets

Kxy
◦Hyz + s

for 0 ≤ s < d. The proof of the next lemma is very similar to that of Lemma 3.2,
and will therefore be omitted.

Lemma 3.3. For each integer s with 0 ≤ s < d,

Kxy
◦Hyz + s =

⋃

{Kxy + ℓ : 0 ≤ ℓ < mxy and ℓ ≡ s mod d}

=
⋃

{Kxy + qd+ s : q < mxy/d}.

Define a mapping ϕxy from Gx/Hxy to Gy/Kxy by

ϕxy(Hxy + ℓ) = Kxy + ℓ

for 0 ≤ ℓ < mxy. The mapping is certainly a bijection, by the preceding remarks,
and it maps the generator Hxy + 1 of the quotient group Gx/Hxy to the generator
Kxy +1 of the quotient group Gy/Kxy, so it must be an isomorphism, as is easy to
check directly. This isomorphism induces an isomorphism ϕ̂xy from Gx/(Hxy

◦Hxz)
to Gy/(Kxy

◦Hyz).

Lemma 3.4. ϕ̂xy(Hxy
◦Hxz + s) = Kxy

◦Hyz + s for 0 ≤ s < d.

Proof. Use the definition of ϕ̂xy, Lemma 3.2, the definition of ϕxy, and Lemma 3.3
to obtain

ϕ̂xy(Hxy
◦Hxz + s) = ϕxy[

⋃

{Hxy + qd+ s : 0 ≤ q < mxy/d}]

=
⋃

{ϕxy(Hxy + qd+ s) : 0 ≤ q < mxy/d}

=
⋃

{Kxy + qd+ s : 0 ≤ q < mxy/d}

= Kxy
◦Hyz + s.

�

In a similar fashion, there is a quotient isomorphism ϕyz fromGy/Hyz to Gz/Kyz

that is defined by
ϕyz(Hyz + ℓ) = Kyz + ℓ

for 0 ≤ ℓ < myz. This isomorphism, in turn, induces an isomorphism ϕ̂yz from
Gy/(Kxy

◦Hyz) to Gz(Kxz
◦Kyz) that satisfies the following lemma.

Lemma 3.5. ϕ̂yz(Kxy
◦Hyz + s) = Kxz

◦Kyz + s for 0 ≤ s < d.

Finally, there is a quotient isomorphism ϕxz from Gx/Hxz to Gz/Kxz that is
defined by

ϕxz(Hxz + ℓ) = Kxz + ℓ

for 0 ≤ ℓ < mxz. This isomorphism induces an isomorphism ϕ̂xz fromGx/(Hxy
◦Hxz)

to Gz(Kxz
◦Kyz) that satisfies the following lemma.

Lemma 3.6. ϕ̂xz(Hxy
◦Hxz + s) = Kxz

◦Kyz + s for 0 ≤ s < d.

The following definition is from [6, Definition 1], see also [3, Definition 4.1]).

Definition 3.7. A group frame is a group pair

F = (〈Gx : x ∈ I 〉 , 〈ϕxy : (x, y) ∈ E 〉)

satisfying the following frame conditions for all pairs (x, y) and (y, z) in E .
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(i) ϕxx is the identity automorphism of Gx/{ex} for all x.
(ii) ϕyx = ϕ−1

xy .
(iii) ϕxy[Hxy

◦Hxz] = Kxy
◦Hyz .

(iv) ϕ̂xy | ϕ̂yz = ϕ̂xz.

�

It is shown in [3] that this definition gives necessary and sufficient conditions
for a group pair F to give rise to a group relation algebra G[F ]. We recall the
definition of G[F ] from [6], [3]. Suppose that (Hxy,α : α < κxy) is a listing of the
cosets of Hxy in Gx. Define

Rxy,α =
⋃

γ<κxy

Hxy,γ × ϕxy(Hxy,γ
◦Hxy,α).

Let A be the set of all binary relations of form
⋃

{Rxy,α : (x, y, α) ∈ X}, where
X ⊆ {(x, y, α) : (x, y) ∈ E and α < κxy}. When F is a group frame, then A is
a set of binary relations that is closed under the Boolean set-theoretic operations,
that contains the identity relation on

⋃

{Gx : x ∈ I}, and that is closed under the
operations of forming the composition of two binary relations and the converse of a
binary relation. The set relation algebra with universe A is denoted by G[F ]. It is
easy to see that each supremum in G[F ] is indeed a union, so G[F ] is completely
represented.

Theorem 3.8 (GCD Theorem). Let G = 〈Gx : x ∈ I〉 be a system of mutually
disjoint, finite, cyclic groups, and E an equivalence relation on I . For each system

m = 〈mxy : (x, y) ∈ E〉

of positive integers satisfying the index conditions, there exists a system of quotient
isomorphisms ϕ = 〈ϕxy : (x, y) ∈ E〉 such that the group pair F = (G,ϕ) satisfies
the four frame conditions and is therefore a group frame . The corresponding group
relation algebra G[F ] therefore exists . Moreover,

mxy = |Gx/Hxy|,

where Hxy is the kernel of ϕxy .

Proof. Consider, first, frame condition (i). Index condition (ii) implies that mxx

coincides with the cardinality nx of the group. The subgroups Hxx and Kxx consist
of the multiples of mxx in Gx, so they must be the trivial subgroup {0}. The
definition of ϕxx and the natures of Hxx and Kxx imply that

ϕxx({ℓ}) = ϕxx(Hxx + ℓ) = Kxx + ℓ = {ℓ},

so ϕxx is the identity automorphism of Gx/{0}. Thus, frame condition (i) holds.
Turn now to frame condition (ii). The subgroup Hyx is defined to be the set of

multiples of myx in Gy, and the subgroup Kxy is defined to be the set of multiples
of mxy in Gy. Index condition (ii) says that myx = mxy, so Hyx = Kxy, and
similarly, Kyx = Hxy. Furthermore,

ϕyx(Hxy + ℓ) = Kyx + ℓ,

by the definition of ϕyx, while

ϕxy(Kyx + ℓ) = ϕxy(Hxy + ℓ) = Kxy + ℓ = Hyx + ℓ,

by the preceding remarks and the definition of ϕxy. Combine these observations to
conclude that ϕyx = ϕ−1

xy , which is what frame condition (ii) asserts.
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To verify frame condition (iii), just take s = 0 in Lemmas 3.4 and 3.5. In a
similar fashion, frame condition (iv) follows from Lemmas 3.4–3.6, because

(ϕ̂xy | ϕ̂yz)(Hxy
◦Hxz + s) = ϕ̂yz(ϕ̂xy(Hxy

◦Hxz + s))

= ϕ̂yz(Kxy
◦Hyz + s) = Kxz

◦Kyz + s,

by the definition of the relational composition of two functions, and Lemmas 3.4
and 3.5, while

ϕ̂xz(Hxy
◦Hxz + s) = Kxz

◦Kyz + s,

by Lemma 3.6. �

It is helpful to visualize index conditions (ii)-(iv) by making a diagram such as
the one in Figure 1. Condition (ii) says that each square in the diagram that is on
the line y = x (the identity relation) carries the same number as the cardinality
of the corresponding group. In the example given in Figure 1, each such square is
labeled with the same number 6, because each group is assumed to have cardinality
6, but of course in other examples different groups may have different cardinalities.
Condition (iii) says that the diagram must be symmetric across the line y = x. To
check the validity of condition (iv), it must be shown that any two of any three given
indices mrs, mrt, mst have the same greatest common divisor as any other two of
the given indices. This can be checked one column at a time. Take two numbers
that are in the rth column, mrs and mrt, and then use either row s (if s is to the
left of t in the column listing) or row t (if t is to the left of s in the column listing) to
locate mst or mts respectively (it doesn’t matter which one because the two indices
must be equal), by going along the row to the right until the appropriate column
is reached. For a concrete example, observe that in the uth column, muv = 3 and
muy = 2. Since y is to the left of v in the column listing, go to the yth row, and
move right to the vth column. The entry there is mvy = 1. Any two of the three
numbers 3, 2, and 1 have the same greatest common divisor, namely 1.

PSfrag replacements

x

x

y

y

z

z

u

u

v

v

w

w

p

p
1

1

2

2

3

3

6

6

6

6

6

6

6

Figure 1. A graphical example of verifying the index conditions.

There is a kind of converse to the GCD Theorem that is true.
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Theorem 3.9. Suppose that a group pair F = (G,ϕ) consists of finite, cyclic
groups, with

G = 〈Gx : x ∈ I〉 and ϕ = 〈ϕxy : (x, y) ∈ E〉,

and satisfies the four frame conditions . If

mxy = |Gx/Hxy|

for every pair (x, y) in E , where Hxy is the kernel of ϕxy, then the resulting system

m = 〈mxy : (x, y) ∈ E〉

satisfies the index conditions .

Proof. Index condition (i) is satisfied, by the very definition of mxy. As regards
index condition (ii), it follows from frame condition (i). In more detail, ϕxx is
the identity automorphism of Gx/{0}, by frame condition (i), so Hxx = {0} and
therefore

mxx = |Gx/Hxx| = |Gx|.

Frame condition (ii) says that ϕyx = ϕ−1
xy . In particular,

Hyx = Kxy and Kyx = Hxy,

and therefore

myx = |Gy/Hyx| = |Gy/Kxy| = |Gx/Hxy| = mxy .

Turn now to index condition (iv). Because mxy is the index of Hxy in Gx, the
subgroup Hxy must consist of the multiples of mxy modulo nx. Similarly, Hxz must
consist of the multiples of mxz modulo nx. It follows from cyclic group theory that
the composite group Hxy

◦Hxz is generated by d = gcd(mxy,mxz), and therefore

(1) d = |Gx/(Hxy
◦Hxz)|.

Similar arguments show that Kxy
◦Hyz is generated by d′ = gcd(mxy,myz), so that

(2) d′ = |Gy/(Kxy
◦Hyz)|,

and Kxz
◦Kyz is generated by d′′ = gcd(mxz,myz), so that

(3) d′′ = |Gz/(Kxz
◦Kyz)|.

The induced isomorphism ϕ̂xy maps the quotient Gx/(Hxy
◦Hxz) isomorphically

to the quotient Gy/(Kxy
◦Hyz), by frame condition (iii), so (1) and (2) imply that

d = d′. Similarly, the induced isomorphism ϕ̂yz maps the quotient Gy/(Kxy
◦Hyz)

isomorphically to the quotient Gz/(Kxz
◦Kyz), so (2) and (3) imply that d′ = d′′.

Combine these observations with the definitions of d, d′, and d′′ to conclude that
index condition (iv) holds. �

4. Regular elements and indices

We now fix a measurable relation algebra A. Thus, the identity element in A is
the sum of a set I of subidentity atoms, and each atom x in I is measurable in the
sense that the square x; 1;x is a sum of non-zero functions below it. These functions
are atoms and form a group Gx under the operations of relative multiplication and
converse in A, with x as the group identity element, by Lemmas 3.2 and 3.3 in [7].



10 HAJNAL ANDRÉKA AND STEVEN GIVANT

We assume that each such group is finite and cyclic. All elements are assumed to
be in A. The left and right stabilizers of an element a in A are the sets

Ha = {f ∈ Gx : f ; a = a} and Ka = {g ∈ Gy : a; g = a},

and these stabilizers are (normal) subgroups of Gx and Gy respectively. For mea-
surable atoms x and y, an element a ≤ x; 1; y is called regular if

a; a` =
∑

Ha and a`; a =
∑

Ra .

It turns out that regular elements have some of the properties of atoms. In partic-
ular, every atom is regular, by Partition Lemma 4.11 in [7].

Definition 4.1. For each regular element a, define the index of a to be the
cardinality of the quotient algebra Gx/Ha, in symbols,

index(a) = |Gx/Ha| = |Gy/Ka|.

In other words, the index of a is the number of cosets that the normal subgroup
Ha has in Gx, or, equivalently, that the normal subgroup Ka has in Gy. Moreover,
for every coset H of Ha there is a uniquely determined coset K of Ka such that

H ; a = a;K,

and conversely, so that the function ϕa from Gx/Ha to Gy/Ka defined by

ϕa(H) = K if and only if H ; a = a;K

is a bijection, and actually a quotient isomorphism.

Lemma 4.2. If Gy is a cyclic group, and a ≤ x; 1; y and b ≤ y; 1; z are regular
elements, then a; b ≤ x; 1; z is a regular element, and

index(a; b) = gcd(index(a), index(b)).

Proof. For notational convenience, assume that Gy is the cyclic group Zn under
the operation of addition modulo n, and write

(1) k = index(a) = |Gy/Ka| and ℓ = index(b) = |Gy/Hb|.

Thus, Ka and Hb consist of the multiples of k and ℓ modulo n respectively. The
complex product

Ka;Hb = {f ; g : f ∈ Ka and g ∈ Hb}

consists of the multiples of gcd(k, ℓ) modulo n, by cyclic group theory. Conse-
quently,

(2) |Gy/(Ka;Hb)| = gcd(k, ℓ) = gcd(index(a), index(b)),

by cyclic group theory and (1). According to Relative Product Theorem 5.14 in [7],
a; b is a regular element, and the isomorphism ϕa from Gx/Ha to Gy/Ka induces
an isomorphism ϕ̂a from Gx/Ha;b to Gy/(Ka;Hb). In particular,

(3) |Gy/Ha;b| = |Gx/(Ka;Hb)|.

By definition,

(4) index(a; b) = |Gx/Ha;b|.

Combine (2)–(4) to arrive at the desired equation. �

Lemma 4.3. Let x and y be measurable atoms, and a, b ≤ x; 1; y regular elements
with a ≤ b. If index(a) = index(b), then a = b.
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Proof. The assumption a ≤ b implies that

(1) Ha ⊆ Hb,

by Lemma 4.14 in [7]. The assumption on the indices implies that Ha and Hb have
the same number of cosets in Gx. These cosets partition Gx, so it follows from (1)
that the inclusion symbol in (1) may be replaced by equality. Apply (the reverse
implication of) Lemma 4.14 from [7] to conclude that a = b. �

The next lemma is a known result from cyclic group theory.

Lemma 4.4. If H and K are subgroups of Zn with relatively prime indices h and
k, then Zn = H ◦K, and the cosets of H ∩K in Zn are the sets (H + i) ∩ (K + j)
for 0 ≤ i < h and 0 ≤ j < k. Each coset has n/(h · k) elements .

Lemma 4.5. Let x and y be measurable atoms, and assume that a, b ≤ x; 1; y are
regular elements with a · b 6= 0. If index(a) and index(b) are relatively prime, then

index(a · b) = index(a) · index(b).

Proof. Product Theorem 4.13 from [7] and the hypothesis that a · b 6= 0 imply that

(1) Ha·b = Ha ∩Hb .

The cosets of Ha and Hb have the form Ha + i and Hb + j for 0 ≤ i < index(a)
and 0 ≤ j < index(b) respectively. Apply Lemma 4.4 (with Ha and Hb in place
of H and K respectively), and use the assumption that the indices of a and b are
relatively prime, to see that

〈(Ha + i) ∩ (Hb + j) : i < index(a) and j < index(b)〉

is a coset system for (1) in Gx, consisting of index(a) · index(b) cosets, and each
coset has ℓ elements, where

|Gx| = nx = index(a) · index(b) · ℓ.

Consequently, the index of (1) in Gx is

(2) |Gx/(Ha ∩Hb)| = index(a) · index(b),

by the definition of the index. Apply (1), (2), and the definition of the index of an
element to conclude that

index(a · b) = |Gx/Ha·b| = |Gx/(Ha ∩Hb)| = index(a) · index(b).

�

Corollary 4.6. Let x and y be measurable atoms . If ai ≤ x; 1; y for i = 1, . . . , n

are regular elements with pairwise relatively prime indices, and if
n
∏

i=1

ai 6= 0, then

index(
n
∏

i=1

ai) =
n
∏

i=1

index(ai).

The proof is by induction on n. The details are left to the reader. Observe
that the symbol

∏

is being used in two different ways in the preceding corollary.
In its first occurrence, it denotes the Boolean operation of multiplication on finite
sequences of elements in a Boolean algebra. In its second occurrence, it denotes
the arithmetic operation of multiplication on finite sequences of natural numbers.
This double usage of the symbol is very common and should not cause readers any
confusion. A similar remark applies to the use of the symbol · in Lemma 4.5.
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Lemma 4.7. Let x and y be measurable atoms, and a, b ≤ x; 1; y regular elements .
If the indices of a and b are relatively prime, then a · b is a regular element below
x; 1; y .

Proof. The assumption on the indices of a and b implies that the left stabilizers Ha

and Hb have relatively prime indices, and therefore

(1) Ha;Hb = Hb;Ha = Gx,

by Lemma 4.4. The definition of Hb as the left stabilizer of b means that

(2) Hb; b = b.

Consequently,

(3)
∑

Ha; b =
∑

Ha;Hb; b =
∑

Gx; b = (x; 1;x); b = x; 1; y,

by (2), (1), the fact that
∑

Gx = x; 1;x, by Corollary 3.5 in [7], and Lemma 2.3(ii).
Similarly,

(4)
∑

Hb; a =
∑

Hb;Ha; a =
∑

Gx; a = (x; 1;x); a = x; 1; y .

Combine (3) and (4) to arrive at

(5)
∑

Ha; b =
∑

Hb; a.

Use the assumption that a and b are regular elements, together with the definition
of such elements, and apply it to (5) to obtain

(6) a; a`; b = b; b`; a.

Part (i) of Product Theorem 4.18 in [7] says that the condition in (6) is equivalent
to the assertion that a · b 6= 0. Apply Product Theorem 4.13 from [7] to conclude
that a · b is a regular element below x; 1; y. �

Corollary 4.8. Let x and y be measurable atoms . If ai ≤ x; 1; y for i = 1, . . . , n

are regular elements with pairwise relatively prime indices, then
n
∏

i=1

ai is a regular

element below x; 1; y.

The proof is by induction on n. The details are left to the reader.

5. The representation theorem

We continue with the assumption that A is a measurable relation algebra. The
assumption that the groups are finite and cyclic implies that the algebra A is
finitely measurable, and hence automatically atomic, by Theorem 8.3 in [7]. The
goal is to show that A is essentially isomorphic to a group relation algebra G[F ]
for one of the group frames F constructed in GCD Theorem 3.8. This means that
we must show that the completion of A (in the sense of the minimal complete
extension of A) is isomorphic to G[F ]. Scaffold Representation Theorem 7.4 in [7]
says that an atomic measurable relation algebra A is essentially isomorphic to some
group relation algebra if and only if it has a scaffold. A scaffold in A is a system
〈axy : (x, y) ∈ E〉 of atoms in A that satisfies the following conditions for all (x, y)
and (y, z) in E .

(i) axx = x.
(ii) ayx = axy

` .
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(iii) axz ≤ axy; ayz .

Thus, to prove the desired representation theorem for A, it suffices to construct a
scaffold in A.

Fix measurable atoms x and y in A with (x, y) in E , and consider a regular
element a ≤ x; 1; y. Regular elements are always non-zero, by Lemma 4.4 in [7],
so a 6= 0. If functions f and g belong to the same coset H of Ha, then the left
translations f ; a and g; a of a are equal, and if they belong to different cosets of Ha,
then (f ; a) · (g; a) = 0, by Lemma 4.6(iii) in [7]. Thus, it makes sense to write H ; a
whenever H is a coset of Ha, and this just denotes the element f ; a for some (any)
element f in H . The left translations b = H ; a by cosets H of Ha are mutually
disjoint, regular elements below x; 1; y with the same normal stabilizer Ha as a, and
in fact these left translations form a partition of x; 1; y, by Partition Lemma 4.9 in
[7]. Similar remarks apply to the right translations a;K of a by cosets K of Ka (in
Gy).

Since A is atomic, there must be an atom below x; 1; y, and such atoms are
regular elements with the same stabilizer, by Partition Lemma 4.11 in [7]. Write
Hxy and Kxy for the left and right stabilizer of these atoms, and for a fixed atom
a, write ϕxy for the quotient isomorphism ϕa. The choice of ϕxy is dependent on a,
but a system of atoms can be chosen with the following properties (see, for example,
the remarks in Section 7 of [7]).

(P1) Hxx = {x}, and ϕxx is the identity isomorphism of Gx/Hxx .
(P2) Hyx = Kxy, Kyx = Hxy, and ϕyz = ϕ−1

xy .
(P3) ϕxy[Hxy;Hxz] = Kxy;Hyz, ϕyz[Kxy;Hyz] = Kxz;Kyz, and

ϕxz [Hxy;Hxz] = Kxz;Kyz .
(P4) |Gx/(Hxy;Hxz)| = |Gy/(Kxy;Hyz)| = |Gz/(Kxz;Kyz)|.

In fact, the isomorphism ϕxy induces an isomorphism ϕ̂xy from Gx/(Hxy;Hxz)
to Gy/(Kxy;Hyz), while ϕyz induces an isomorphism ϕ̂yz from Gy/(Kxy;Hyz) to
Gz/(Kxz;Kyz). Property (P4) is an immediate consequence of this observation.

Put mxy = |Gx/Hxy|.

Lemma 5.1 (Index Lemma). Suppose (x, y) and (y, z) are pairs of measurable
atoms in E .

(i) mxx = |Gx/Hxx| = |Gx/{x}| = |Gx|.
(ii) myx = mxy .
(iii) gcd(mxy,mxz) = gcd(mxy,myz) = gcd(mxz,myz).

Proof. Property (P1) and the definition of mxx imply that

mxx = |Gx/Hxx| = |Gx/{0}| = |Gx|.

Property (P2) and the definitions of mxy and myx imply that

myx = |Gy/Hyx| = |Gy/Kxy| = |Gx/Hxy| = mxy .

Since Hxy and Hxz have indices mxy and mxz, they are respectively generated
by (copies of) the integers mxy and mxz modulo nx. Consequently, the group com-
position Hxy;Hxz (under the operation of relative multiplication in A) is generated
by the element gcd(mxy,mxz), so that

(1) gcd(mxy,mxz) = |Gx/(Hxy;Hxz)|.
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Similarly,

(2) gcd(mxy,myz) = |Gy/(Kxy;Hyz)|.

(3) gcd(mxz,myz) = |Gz/(Kxz;Kyz)|.

Combine (1)–(3) with property (P4) to arrive at (iii). �

Fix a prime number p for the next definition and two lemmas, and in terms of
this prime, define a binary relation ∼k as follows.

Definition 5.2. For x and y in I, define x ∼k y if and only if x = y, or (x, y) is
in E and pk divides mxy.

Lemma 5.3. The relation ∼k is an equivalence relation on the set I .

Proof. The relation is automatically reflexive, by its very definition. For symmetry,
suppose that x ∼k y and x 6= y. In this case (x, y) belongs to E and pk divides mxy.
The relation E is symmetric, so it contains (y, x), and myx = mxy, so pk divides
myx. Thus, y ∼k x, by Definition 5.2.

Turn now to transitivity. Assume that x ∼k y and y ∼k z. If two of these atoms
are equal, then the proof of transitivity is trivial, so suppose that all three atoms
are distinct. The hypotheses and Definition 5.2 imply that pk divides mxy and myz,
so it divides their greatest common divisor. Since

gcd(mxz,myz) = gcd(mxy,myz)

by Index Lemma 5.1, it follows that pk divides mxz. Also, E is transitive, so the
pair (x, z) is in E . Therefore, x ∼k z, by Definition 5.2. �

Lemma 5.4. For each prime p, there is a system of elements

〈akxy : k ≥ 0 and x ∼k y〉

with the following properties whenever x ∼k y and y ∼k z.

(i) akxy is a regular element below x; 1; y, and akxy = x; 1; y when x 6= y and
k = 0.

(ii) If x = y, then akxy = x.

(iii) If x 6= y, then index(akxy) = pk .

(iv) akyx = (akxy)
` .

(v) akxz ≤ akxy; a
k
yz, and equality holds when x 6= z .

(vi) akxy ≤ ak−1
xy for k ≥ 1.

Proof. The construction is by induction on k starting at k = 0. In this case, the
definition of akxy is dictated by the first two conditions:

(1) a0xy =

{

x if x = y,

x; 1; y if x 6= y.

It is not difficult to verify that in this case properties (i)–(vi) hold. If x = y, then the
element x ≤ x; 1;x is regular with left and right stabilizers {x}. If x 6= y, then x; 1; y
is regular with left and right stabilizers Gx and Gy respectively. Consequently,

index(akxy) = |Gx/Gx| = 1 = p0,

so properties (i)–(iii) hold.
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For property (iv), observe that if x = y, then

a0yx = y = x = x` = (akxy)
`,

by Lemma 2.1(v). On the other hand, if x 6= y, then

a0yx = y; 1;x = (x; 1; y)` = (a0xy)
`,

by Lemma 2.3(i).
The verification of property (v) breaks down into cases. If x = y, then

akxy; a
k
yz = x; akyz = x; akxz = akxz,

by condition (ii), the assumption that x = y, and Lemma 2.3(iii). A similar argu-
ment applies if y = z. If x = z, then

akxy; a
k
yz = akxy; a

k
yx = akxy; (a

k
xy)

` =
∑

Hxy ≥ x = akxx = akxz,

by the assumption that x = z, condition (iv) (which has already been shown to
hold when k = 0), the regularity of akxy from condition (i) (which has already been
shown to hold when k = 0), the fact that x is in its left stabilizer Hxy, condition
(ii) (which has already been shown to hold when k = 0), and the assumption x = z.
If x, y, and z are pairwise distinct, then

akxy; a
k
yz = (x; 1; y); (y; 1; z) = x; 1; z = akxz,

by the definition in (1) and Lemma 2.3(ii).
Condition (vi) holds vacuously.
Assume now that ak−1

xy has been defined for all pairs (x, y) with x ∼k−1 y so that
conditions (i)–(vi) hold (with k− 1 in place of k, and k ≥ 1). For each measurable
atom x in I, choose a representative x̄ of the equivalence class x/ ∼k . Thus,

(2) x ∼k y if and only if x̄ = ȳ .

The next step is to construct for each element y ∼k x an element cyx̄ ≤ y; 1; x̄
as follows. If y = x̄, put

(3) cyx̄ = x̄.

If y 6= x̄, then write b = ak−1
yx̄ , and fix an atom d ≤ b. Such an atom exists because

b is a regular element, by the induction hypothesis for condition (i), and hence b
is non-zero. The atomicity of A implies that every non-zero element is above an
atom. The element b has index pk−1 by the induction hypothesis for condition (iii),
so the subgroup Hb is generated by pk−1. Let L be the subgroup of Gx generated
by pk. The element pk−1 generates Hb, and pk is a multiple of pk−1, so pk belongs
to Hb, and therefore L is included in Hb. On the other hand, myx̄ generates Hyx̄,
and pk divides myx̄, so Hyx̄ must be included in L. Thus,

(4) Hyx̄ ⊆ L ⊆ Hb.

Observe that

(5) |Gx/L| = pk,

since pk generates L.
Put

(6) cyx̄ =
∑

L; d.

Because L is a subgroup of Gx, and d is an atom satisfying d ≤ b ≤ y; 1; x̄ (the
second inequality uses the induction hypothesis for condition (i)), the element cyx̄
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is a regular element below y; 1; x̄, and its left stabilizer is L, by Theorem 9.1 in [7].
Consequently,

(7) index(cyx̄) = |Gx/L| = pk,

by (5). The preceding observations and (3) show that conditions (i)–(iii) of the
lemma hold with cyx̄ in place of akyx̄.

For y 6= x̄. define

(8) cx̄y = cyx̄
`,

and observe that since the converse of a regular element below y; 1; x̄ is a regular
element below x̄; 1; y, with the left and right stabilizers reversed, by Converse The-
orem 5.13 from [7], the element defined in (8) must be regular, below x̄; 1; y, and
have the same index as cyx̄, so that

(9) index(cx̄y) = pk,

by (7).
For arbitrary x and y in I with x ∼k y, define

(10) akxy =

{

x if x = y,

cxx̄; cx̄y if x 6= y.

Observe that akxy is well defined by (2). The relative product of a regular element
below x; 1; x̄ and a regular element below x̄; 1; y is a regular element below x; 1; y,
by Relative Product Theorem 5.16 in [7], so condition (i) of the lemma is satisfied
when x 6= y, and it is trivially satisfied when x = y. Condition (ii) is automatically
satisfied, by (10).

Turn to the verification of condition (iii). Assume x ∼k y are distinct. Use (10)
and Lemma 4.2 (with cxx̄ and cx̄y in place of a and b respectively) to obtain

(11) index(akxy) = index(cxx̄; cx̄y) = gcd(index(cxx̄), index(cx̄y)).

The value of index(cxx̄) is either p
k or |Gx| according to whether x 6= x̄ or x = x̄,

by (7) and (3), and similarly for cx̄y, by (7),(3), and (8). At least one of them must
be pk since y 6= x, so the value of (11) is pk. This completes the verification of
condition (iii).

Take up now condition (iv). If x = y, then

akyx = y = x = x` = (akxy)
`,

by (10) and Lemma 2.1(v). If x ∼k y are distinct, then

akyx = (cyȳ; cȳx) = cȳy
`; cxȳ

` = (cxȳ; cȳy)
` = (cxx̄; cx̄y)

` = (akxy)
`,

by (10), (8), the second involution law, (2), and (10).
The next verification is of condition (v). Assume that x ∼k y ∼k z, and consider

first the cases when at least two of the three atoms are equal. If x = y, then

akxy; a
k
yz = x; akyz = x; akxz = akxz,

by (10), the assumption that x = y, and Lemma 2.3(iii). The argument when y = z
is similar. If x = z, then

akxy; a
k
yz = akxy; a

k
yx = akxy; (a

k
xy)

` =
∑

Hxy ≥ x = akxz,

by the assumption that x = z, condition (iv), the regularity of akxy, which is ensured
by condition (i), the fact that Hxy contains x, monotony, and (10).
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Assume now that the atoms x, y, and z are mutually distinct. The element cȳy
is regular, and it is the converse of cyȳ, by (8), so

(12) cȳy; cyȳ = cyȳ
`; cyȳ =

∑

Kyȳ ≥ ȳ

(the last step uses monotony and the fact that ȳ is in Kyȳ). Consequently,

akxy; a
k
yz = (cxx̄; cx̄y); (cyȳ; cȳz) = (cxx̄; cȳy); (cyȳ; cȳz)

= cxx̄; (cȳy; cyȳ); cȳz ≥ cxx̄; ȳ; cȳz = cxx̄; cȳz = cxx̄; cx̄z = akxz,

by (10), (2), the associative law, (12) and monotony, Lemma 2.3(iii), (2), and (10).
This argument shows that

(13) akxz ≤ akxy; a
k
yz .

On the other hand,

(14) index(akxy; a
k
yz) = gcd(index(akxy), index(a

k
yz))

= gcd(pk, pk) = pk = index(akxz),

by condition (i), Lemma 4.2, condition (iii), and the assumption on x, y, and z.
Use condition (i), (13), (14), and Lemma 4.3 (with akxz and akxy; a

k
yz in place of a

and b) to conclude that

akxz = akxy; a
k
yz .

Turn finally to the verification of condition (vi). If x = y, then

akxy = x = ak−1
xy ,

by (10) and the induction hypothesis for condition (ii), so condition (vi) holds in
this case. Assume now that x ∼k y are distinct. At least one of x and y must be
different from x̄, say it is y. If x = x̄, then

(15) akxy = cxx̄; cx̄y = x̄; cx̄y = cx̄y = cyx̄
`,

by (10), (3), Lemma 2.3(iii), and (8). Write b = ak−1
yx̄ . The element cyx̄ is defined

to be
∑

L; d, where d is some atom below b, and L satisfies the inclusions in (4).
The second inclusion in (4) implies that L; d ⊆ Hb; d, and therefore

(16) cyx̄ =
∑

L; d ≤
∑

Hb; d ≤
∑

Hb; b = b = ak−1
yx̄ ,

by (6), monotony, the fact that d ≤ b, the definition of Hb as the stabilizer of b,
and the definition of b. Apply (16), monotony, and the induction hypothesis for
condition (iv) to arrive at

(17) cyx̄
` ≤ (ak−1

yx̄ )` = ak−1
x̄y .

With the help of (15), (17), Lemma 2.3(iii), the assumption that x = x̄, the induc-
tion hypotheses for (ii) and (v), and the assumption that y 6= x̄, conclude that

akxy = cyx̄
` ≤ ak−1

x̄y = x̄; ak−1
x̄y = x; ak−1

x̄y = ak−1
xx̄ ; ak−1

x̄y = ak−1
xy .

Consider finally the case when both x and y are different from x̄. An argument
analogous to that of (16) shows that

(18) cxx̄ ≤ ak−1
xx̄ .

Also, it follows from (17) and (8) that

(19) cx̄y ≤ ak−1
x̄y .
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Compute:

akxy = cxx̄; cx̄y ≤ ak−1
xx̄ ; ak−1

x̄y = ak−1
xy ,

by (10), (18), (19), monotony, and the induction hypothesis for (v) (with x̄ and y
in place of y and z respectively). This completes the proof of the lemma. �

For each pair (x, y) in E and each natural number k ≥ 0 such that x ∼k y,
an element akxy has been constructed in Lemma 5.4 such that the system of these
elements possesses certain properties. The next step is to use these elements and
properties in order to construct a scaffold. Fix a pair (x, y) in E , and let

mxy = pk1

1 · . . . · pkn

n

be the decomposition of mxy into distinct primes. If mxy = 1, write mxy = 20 for
the prime decomposition. Thus, for each index i = 1, . . . , n, we have x ∼ki

y, and

pki

i is the largest power of pi that divides mxy when x 6= y.
We now change notation a bit by letting the prime numbers pi vary as i varies

over 1, . . . , n, and writing aki
xy to denote the element constructed in Lemma 5.4

using the prime p = pi and the natural number k = ki. Thus, in contrast to the
lemma, we let ki and kj represent powers of different primes, namely pi and pj, in

the notations aki
xy and a

kj

xy.

Definition 5.5. For each pair (x, y) in E , write

axy = ak1

xy · . . . · a
kn

xy =
∏n

i=1 a
ki
xy,

where mxy = pk1

1 · . . . · pkn
n is the prime decomposition of mxy .

PSfrag replacements
10, 800

16 27 25
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Figure 2. Diagram of the levels of construction of the scaffold.

Theorem 5.6 (Scaffold Theorem). The system 〈axy : (x, y) ∈ E〉 is a scaffold
in A.

Proof. The first task is to prove that

(1) index(axy) = mxy
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for all (x, y) ∈ E . Consider the case when x 6= y. The element aki
xy is regular and

below x; 1; y, and

(2) index(aki

xy) = pki ,

by Lemma 5.4(i),(iii). In particular, these indices are relatively prime to one another
for distinct indices i. There are now two subcases to consider. If mxy > 1, then

(3) axy =
∏n

i=1 a
ki
xy

is a product of regular elements below x; 1; y with mutually relatively prime indices,
so it is a regular element below x; 1; y, and

(4) index(axy) =
∏n

i=1 index(a
ki
xy) =

∏n

i=1 p
ki = mxy,

by Corollary 4.6 and (2). On the other hand, if mxy = 1, then

(5) axy = x; 1; y,

by Lemma 5.4(i), so the left stabilizer of axy is Gx, and consequently

(6) index(axy) = |Gx/Gx| = 1 = mxy .

In the remaining case, x = y, so that aki
xy = x for each i, by Lemma 5.4(ii), and

therefore

(7) axy = axx = x,

by (3). The left stabilizer of x is {x}, by the group identity law, so

(8) index(axx) = index(x) = |Gx/{x}| = |Gx| = mxx,

by (7), Definition 4.1, and Lemma 5.1(i). Combine (4), (6), and (8) to conclude
that (1) holds in all cases.

The next task is to prove that the element axy is an atom. As was pointed out
earlier, the algebra A is finitely measurable, and hence atomic. Since axy is regular,
it is non-zero, and therefore there must be an atom d ≤ axy. The atom d is regular,
by Corollary 4.7 in [7], and its left stabilizer is Hxy, by Corollary 4.16 in [7]. Use
the definition of the index of an element, the definition of mxy, and (1) to arrive at

index(d) = |Gx/Hxy| = mxy = index(axy).

Apply Lemma 4.3 to conclude that d = axy, and hence that axy is an atom with
left stabilizer Hxy.

It remains to verify the three scaffold conditions. The first one holds by (7). To
verify the second scaffold condition, it suffices to check the case when x 6= y (see
Theorem 4.4 in [3]). If mxy > 1, then Lemma 5.4(iv) ensures that

(9) aki

yx = (aki

xy)
`,

for each i, and consequently,

(10) axy
` = (

∏

i a
ki
xy)

` =
∏

i(a
ki
xy)

` =
∏

i a
ki
yx = ayx,

by (3) and the assumption that mxy > 1, Lemma 2.1(ii), (9), and (3) (with y and
z in place of x and y respectively). If mxy = 1, then myx = 1, and

(11) axy
` = (x; 1; y)` = y; 1;x = ayx,

by (5) and Lemma 2.3(i). Thus, the second scaffold condition holds in all cases, by
(10) and (11).
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It remains to verify the third scaffold condition. Consider pairs (x, y) and (y, z)
in E . If x = y, then

(12) axz = x; axz = axx; axz = axy; ayz,

by Lemma 2.3(iii), (7), and the assumption x = y. A similar argument applies if
y = z. If x = z, then

(13) axz = axx = x ≤
∑

Hxy = axy; axy
` = axy; ayx = axy; ayz,

by the assumption x = z, (7), the fact that x belongs to the left stabilizer Hxy,
monotony, the regularity of the atom axy, and scaffold condition (ii), which has
already been shown to hold.

Assume now that x, y, and z are all distinct. If mxy = 1, then (5) holds, and
therefore

(14) axy; ayz = x; 1; y; ayz = x; 1; z ≥ axz,

by (5), Lemma 2.3(ii), and Lemma 5.4(i). A similar argument applies if myz = 1.
We may therefore assume that mxy > 1 and myz > 1. Thus, mxy and myz each
have at least one prime in their prime decompositions. Suppose

(15) mxy = pk1

1 · . . . · pkn

n =
∏n

i=1 p
ki

i ,

so that axy has the form (3). Forming the product of axy with the element x; 1; y
does not change the value of axy, since axy is below this element, by Lemma 5.4(i).

This amounts to forming the product of axy with elements of the form a
ℓj
xy in which

ℓj = 0, by Lemma 5.4(i). The same reasoning applies to the values of ayz and axz,
so by multiplying such zero powers of primes into the factorizations of mxy, myz,
and mxz, we may assume that

(16) myz = pℓ11 · . . . · pℓnn =
∏n

i=1 p
ℓi
i and mxz = pj11 · . . . · pjnn =

∏n

i=1 p
ji
i ,

that is to say, the same primes pi occur in all three factorizations, some of them
raised to the zeroth power. Consequently,

(17) ayz =
∏n

i=1 a
ℓi
yz and axz =

∏n
i=1 a

ji
xz .

Write

(18) si = min{ki, ℓi}

for each i = 1, . . . , n, and observe that

(19) gcd(mxy,myz) = gcd(
∏

i p
ki

i ,
∏

i p
ℓi
i ) =

∏

i p
si
i .

Since

gcd(mxy,myz) = gcd(mxy,mxz),

by Lemma 5.1(iii), it follows from (19) that

(20) psii divides mxz .

The definition of axy implies that ki is the largest natural number such that x ∼ki
y.

Similarly, ℓi is the largest natural number such that y ∼ℓi z . It follows from (18)
and the definition of the relation ∼si that x ∼si y and y ∼si z, so

(21) x ∼si z,
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by transitivity. Since ji is the largest natural number such that x ∼ji z, it follows
from (20) and (21) that si ≤ ji, and therefore

(22) ajixz ≤ asixz,

by Lemma 5.4(vi). Use (17) and (22) to conclude that

(23) axz =
∏

i a
ji
xz ≤

∏

i a
si
xz .

The element axz is an atom, so in particular, (23) implies that

(24) asixz 6= 0.

Use Corollary 4.6, Lemma 5.4(iii), and (19) to arrive at

(25) index(
∏

i a
si
xz) =

∏

i index(a
si
xz) =

∏

i p
si
i = gcd(mxy,myz).

The indices of axy and ayz are mxy and myz respectively, by (4). Use this
observation and Lemma 4.2 to write

(26) gcd(mxy,myz) = gcd(index(axy), index(ayz)) = index(axy; ayz).

Combine (26) with (25) to arrive at

(27) index(axy; ayz) = index(
∏

i a
si
xz).

Use (3), (17), monotony, (18), and Lemma 5.4(vi) to obtain

(28) axy; ayz = (
∏

i a
ki
yz); (

∏

i a
ℓi
yz) ≤

∏

i(a
ki
yz ; a

ℓi
yz) ≤

∏

i a
si
yz .

In view of (28), Lemma 4.3 (with axy; ayz and
∏

i a
si
yz in place of a and b respectively)

may be applied to (27), and then (23) may be invoked, to conclude that

axy; ayz =
∏

i a
si
xz ≥ axz .

This completes the verification of the third scaffold condition and hence the proof
of the theorem. �

Here, finally, is the representation theorem for measurable relation algebras with
finite cyclic groups.

Theorem 5.7 (Representation Theorem). If A is a measurable relation algebra,
and if, for each measurable atom x, the group Gx is finite and cyclic, then A is
essentially isomorphic to one of the cyclic group relation algebras constructed in
GCD Theorem 3.8. Hence, A is completely representable.

Proof. Here is a summary of the strategy that was outlined at the beginning of the
section. The groups Gx are all assumed to be finite, so A is finitely measurable
and therefore atomic. Using this fact, a scaffold is constructed in A, by Scaffold
Theorem 5.6. A measurable relation algebra with a scaffold is essentially isomorphic
to a full group relation algebra, by Scaffold Representation Theorem 7.4 in [7].

To see which full group relation algebra, let I be the set of measurable atoms
in A, and for each atom x in I, let Gx be the group of non-zero functions below
the square x; 1;x. Take E to be the set of pairs (x, y) such that x; 1; y 6= 0. Fix a
scaffold

(1) 〈axy : (x, y) ∈ E〉
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in A. For each pair (x, y) in E , take Hxy and Kxy to be the left and right stabilizers
of the atom axy . The function ϕxy from Gx/Hxy to Gy/Kxy defined for cosets H
of Hxy and K of Kxy by

ϕxy(H) = K if and only if H ; axy = axy;K

is an isomorphism. The group pair F = (G,ϕ) consisting of the systems

G = 〈Gx : x ∈ I〉 and ϕ = 〈ϕxy : (x, y) ∈ E〉

satisfies the group frame conditions, by Frame Theorem 7.3 in [7], and A is essen-
tially isomorphic to the full group relation algebra G[F ], by (the proof of) Theorem
7.4 in [7]. The group relation algebra G[F ] is one of the ones considered in Theo-
rem 3.9, and therefore also in GCD Theorem 3.8 (up to isomorphism).

Alternatively, let mxy = |Gx/Hxy| and observe that the system

m = 〈mxy : (x, y) ∈ E〉

satisfies the index conditions by the proof of Scaffold Theorem 5.6. Consequently,
A is essentially isomorphic to the cyclic group relation algebra constructed in GCD
Theorem 3.8 using the system m. �

Theorem 4.30 in Jónson-Tarski [9] states that for a relation algebra A the fol-
lowing are equivalent. (i) A is isomorphic to a full set relation algebra. (ii) A is
complete, atomic, with all atoms x satisfying x`; 1;x ≤ 1’. The hard part of this
theorem is to show that (ii) implies (i). Assume (ii) and let x be a subidentity atom.
Then x`; 1;x ≤ 1’ by assumption, and thus (x; 1;x)`; (x; 1;x) = x`; 1;x ≤ 1’ by
Lemma 2.1(v) and Lemma 2.3(i),(ii). This means that x; 1;x is functional. Thus
the square x; 1;x is the sum of one functional element, hence x is measurable with
measure 1. Since A is atomic, the identity is a sum of atoms, and we have seen that
these atoms are measurable, hence A is measurable. Each of the associated groups
have one element, thus finite and cyclic. Since A is complete, then A is isomorphic,
and not just essentially isomorphic, to a group relation algebra G[F ] with all the
groups in F being one-element. It is not hard to see that such a G[F ] is isomorphic
to a full set relation algebra. We have proved the hard part of [9, Theorem 4.30]
by using Theorem 5.7.

We note that a representation theorem is given in [2] which uses a generalization
of the above condition (ii) in another direction, not toward measurability.

Next we turn to pair-dense relation algebras. Let A be a relation algebra. In
[10], an element x ∈ A is called a pair if x; 0’;x; 0’;x ≤ 1’ and x is nonzero, where
0’ denotes −1’, and the algebra A is called pair-dense if the identity element 1’ is
a sum of pairs.

Lemma 5.8. Let A be an atomic relation algebra. Then (i) and (ii) below are
equivalent.

(i) A is pair-dense.
(ii) A is measurable with all the associated groups cyclic of order ≤ 2.

Proof. In the proof, we will use Lemma 2.1-Lemma 2.3 without mentioning them.
Let x ≤ 1’ be an atom, in particular x is nonzero. First we show that x is a
pair just in case it is measurable with measure ≤ 2. Now, by definition, x is a
pair just in case x; 0’;x; 0’;x ≤ 1’, we are going to show that this latter holds
just when x; 0’;x is functional. Indeed, x; 0’;x is functional, by definition, just
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when (x; 0’;x)`; (x; 0’;x) ≤ 1’, but (x; 0’;x)`; (x; 0’;x) = (x; 0’;x); (x; 0’;x) =
x; 0’;x; 0’;x. Note that each subidentity element x is functional by x`;x = x ≤ 1’.

Assume now that x is a pair. Then x; 1;x is the sum of x; 1’;x and x; 0’;x, both
being functional (since x; 1’;x = x). The first one, x; 1’;x is nonzero by x being
nonzero. If the second one, x; 0’;x is zero, then x has measure 1, and if x; 0’;x is
nonzero, then x has measure 2. We have seen that x is measurable with measure
≤ 2.

Assume now that x has measure ≤ 2. Then x is the sum of ≤ 2 nonzero
functional elements, and we mentioned at the beginning of Section 4 that each of
these functional elements is an atom. Since x is a subidentity atom, it is nonzero
and functional. Now, x; 1;x = x; 1’;x + x; 0’;x, where x = x; 1’;x. Thus, one of
the functional elements below x; 1;x is x itself. If x has measure 1, then x; 1;x = x
and so x; 0’;x = 0 hence functional. If x has measure 2, then the other functional
element below x; 1;x must be x; 0’;x. So in both cases x; 0’;x is functional. We
have already seen that x; 0’;x is functional just in case x is a pair.

We are ready to prove the lemma. Assume that A is pair-dense and atomic. By
definition and monotony, if x is a pair, then each nonzero element below it is also a
pair. Therefore, 1’ is the sum of pairs that are atoms. We have seen that all these
atoms are measurable with measure ≤ 2, hence (ii) holds. Assume now that (ii)
holds, then 1’ is the sum of measurable atoms with measure ≤ 2. Each of these
atoms is a pair, so A is pair-dense.

Finally, notice that each group of order ≤ 2 is cyclic. �

In view of Lemma 5.8, our Theorem 5.7 implies that all atomic pair-dense relation
algebras are completely representable, and in fact essentially isomorphic to a group
relation algebra where the associated groups have order one or two. This gives a
structural description for atomic pair-dense relation algebras. Theorem 48 of [10]
states that simple pair-dense relation algebras are atomic, and Theorem 51 of [10]
states that for simple pair-dense algebras (α) and (β) are equivalent, where (α)
states that A is completely representable on the set U , and (β) states that the
cardinality of U is n + 2m where n is the number of atomic pairs x below 1’ for
which x; 0’;x is zero, and m is the number for those where x; 0’;x is nonzero. Now,
using [10, Theorem 48] and Theorem 5.7, Lemma 5.8, one can give an alternative
proof for [10, Theorem 51].
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24 HAJNAL ANDRÉKA AND STEVEN GIVANT

[8] Hirsch, R. and Hodkinson, I., Relation algebras by games, Studies in Logic and the
Foundations of Mathematics, vol. 147, Elsevier Science, North-Holland Publishing Com-
pany, Amsterdam, 2002, 712 pp.

[9] Jónsson, B. and Tarski, A., Boolean algebras with operators. Part II, American Journal

of Mathematics 74 (1952), pp. 127–162.
[10] Maddux, R. D., Pair-dense relation algebras, Transactions of the American Mathe-

matical Society 328 (1991), pp. 83–131.
[11] Maddux, R. D., Relation algebras, Studies in Logic and the Foundations of Mathematics,

vol. 150, Elsevier Science, North-Holland Publishing Company, Amsterdam, 2006, xxvi +
731 pp.
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