Avoiding long Berge cycles

Zoltán Füredi* Alexandr Kostochka ${ }^{\dagger} \quad$ Ruth Luo ${ }^{\ddagger}$

May 15, 2018

Abstract

Let $n \geq k \geq r+3$ and \mathcal{H} be an n-vertex r-uniform hypergraph. We show that if $$
|\mathcal{H}|>\frac{n-1}{k-2}\binom{k-1}{r}
$$ then \mathcal{H} contains a Berge cycle of length at least k. This bound is tight when $k-2$ divides $n-1$. We also show that the bound is attained only for connected r-uniform hypergraphs in which every block is the complete hypergraph $K_{k-1}^{(r)}$.

We conjecture that our bound also holds in the case $k=r+2$, but the case of short cycles, $k \leq r+1$, is different.

Mathematics Subject Classification: 05D05, 05C65, 05C38, 05C35.
Keywords: Berge cycles, extremal hypergraph theory.

1 Definitions, Berge F subhypergraphs

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets of a finite set. We associate an r-graph \mathcal{H} with its edge set and call its vertex set $V(\mathcal{H})$. Usually we take $V(\mathcal{H})=[n]$, where $[n]$ is the set of first n integers, $[n]:=\{1,2,3, \ldots, n\}$. We also use the notation $\mathcal{H} \subseteq\binom{[n]}{r}$.

Definition 1.1 (Anstee and Salazar [1], Gerbner and Palmer [5]). For a graph F with vertex set $\left\{v_{1}, \ldots, v_{p}\right\}$ and edge set $\left\{e_{1}, \ldots, e_{q}\right\}$, a hypergraph \mathcal{H} contains a Berge F if there exist distinct vertices $\left\{w_{1}, \ldots, w_{p}\right\} \subseteq V(\mathcal{H})$ and edges $\left\{f_{1}, \ldots, f_{q}\right\} \subseteq E(\mathcal{H})$, such that if $e_{i}=v_{i_{1}} v_{i_{2}}$, then $\left\{w_{i_{1}}, w_{i_{2}}\right\} \subseteq f_{i}$. The vertices $\left\{w_{1}, \ldots, w_{p}\right\}$ are called the base vertices of the Berge F.

Of particular interest to us are Berge cycles.
Definition 1.2. A Berge cycle of length ℓ in a hypergraph is a set of ℓ distinct vertices $\left\{v_{1}, \ldots, v_{\ell}\right\}$ and ℓ distinct edges $\left\{e_{1}, \ldots, e_{\ell}\right\}$ such that $\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$ with indices taken modulo ℓ.

A Berge path of length ℓ in a hypergraph in a hypergraph is a set of $\ell+1$ vertices $\left\{v_{1}, \ldots, v_{\ell+1}\right\}$ and ℓ hyperedges $\left\{e_{1}, \ldots, e_{\ell}\right\}$ such that $\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$ for all $1 \leq i \leq \ell$.

[^0]Let \mathcal{H} be a hypergraph and p be an integer. The p-shadow, $\partial_{p} \mathcal{H}$, is the collection of the p-sets that lie in some edge of \mathcal{H}. In particular, we will often consider the 2 -shadow $\partial_{2} \mathcal{H}$ of a r-uniform hypergraph \mathcal{H} in which each edge of \mathcal{H} yields a clique on r vertices.

2 Background

Erdős and Gallai [3] proved the following result on the Turán number of paths.
Theorem 2.1 (Erdős and Gallai [3]). Let $k \geq 2$ and let G be an n-vertex graph with no path on k vertices. Then $e(G) \leq(k-2) n / 2$.

This theorem is implied by a stronger result for graphs with no long cycles.
Theorem 2.2 (Erdős and Gallai [3]). Let $k \geq 3$ and let G be an n-vertex graph with no cycle of length k or longer. Then $e(G) \leq(k-1)(n-1) / 2$.

Győri, Katona, and Lemons [6] extended Theorem 2.1 to Berge paths in r-graphs. The bounds depend on the relationship of r and k.

Theorem 2.3 (Győri, Katona, and Lemons [6]). Suppose that \mathcal{H} is an n-vertex r-graph with no Berge path of length k. If $k \geq r+2 \geq 5$, then $e(\mathcal{H}) \leq \frac{n}{k}\binom{k}{r}$, and if $r \geq k \geq 3$, then $e(\mathcal{H}) \leq \frac{n(k-1)}{r+1}$.

Both bounds in Theorem 2.3 are sharp for each k and r for infinitely many n. The remaining case of $k=r+1$ was settled later by Davoodi, Győri, Methuku, and Tompkins [2]: if \mathcal{H} is an n-vertex r-graph with $|E(\mathcal{H})|>n$, then it contains a Berge path of length at least $r+1$. Furthermore, Győri, Methuku, Salia, Tompkins and Vizer [7] have found a better upper bound on the number of edges in n-vertex connected r-graphs with no Berge path of length k. Their bound is asymptotically exact when r is fixed and k and n are sufficiently large.

The goal of this paper is to present a similar result for cycles.

3 Main result: Hypergraphs without long Berge cycles

Our main result is an analogue of the Erdős-Gallai theorem on cycles for r-graphs.
Theorem 3.1. Let $r \geq 3$ and $k \geq r+3$, and suppose \mathcal{H} is an n-vertex r-graph with no Berge cycle of length k or longer. Then $e(\mathcal{H}) \leq \frac{n-1}{k-2}\binom{k-1}{r}$. Moreover, equality is achieved if and only if $\partial_{2} \mathcal{H}$ is connected and for every block D of $\partial_{2} \mathcal{H}, D=K_{k-1}$ and $\mathcal{H}[D]=K_{k-1}^{(r)}$.

Note that a Berge cycle can only be contained in the vertices of a single block of the 2-shadow. Hence the aforementioned sharpness examples cannot contain Berge cycles of length k or longer.

Conjecture 3.2. The statement of Theorem 3.1 holds for $k=r+2$, too.

Similarly to the situation with paths, the case of short cycles, $k \leq r+1$, is different. Exact bounds for $k \leq r-1$ and asymptotic bounds for $k=r$ were found in 9]. The answer for $k=r+1$ is not known.

For convenience, below we will use notation

$$
\begin{equation*}
C_{r}(k):=\frac{1}{k-2}\binom{k-1}{r} . \tag{1}
\end{equation*}
$$

(So $C_{2}(k)(n-1)=(k-1)(n-1) / 2$.) Theorem 3.1 yields the following implication for paths.
Corollary 3.3. Let $r \geq 3$ and $n \geq k+1 \geq r+4$. If \mathcal{H} is a connected n-vertex r-graph with no Berge path of length k, then $e(\mathcal{H}) \leq C_{r}(k)(n-1)$.

This gives a $\frac{k-2}{k-r}$ times stronger bound than Theorem 2.3 for connected r-graphs for all $r \geq 3$ and $n \geq k+1 \geq r+4$ and not only for sufficiently large k and n. In particular, Corollary 3.3 implies the following slight sharpening of Theorem 2.3 for $k \geq r+3$.

Corollary 3.4. Let $r \geq 3$ and $n \geq k \geq r+3$. If \mathcal{H} is an n-vertex r-graph with no Berge path of length k, then $e(\mathcal{H}) \leq \frac{n}{k}\binom{k}{r}$ with equality only if every component of \mathcal{H} is the complete r-graph $K_{k}^{(r)}$.

In the next section, we introduce the notion of representative pairs and use it to derive useful properties of Berge F-free hypergraphs for rather general F. In Section 5, we cite Kopylov's Theorem and prove two useful inequalities. In Section 6 we prove our main result, Theorem 3.1, and in the final Section 7 we derive Corollaries 3.3 and 3.4 .

4 Representative pairs, the structure of Berge F-free hypergraphs

Definition 4.1. For a hypergraph \mathcal{H}, a system of distinct representative pairs (SDRP) of \mathcal{H} is a set of distinct pairs $A=\left\{\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{s}, y_{s}\right\}\right\}$ and a set of distinct hyperedges $\mathcal{A}=\left\{f_{1}, \ldots f_{s}\right\}$ of \mathcal{H} such that for all $1 \leq i \leq s$
$-\left\{x_{i}, y_{i}\right\} \subseteq f_{i}$, and

- $\left\{x_{i}, y_{i}\right\}$ is not contained in any $f \in \mathcal{H}-\left\{f_{1}, \ldots, f_{s}\right\}$.

Lemma 4.2. Let \mathcal{H} be a hypergraph, let (A, \mathcal{A}) be an SDRP of \mathcal{H} of maximum size. Let $\mathcal{B}:=\mathcal{H} \backslash \mathcal{A}$ and let $B=\partial_{2} \mathcal{B}$ be the 2 -shadow of \mathcal{B}. For a subset $S \subseteq B$, let \mathcal{B}_{S} denote the set of hyperedges that contain at least one edge of S. Then for all nonempty $S \subseteq B,|S|<\left|\mathcal{B}_{S}\right|$.

Proof. Suppose for contradiction there exists a nonempty set $S \subseteq B$ such that $|S| \geq\left|\mathcal{B}_{S}\right|$. Choose a smallest such S.

We claim that $|S|=\left|\mathcal{B}_{S}\right|$. Indeed, if $|S|>\left|\mathcal{B}_{S}\right|$ then $|S| \geq 2$ because $\mathcal{B}_{S} \neq \emptyset$ by definition. Take any edge $e \in S$. The set $S \backslash e$ is nonempty and $|S \backslash e|=|S|-1 \geq\left|\mathcal{B}_{S}\right| \geq\left|\mathcal{B}_{S \backslash e}\right|$, a contradiction to the minimality of S.

Consider the case $|S|=\left|\mathcal{B}_{S}\right|$. By the minimality of S, each subset $S^{\prime} \subset S$ satisfies $\left|S^{\prime}\right|<\left|\mathcal{B}_{S^{\prime}}\right|$. Therefore by Hall's theorem, one can find a bijective mapping of S to \mathcal{B}_{S}, where say the edge $e_{i} \in S$ gets mapped to hyperedge f_{i} in \mathcal{B}_{S} for $1 \leq j \leq|S|$. Then $\left(A \cup\left\{e_{i}, \ldots, e_{|S|}\right\}, \mathcal{A} \cup\left\{f_{1}, \ldots, f_{|S|}\right\}\right)$ is a larger SDRP of \mathcal{H}, a contradiction.

Lemma 4.3. Let \mathcal{H} be a hypergraph and let (A, \mathcal{A}) be an SDRP of \mathcal{H} of maximum size. Let $\mathcal{B}:=\mathcal{H} \backslash \mathcal{A}, B=\partial_{2} \mathcal{B}$, and let G be the graph on $V(\mathcal{H})$ with edge set $A \cup B$. If G contains a copy of a graph F, then \mathcal{H} contains a Berge F on the same base vertex set.

Proof. Let $\left\{v_{1}, \ldots, v_{p}\right\}$ and $\left\{e_{1}, \ldots, e_{q}\right\}$ be a set of vertices and a set of edges forming a copy of F in G such that the edges e_{1}, \ldots, e_{b} belong to B. By Lemma 4.2, each subset S of $\left\{e_{1}, \ldots, e_{b}\right\}$ satisfies $|S|<\left|\mathcal{B}_{S}\right|$. So we may apply Hall's Theorem to match each of these e_{i} 's to a hyperedge $f_{i} \in \mathcal{B}$. The edges $e_{i} \in A$ can be matched to distinct edges of \mathcal{A} given by the SDRP . Since $\mathcal{A} \cap \mathcal{B}=\emptyset$ this yields a Berge F in \mathcal{H} on the same base vertex set.

We have $|\mathcal{H}|=|A|+|\mathcal{B}|$. Note that the number of r-edges in \mathcal{B} is at most the number of copies of K_{r} in its 2-shadow. Therefore Lemma 4.3 gives a new proof for the following result of Gerbner and Palmer (cited in [4]): for any graph F,

$$
\operatorname{ex}\left(n, K_{r}, F\right) \leq \operatorname{ex}_{r}(n, \text { Berge } F) \leq \operatorname{ex}(n, F)+\operatorname{ex}\left(n, K_{r}, F\right)
$$

Here $\operatorname{ex}_{r}\left(n,\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots\right\}\right)$ denotes the Turán number of $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots\right\}$, the maximum number of edges in an r-uniform hypergraph on n vertices that does not contain a copy of any \mathcal{F}_{i}.

The generalized Turán function $\operatorname{ex}\left(n, K_{r}, F\right)$ is the maximum number of copies of K_{r} in an F-free graph on n vertices.

5 Kopylov's Theorem and two inequalities

Definition: For a natural number α and a graph G, the α-disintegration of a graph G is the process of iteratively removing from G the vertices with degree at most α until the resulting graph has minimum degree at least $\alpha+1$ or is empty. This resulting subgraph $H(G, \alpha)$ will be called the $(\alpha+1)$-core of G. It is well known (and easy) that $H(G, \alpha)$ is unique and does not depend on the order of vertex deletion.

The following theorem is a consequence of Kopylov [8] about the structure of graphs without long cycles. We state it in the form that we need \prod^{\top}

Theorem 5.1 (Kopylov [8]). Let $n \geq k \geq 5$ and let $t=\left\lfloor\frac{k-1}{2}\right\rfloor$. Suppose that G is a 2 -connected n-vertex graph with no cycle of length at least k. Suppose that it is saturated, i.e., for every nonedge $x y$ the graph $G \cup\{x y\}$ has a cycle of length at least k. Then either

[^1](5.1.1) the t-core $H(G, t)$ is empty, the graph G is t-disintegrable; or
(5.1.2) $|H(G, t)|=s$ for some $t+2 \leq s \leq k-2$, it is a complete graph on s vertices, and $H(G, t)=H(G, k-s)$, i.e., the rest of the vertices can be removed by a $(k-s)$-disintegration.

Note that in the second case $2 \leq k-s \leq t$.
Lemma 5.2. Let k, r, t, s, a nonnegative integers, and suppose $k \geq r+3 \geq 6, t=\lfloor(k-1) / 2\rfloor$, and $0 \leq a \leq s \leq t$. Then

$$
a+\binom{s-a}{r-1} \leq \frac{1}{k-2}\binom{k-1}{r}:=C_{r}(k)
$$

This is the part of the proof where we use $k \geq r+3$ because this inequality does not hold for $k=r+2$ (then the right hand side is $(r+1) / r$ while the left hand side could be as large as $\lfloor(r+1) / 2\rfloor)$.

Proof. Keeping k, r, t, s fixed the left hand side is a convex function of a (defined on the integers $0 \leq a \leq s$. It takes its maximum either at $a=s$ or $a=0$. So the left hand side is at most $\max \left\{s,\binom{s}{r-1}\right\}$. This is at most $\max \left\{t,\binom{t}{r-1}\right\}$. We have eliminated the variables a and s.
We claim that $t \leq \frac{1}{k-2}\binom{k-1}{r}$. Indeed, keeping k, t fixed, the right hand side is minimized when $r=k-3$, and then it equals to $(k-1) / 2$. This is at least $\lfloor(k-1) / 2\rfloor=t$.
Finally, we claim that $\binom{t}{r-1} \leq \frac{1}{k-2}\binom{k-1}{r}$. If $t<r-1$, then there is nothing to prove. For $t \geq r-1$ rearranging the inequality we get

$$
r \leq \frac{k-1}{t} \times \frac{k-3}{t-1} \times \cdots \times \frac{k-r}{t-r+2}
$$

Each fraction on the right hand side is at least 2 . Since $r<2^{r-1}$, we are done.
Lemma 5.3. Let $w, r \geq 2$ and let \mathcal{H} be a w-vertex r-graph. Let $\overline{\partial_{2} \mathcal{H}}$ denote the family of pairs of $V(\mathcal{H})$ not contained in any member of \mathcal{H} (i.e., the complement of the 2-shadow). Then

$$
|\mathcal{H}|+\left|\overline{\partial_{2} \mathcal{H}}\right| \leq a_{r}(w):= \begin{cases}\binom{w}{2} & \text { for } 2 \leq w \leq r+2 \\ \binom{w}{r} & \text { for } r+2 \leq w\end{cases}
$$

Moreover, for $2 \leq w \leq k-1$ one has $a_{r}(w) \leq(w-1)\binom{k-1}{r} /(k-2)$ with equality if and only if $w=k-1$ and
$-w>r+2$ and \mathcal{H} is complete, or
$-w=r+2$ and either \mathcal{H} or $\overline{\partial_{2} \mathcal{H}}$ is complete.

Proof. The case of $w \geq r+2$ is a corollary of the classical Kruskal-Katona theorem, but one can give a direct proof by a double counting. If $\overline{\partial_{2} \mathcal{H}}$ is empty, then $|\mathcal{H}|=\binom{w}{r}$ if and only if $\mathcal{H}=\binom{V(\mathcal{H})}{r}$. Otherwise, let $\overline{\mathcal{H}}$ denote the r-subsets of $V(\mathcal{H})$ that are not members of $\mathcal{H}, \overline{\mathcal{H}}=\binom{V(\mathcal{H})}{r} \backslash \mathcal{H}$. Each pair of $\overline{\partial_{2} \mathcal{H}}$ is contained in $\binom{w-2}{r-2}$ members of $\overline{\mathcal{H}}$ and each $e \in \overline{\mathcal{H}}$ contains at most $\binom{r}{2}$ edges of $\overline{\partial_{2} \mathcal{H}}$. We obtain

$$
\left|\overline{\partial_{2} \mathcal{H}}\right|\binom{w-2}{r-2} \leq|\overline{\mathcal{H}}|\binom{r}{2}
$$

Since $\binom{w-2}{r-2} \geq\binom{ r}{r-2}=\binom{r}{2},\left|\overline{\partial_{2} \mathcal{H}}\right| \leq|\overline{\mathcal{H}}|$ with equality only when $w=r+2$. Furthermore, if $\overline{\partial_{2} \mathcal{H}}$ and \mathcal{H} are both nonempty, then for any $x y \in \overline{\partial_{2} \mathcal{H}}$ and $u v \in \partial_{2} \mathcal{H}$ (with possibly $x=u$), any r-tuple e containing $\{x, y\} \cup\{u, v\}$ is in $\overline{\mathcal{H}}$ but contributes strictly less than $\binom{r}{2}$ edges to $\overline{\partial_{2} \mathcal{H}}$, implying $\left|\overline{\partial_{2} \mathcal{H}}\right|<|\overline{\mathcal{H}}|$. This completes the proof of the case.

The case $w \leq r+1$ is easy, and the calculation showing $a_{r}(w) \leq C_{r}(k)(w-1)$ with equality only if $w=k-1$ is standard.

6 Proof of Theorem 3.1, the main upper bound

Proof. Let \mathcal{H} be an r-uniform hypergraph on n vertices with no Berge cycle of length k or longer $(k \geq r+3 \geq 6)$. Let (A, \mathcal{A}) be an SDRP of \mathcal{H} of maximum size. Let $\mathcal{B}:=\mathcal{H} \backslash \mathcal{A}, B=\partial_{2} \mathcal{B}$. By Lemma 4.3 the graph G with edge set $A \cup B$ does not contain a cycle of length k or longer.

Let $V_{1}, V_{2}, \ldots, V_{p}$ be the vertex sets of the standard (and unique) decomposition of G into 2 connected blocks of sizes $n_{1}, n_{2}, \ldots, n_{p}$. Then the graph $A \cup B$ restricted to V_{i}, denoted by G_{i}, is either a 2 -connected graph or a single edge (in the latter case $n_{i}=2$), each edge from $A \cup B$ is contained in a single G_{i}, and $\sum_{i=1}^{p}\left(n_{i}-1\right) \leq(n-1)$.
This decomposition yields a decomposition of $A=A_{1} \cup A_{2} \cup \cdots \cup A_{p}$ and $B=B_{1} \cup B_{2} \cup \cdots \cup B_{p}$, $A_{i} \cup B_{i}=E\left(G_{i}\right)$. If an edge $e \in B_{i}$ is contained in $f \in \mathcal{B}$, then $f \subseteq V_{i}$ (because f induces a 2-connected graph K_{r} in B), so the block-decomposition of G naturally extends to $\mathcal{B}, \mathcal{B}_{i}:=\{f \in$ $\left.\mathcal{B}: f \subseteq V_{i}\right\}$ and we have $\mathcal{B}=\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{p}$, and $B_{i}=\partial_{2} \mathcal{B}_{i}$.

We claim that for each i,

$$
\begin{equation*}
\left|A_{i}\right|+\left|\mathcal{B}_{i}\right| \leq C_{r}(k)\left(n_{i}-1\right), \tag{2}
\end{equation*}
$$

and hence

$$
|\mathcal{H}|=|A|+|\mathcal{B}|=\sum_{i=1}^{p}\left|A_{i}\right|+\left|\mathcal{B}_{i}\right| \leq \sum_{i=1}^{p} C_{r}(k)\left(n_{i}-1\right) \leq C_{r}(k)(n-1),
$$

completing the proof.
To prove (2) observe that the case $n_{i} \leq k-1$ immediately follows from Lemma 5.3. From now on, suppose that $n_{i} \geq k$.

Consider the graph G_{i} and, if necessary, add edges to it to make it a saturated graph with no cycle of length k or longer. Let the resulting graph be G^{\prime}. Kopylov's Theorem (Theorem 5.1) can be applied to G^{\prime}. If G is t-disintegrable, then make $\left(n_{i}-k+2\right)$ disintegration steps and let W be the remaining vertices of $V_{i}(|W|=k-2)$. For the edges of A_{i} and \mathcal{B}_{i} contained in W we use Lemma 5.3 to see that

$$
\left|A_{i}[W]\right|+\left|\mathcal{B}_{i}[W]\right|<C_{r}(k)(|W|-1) .
$$

In the t-disintegration steps, we iteratively remove vertices with degree at most t until we arrive to W. When we remove a vertex v with degree $s \leq t$ from G^{\prime}, a of its incident edges are from A, and the remaining $s-a$ incident edges eliminate at most $\binom{s-a}{r-1}$ hyperedges from \mathcal{B}_{i} containing v. Therefore v contributes at most $a+\binom{s-a}{r-1} \leq C_{r}(k)$ (by Lemma 5.2) to $\left|\mathcal{B}_{i}\right|+\left|A_{i}\right|$.

It follows that

$$
\left|A_{i}\right|+\left|\mathcal{B}_{i}\right|<\left(\sum_{v \in G^{\prime}-W} C_{r}(k)\right)+C_{r}(k)(|W|-1)=C_{r}(k)\left(n_{i}-1\right) .
$$

This completes this case.
Next consider the case 5.1.2), $W:=V(H(G, t)),|W|=s \leq k-2$. We proceed as in the previous case, making $\left(n_{i}-s\right)$ disintegration steps. Apply Lemma 5.3 for $\left|A_{i}[W]\right|+\left|\mathcal{B}_{i}[W]\right|$ and Lemma 5.2 for the $(k-s)$-disintegration steps (where $k-s \leq t$) to get the desired upper bound (with strict inequality).
Furthermore, if $e(\mathcal{H})=|A|+|\mathcal{B}|=C_{r}(k)(n-1)$, then we have $\sum_{i=1}^{p}\left(n_{i}-1\right)=n-1$ (so $A \cup B$ is connected) and $\left|A_{i}\right|+\left|\mathcal{B}_{i}\right|=C_{r}(k)\left(n_{i}-1\right)$ for each $1 \leq i \leq p$. From the previous proof and Lemma 5.2, we see that this holds if and only if for each $i, n_{i}=k-1$, and either \mathcal{B}_{i} or A_{i} is complete. In particular, this implies that each block of $A \cup B$ is a K_{k-1}. We will show that each G_{i} corresponds to a block in in \mathcal{H} that is $K_{k-1}^{(r)}$ with vertex set V_{i}.
In the case that \mathcal{B}_{i} is complete for all $1 \leq i \leq p$, we are done. Otherwise, if some A_{i} is complete (note $r=k-3$ by Lemma 5.2) then there are $\binom{k-1}{2}=\binom{k-1}{k-3}=\binom{k-1}{r}$ hyperedges in \mathcal{A} containing V_{i}. If all such hyperedges are contained in V_{i}, again we get $\mathcal{H}\left[V_{i}\right]=K_{k-1}^{(r)}$. So suppose there exists a $f \in \mathcal{A}$ which is paired with an edge $x y \in A_{i}$ in the SDRP, but for some $z \notin V_{i},\{x, y, z\} \subseteq f$. Then z belongs to another block G_{j} of $A \cup B$. In $A \cup B$, there exists a path from x to z covering $V_{i} \cup V_{j}$ which avoids the edge $x y$. Thus by Lemma 5.3 , there is a Berge path from x to z with at least $2(k-1)-1$ base vertices which avoids the hyperedge f (since edge $x y$ was avoided). Adding f to this path yields a Berge cycle of length $2(k-1)-1>k$, a contradiction.

7 Corollaries for paths

In order to be self-contained, we present a short proof of a lemma by Győri, Katona, and Lemons [6].
Lemma 7.1 (Győri, Katona, and Lemons [6]). Let \mathcal{H} be a connected hypergraph with no Berge path of length k. If there is a Berge cycle of length k on the vertices v_{1}, \ldots, v_{k} then these vertices constitute a component of \mathcal{H}.

Proof. Let $V=\left\{v_{1}, \ldots, v_{k}\right\}, E=\left\{e_{1}, \ldots, e_{k}\right\}$ form the Berge cycle in \mathcal{H}. If some edge, say e_{1} contains a vertex v_{0} outside of V, then we have a path with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{\ell}\right\}$ and edge set E. Therefore each e_{i} is contained in V. Suppose $V \neq V(\mathcal{H})$. Since \mathcal{H} is connected, there exists an edge $e_{0} \in \mathcal{H}$ and a vertex $v_{k+1} \notin V$ such that for some $v_{i} \in V$, say $i=k,\left\{v_{k}, v_{k+1}\right\} \subseteq e_{0}$. Then $\left\{v_{1}, \ldots, v_{k}, v_{k+1}\right\},\left\{e_{1}, \ldots, e_{k-1}, e_{0}\right\}$ is a Berge path of length k.

Proof of Corrollary 3.3. Suppose $n \geq k+1$ and \mathcal{H} is a connected n-vertex r-graph with $e(\mathcal{H})>$ $C_{r}(k)(n-1)$. Then by Theorem 3.1, \mathcal{H} has a Berge cycle of length $\ell \geq k$. If $\ell \geq k+1$, then removing any edge from the cycle yields a Berge path of length at least k. If $\ell=k$, then by Lemma $7.1, \mathcal{H}$ again has a Berge path of length k.

Now Theorem 3.1 together with Corollary 3.3 directly imply Corollary 3.4 .

Proof of Corollary 3.4: Suppose $k \geq r+3 \geq 6$ and \mathcal{H} is an r-graph. Let $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{s}$ be the connected components of \mathcal{H} and $\left|V\left(\mathcal{H}_{i}\right)\right|=n_{i}$ for $i=1, \ldots, s$.
If $n_{i} \leq k-1$, then $\left|\mathcal{H}_{i}\right| \leq\binom{ n_{i}}{r}<\frac{n_{i}}{k}\binom{k}{r}$. If $n_{i} \geq k+1$, then by Corollary 3.3, $\left|\mathcal{H}_{i}\right| \leq C_{r}(k)\left(n_{i}-1\right)<$ $\frac{n_{i}}{k}\binom{k}{r}$. Finally, if $n_{i}=k$, then $\left|\mathcal{H}_{i}\right| \leq\binom{ k}{r}=\frac{n_{i}}{k}\binom{k}{r}$, with equality only if $\mathcal{H}_{i}=K_{k}^{(r)}$. This proves the corollary.

Acknowledgment. The authors would like to thank Jacques Verstraëte for suggesting this problem and for sharing his ideas and methods used in similar problems.

References

[1] R. Anstee and S. Salazar, Forbidden Berge hypergraphs, Electron. J. Combin. 24 (2017), Paper $1.59,21 \mathrm{pp}$.
[2] A. Davoodi, E. Győri, A. Methuku, and C. Tompkins, An Erdős-Gallai type theorem for hypergraphs, European J. Combin. 69 (2018), 159-162.
[3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
[4] D. Gerbner, A. Methuku, and M. Vizer, Asymptotics for the Turán number of Berge- $K_{2, t}$, arxiv:1705.04134, (2017), 24 pp.
[5] D. Gerbner and C. Palmer, Extremal results for Berge-hypergraphs, SIAM Journal on Discrete Mathematics, 31 (2017), 2314-2337.
[6] E. Győri, Gy. Y. Katona, and N. Lemons, Hypergraph extensions of the Erdős-Gallai theorem, European Journal of Combinatorics, 58 (2016), 238-246.
[7] E. Győri, A. Methuku, N. Salia, C. Tompkins and M. Vizer, On the maximum size of connected hypergraphs without a path of given length, arxiv:1710.08364, (2017), 6 pp .
[8] G. N. Kopylov, Maximal paths and cycles in a graph, Dokl. Akad. Nauk SSSR 234 (1977), 19-21. (English translation: Soviet Math. Dokl. 18 (1977), no. 3, 593-596.)
[9] A. Kostochka, and R. Luo, On r-uniform hypergraphs with circumference less than r, in preparation.
[10] R. Luo, The maximum number of cliques in graphs without long cycles, Journal of Combinatorial Theory, Series B, 128 (2018), 219-226.

[^0]: *Alfréd Rényi Institute of Mathematics, Hungary. E-mail: z-furedi@illinois.edu. Research supported in part by the Hungarian National Research, Development and Innovation Office NKFIH grant K116769, and by the Simons Foundation Collaboration Grant 317487.
 ${ }^{\dagger}$ University of Illinois at Urbana-Champaign, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia. E-mail: kostochk@math.uiuc.edu. Research is supported in part by NSF grant DMS-1600592 and grants 18-01-00353A and 16-01-00499 of the Russian Foundation for Basic Research.
 ${ }^{\ddagger}$ University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. E-mail: ruthluo2@illinois.edu.

[^1]: ${ }^{1} \mathrm{~A}$ proof and a recent application can be found in [10].

