Avoiding long Berge cycles

Zoltán Füredi*

Alexandr Kostochka[†]

Ruth Luo[‡]

May 15, 2018

Abstract

Let $n \geq k \geq r+3$ and \mathcal{H} be an *n*-vertex *r*-uniform hypergraph. We show that if

$$|\mathcal{H}| > \frac{n-1}{k-2} \binom{k-1}{r}$$

then \mathcal{H} contains a Berge cycle of length at least k. This bound is tight when k-2 divides n-1. We also show that the bound is attained only for connected r-uniform hypergraphs in which every block is the complete hypergraph $K_{k-1}^{(r)}$.

We conjecture that our bound also holds in the case k = r + 2, but the case of short cycles, $k \le r + 1$, is different.

Mathematics Subject Classification: 05D05, 05C65, 05C38, 05C35. Keywords: Berge cycles, extremal hypergraph theory.

1 Definitions, Berge F subhypergraphs

An *r*-uniform hypergraph, or simply *r*-graph, is a family of *r*-element subsets of a finite set. We associate an *r*-graph \mathcal{H} with its edge set and call its vertex set $V(\mathcal{H})$. Usually we take $V(\mathcal{H}) = [n]$, where [n] is the set of first *n* integers, $[n] := \{1, 2, 3, ..., n\}$. We also use the notation $\mathcal{H} \subseteq {\binom{[n]}{r}}$.

Definition 1.1 (Anstee and Salazar [1], Gerbner and Palmer [5]). For a graph F with vertex set $\{v_1, \ldots, v_p\}$ and edge set $\{e_1, \ldots, e_q\}$, a hypergraph \mathcal{H} contains a **Berge** F if there exist distinct vertices $\{w_1, \ldots, w_p\} \subseteq V(\mathcal{H})$ and edges $\{f_1, \ldots, f_q\} \subseteq E(\mathcal{H})$, such that if $e_i = v_{i_1}v_{i_2}$, then $\{w_{i_1}, w_{i_2}\} \subseteq f_i$. The vertices $\{w_1, \ldots, w_p\}$ are called the **base vertices** of the Berge F.

Of particular interest to us are Berge cycles.

Definition 1.2. A Berge cycle of length ℓ in a hypergraph is a set of ℓ distinct vertices $\{v_1, \ldots, v_\ell\}$ and ℓ distinct edges $\{e_1, \ldots, e_\ell\}$ such that $\{v_i, v_{i+1}\} \subseteq e_i$ with indices taken modulo ℓ .

A Berge path of length ℓ in a hypergraph in a hypergraph is a set of $\ell + 1$ vertices $\{v_1, \ldots, v_{\ell+1}\}$ and ℓ hyperedges $\{e_1, \ldots, e_\ell\}$ such that $\{v_i, v_{i+1}\} \subseteq e_i$ for all $1 \leq i \leq \ell$.

^{*}Alfréd Rényi Institute of Mathematics, Hungary. E-mail: z-furedi@illinois.edu. Research supported in part by the Hungarian National Research, Development and Innovation Office NKFIH grant K116769, and by the Simons Foundation Collaboration Grant 317487.

[†]University of Illinois at Urbana–Champaign, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia. E-mail: kostochk@math.uiuc.edu. Research is supported in part by NSF grant DMS-1600592 and grants 18-01-00353A and 16-01-00499 of the Russian Foundation for Basic Research.

[‡]University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA. E-mail: ruthluo2@illinois.edu.

Let \mathcal{H} be a hypergraph and p be an integer. The *p*-shadow, $\partial_p \mathcal{H}$, is the collection of the *p*-sets that lie in some edge of \mathcal{H} . In particular, we will often consider the 2-shadow $\partial_2 \mathcal{H}$ of a *r*-uniform hypergraph \mathcal{H} in which each edge of \mathcal{H} yields a clique on *r* vertices.

2 Background

Erdős and Gallai [3] proved the following result on the Turán number of paths.

Theorem 2.1 (Erdős and Gallai [3]). Let $k \ge 2$ and let G be an n-vertex graph with no path on k vertices. Then $e(G) \le (k-2)n/2$.

This theorem is implied by a stronger result for graphs with no long cycles.

Theorem 2.2 (Erdős and Gallai [3]). Let $k \ge 3$ and let G be an n-vertex graph with no cycle of length k or longer. Then $e(G) \le (k-1)(n-1)/2$.

Győri, Katona, and Lemons [6] extended Theorem 2.1 to Berge paths in r-graphs. The bounds depend on the relationship of r and k.

Theorem 2.3 (Győri, Katona, and Lemons [6]). Suppose that \mathcal{H} is an n-vertex r-graph with no Berge path of length k. If $k \ge r+2 \ge 5$, then $e(\mathcal{H}) \le \frac{n}{k} \binom{k}{r}$, and if $r \ge k \ge 3$, then $e(\mathcal{H}) \le \frac{n(k-1)}{r+1}$.

Both bounds in Theorem 2.3 are sharp for each k and r for infinitely many n. The remaining case of k = r + 1 was settled later by Davoodi, Győri, Methuku, and Tompkins [2]: *if* \mathcal{H} *is an n-vertex* r-graph with $|E(\mathcal{H})| > n$, then it contains a Berge path of length at least r + 1. Furthermore, Győri, Methuku, Salia, Tompkins and Vizer [7] have found a better upper bound on the number of edges in *n*-vertex connected *r*-graphs with no Berge path of length k. Their bound is asymptotically exact when r is fixed and k and n are sufficiently large.

The goal of this paper is to present a similar result for cycles.

3 Main result: Hypergraphs without long Berge cycles

Our main result is an analogue of the Erdős–Gallai theorem on cycles for r-graphs.

Theorem 3.1. Let $r \ge 3$ and $k \ge r+3$, and suppose \mathcal{H} is an *n*-vertex *r*-graph with no Berge cycle of length *k* or longer. Then $e(\mathcal{H}) \le \frac{n-1}{k-2} \binom{k-1}{r}$. Moreover, equality is achieved if and only if $\partial_2 \mathcal{H}$ is connected and for every block *D* of $\partial_2 \mathcal{H}$, $D = K_{k-1}$ and $\mathcal{H}[D] = K_{k-1}^{(r)}$.

Note that a Berge cycle can only be contained in the vertices of a single block of the 2-shadow. Hence the aforementioned sharpness examples cannot contain Berge cycles of length k or longer.

Conjecture 3.2. The statement of Theorem 3.1 holds for k = r + 2, too.

Similarly to the situation with paths, the case of short cycles, $k \le r+1$, is different. Exact bounds for $k \le r-1$ and asymptotic bounds for k = r were found in [9]. The answer for k = r+1 is not known.

For convenience, below we will use notation

$$C_r(k) := \frac{1}{k-2} \binom{k-1}{r}.$$
 (1)

(So $C_2(k)(n-1) = (k-1)(n-1)/2$.) Theorem 3.1 yields the following implication for paths.

Corollary 3.3. Let $r \ge 3$ and $n \ge k+1 \ge r+4$. If \mathcal{H} is a connected n-vertex r-graph with no Berge path of length k, then $e(\mathcal{H}) \le C_r(k)(n-1)$.

This gives a $\frac{k-2}{k-r}$ times stronger bound than Theorem 2.3 for connected *r*-graphs for all $r \ge 3$ and $n \ge k+1 \ge r+4$ and not only for sufficiently large k and n. In particular, Corollary 3.3 implies the following slight sharpening of Theorem 2.3 for $k \ge r+3$.

Corollary 3.4. Let $r \geq 3$ and $n \geq k \geq r+3$. If \mathcal{H} is an n-vertex r-graph with no Berge path of length k, then $e(\mathcal{H}) \leq \frac{n}{k} {k \choose r}$ with equality only if every component of \mathcal{H} is the complete r-graph $K_k^{(r)}$.

In the next section, we introduce the notion of *representative pairs* and use it to derive useful properties of Berge F-free hypergraphs for rather general F. In Section 5, we cite Kopylov's Theorem and prove two useful inequalities. In Section 6 we prove our main result, Theorem 3.1, and in the final Section 7 we derive Corollaries 3.3 and 3.4.

4 Representative pairs, the structure of Berge *F*-free hypergraphs

Definition 4.1. For a hypergraph \mathcal{H} , a system of distinct representative pairs (SDRP) of \mathcal{H} is a set of distinct pairs $A = \{\{x_1, y_1\}, \ldots, \{x_s, y_s\}\}$ and a set of distinct hyperedges $\mathcal{A} = \{f_1, \ldots, f_s\}$ of \mathcal{H} such that for all $1 \leq i \leq s$

 $-\{x_i, y_i\} \subseteq f_i, and$

 $-\{x_i, y_i\}$ is not contained in any $f \in \mathcal{H} - \{f_1, \ldots, f_s\}$.

Lemma 4.2. Let \mathcal{H} be a hypergraph, let (A, \mathcal{A}) be an SDRP of \mathcal{H} of maximum size. Let $\mathcal{B} := \mathcal{H} \setminus \mathcal{A}$ and let $B = \partial_2 \mathcal{B}$ be the 2-shadow of \mathcal{B} . For a subset $S \subseteq B$, let \mathcal{B}_S denote the set of hyperedges that contain at least one edge of S. Then for all nonempty $S \subseteq B$, $|S| < |\mathcal{B}_S|$.

Proof. Suppose for contradiction there exists a nonempty set $S \subseteq B$ such that $|S| \ge |\mathcal{B}_S|$. Choose a smallest such S.

4

We claim that $|S| = |\mathcal{B}_S|$. Indeed, if $|S| > |\mathcal{B}_S|$ then $|S| \ge 2$ because $\mathcal{B}_S \neq \emptyset$ by definition. Take any edge $e \in S$. The set $S \setminus e$ is nonempty and $|S \setminus e| = |S| - 1 \ge |\mathcal{B}_S| \ge |\mathcal{B}_{S \setminus e}|$, a contradiction to the minimality of S.

Consider the case $|S| = |\mathcal{B}_S|$. By the minimality of S, each subset $S' \subset S$ satisfies $|S'| < |\mathcal{B}_{S'}|$. Therefore by Hall's theorem, one can find a bijective mapping of S to \mathcal{B}_S , where say the edge $e_i \in S$ gets mapped to hyperedge f_i in \mathcal{B}_S for $1 \leq j \leq |S|$. Then $(A \cup \{e_i, \ldots, e_{|S|}\}, A \cup \{f_1, \ldots, f_{|S|}\})$ is a larger SDRP of \mathcal{H} , a contradiction.

Lemma 4.3. Let \mathcal{H} be a hypergraph and let (A, \mathcal{A}) be an SDRP of \mathcal{H} of maximum size. Let $\mathcal{B} := \mathcal{H} \setminus \mathcal{A}, B = \partial_2 \mathcal{B}$, and let G be the graph on $V(\mathcal{H})$ with edge set $A \cup B$. If G contains a copy of a graph F, then \mathcal{H} contains a Berge F on the same base vertex set.

Proof. Let $\{v_1, \ldots, v_p\}$ and $\{e_1, \ldots, e_q\}$ be a set of vertices and a set of edges forming a copy of F in G such that the edges e_1, \ldots, e_b belong to B. By Lemma 4.2, each subset S of $\{e_1, \ldots, e_b\}$ satisfies $|S| < |\mathcal{B}_S|$. So we may apply Hall's Theorem to match each of these e_i 's to a hyperedge $f_i \in \mathcal{B}$. The edges $e_i \in A$ can be matched to distinct edges of \mathcal{A} given by the SDRP. Since $\mathcal{A} \cap \mathcal{B} = \emptyset$ this yields a Berge F in \mathcal{H} on the same base vertex set.

We have $|\mathcal{H}| = |A| + |\mathcal{B}|$. Note that the number of *r*-edges in \mathcal{B} is at most the number of copies of K_r in its 2-shadow. Therefore Lemma 4.3 gives a new proof for the following result of Gerbner and Palmer (cited in [4]): for any graph F,

$$ex(n, K_r, F) \le ex_r(n, Berge F) \le ex(n, F) + ex(n, K_r, F).$$

Here $\exp(n, \{\mathcal{F}_1, \mathcal{F}_2, ...\})$ denotes the *Turán number of* $\{\mathcal{F}_1, \mathcal{F}_2, ...\}$, the maximum number of edges in an *r*-uniform hypergraph on *n* vertices that does not contain a copy of any \mathcal{F}_i .

The generalized Turán function $ex(n, K_r, F)$ is the maximum number of copies of K_r in an F-free graph on n vertices.

5 Kopylov's Theorem and two inequalities

Definition: For a natural number α and a graph G, the α -disintegration of a graph G is the process of iteratively removing from G the vertices with degree at most α until the resulting graph has minimum degree at least $\alpha + 1$ or is empty. This resulting subgraph $H(G, \alpha)$ will be called the $(\alpha + 1)$ -core of G. It is well known (and easy) that $H(G, \alpha)$ is unique and does not depend on the order of vertex deletion.

The following theorem is a consequence of Kopylov [8] about the structure of graphs without long cycles. We state it in the form that we need.¹

Theorem 5.1 (Kopylov [8]). Let $n \ge k \ge 5$ and let $t = \lfloor \frac{k-1}{2} \rfloor$. Suppose that G is a 2-connected n-vertex graph with no cycle of length at least k. Suppose that it is saturated, i.e., for every nonedge xy the graph $G \cup \{xy\}$ has a cycle of length at least k. Then either

 $^{^{1}}$ A proof and a recent application can be found in [10].

(5.1.1) the t-core H(G,t) is empty, the graph G is t-disintegrable; or

(5.1.2) |H(G,t)| = s for some $t + 2 \le s \le k - 2$, it is a complete graph on s vertices, and H(G,t) = H(G,k-s), i.e., the rest of the vertices can be removed by a (k-s)-disintegration.

Note that in the second case $2 \le k - s \le t$.

Lemma 5.2. Let k, r, t, s, a nonnegative integers, and suppose $k \ge r+3 \ge 6$, $t = \lfloor (k-1)/2 \rfloor$, and $0 \le a \le s \le t$. Then

$$a + \binom{s-a}{r-1} \le \frac{1}{k-2} \binom{k-1}{r} := C_r(k)$$

This is the part of the proof where we use $k \ge r+3$ because this inequality does not hold for k = r+2 (then the right hand side is (r+1)/r while the left hand side could be as large as $\lfloor (r+1)/2 \rfloor$).

Proof. Keeping k, r, t, s fixed the left hand side is a convex function of a (defined on the integers $0 \le a \le s$). It takes its maximum either at a = s or a = 0. So the left hand side is at most $\max\{s, \binom{s}{r-1}\}$. This is at most $\max\{t, \binom{t}{r-1}\}$. We have eliminated the variables a and s.

We claim that $t \leq \frac{1}{k-2} \binom{k-1}{r}$. Indeed, keeping k, t fixed, the right hand side is minimized when r = k - 3, and then it equals to (k-1)/2. This is at least $\lfloor (k-1)/2 \rfloor = t$.

Finally, we claim that $\binom{t}{r-1} \leq \frac{1}{k-2} \binom{k-1}{r}$. If t < r-1, then there is nothing to prove. For $t \geq r-1$ rearranging the inequality we get

$$r \le \frac{k-1}{t} \times \frac{k-3}{t-1} \times \dots \times \frac{k-r}{t-r+2}.$$

Each fraction on the right hand side is at least 2. Since $r < 2^{r-1}$, we are done.

Lemma 5.3. Let $w, r \ge 2$ and let \mathcal{H} be a w-vertex r-graph. Let $\overline{\partial_2 \mathcal{H}}$ denote the family of pairs of $V(\mathcal{H})$ not contained in any member of \mathcal{H} (i.e., the complement of the 2-shadow). Then

$$|\mathcal{H}| + |\overline{\partial_2 \mathcal{H}}| \le a_r(w) := \begin{cases} \binom{w}{2} & \text{for } 2 \le w \le r+2\\ \binom{w}{r} & \text{for } r+2 \le w. \end{cases}$$

Moreover, for $2 \le w \le k-1$ one has $a_r(w) \le (w-1)\binom{k-1}{r}/(k-2)$ with equality if and only if w = k-1 and

w > r + 2 and \mathcal{H} is complete, or w = r + 2 and either \mathcal{H} or $\overline{\partial_2 \mathcal{H}}$ is complete.

Proof. The case of $w \ge r+2$ is a corollary of the classical Kruskal-Katona theorem, but one can give a direct proof by a double counting. If $\overline{\partial_2 \mathcal{H}}$ is empty, then $|\mathcal{H}| = \binom{w}{r}$ if and only if $\mathcal{H} = \binom{V(\mathcal{H})}{r}$. Otherwise, let $\overline{\mathcal{H}}$ denote the *r*-subsets of $V(\mathcal{H})$ that are not members of \mathcal{H} , $\overline{\mathcal{H}} = \binom{V(\mathcal{H})}{r} \setminus \mathcal{H}$. Each pair of $\overline{\partial_2 \mathcal{H}}$ is contained in $\binom{w-2}{r-2}$ members of $\overline{\mathcal{H}}$ and each $e \in \overline{\mathcal{H}}$ contains at most $\binom{r}{2}$ edges of $\overline{\partial_2 \mathcal{H}}$. We obtain

$$|\overline{\partial_2 \mathcal{H}}|\binom{w-2}{r-2} \le |\overline{\mathcal{H}}|\binom{r}{2}.$$

Since $\binom{w-2}{r-2} \ge \binom{r}{r-2} = \binom{r}{2}$, $|\overline{\partial_2 \mathcal{H}}| \le |\overline{\mathcal{H}}|$ with equality only when w = r+2. Furthermore, if $\overline{\partial_2 \mathcal{H}}$ and \mathcal{H} are both nonempty, then for any $xy \in \overline{\partial_2 \mathcal{H}}$ and $uv \in \partial_2 \mathcal{H}$ (with possibly x = u), any *r*-tuple *e* containing $\{x, y\} \cup \{u, v\}$ is in $\overline{\mathcal{H}}$ but contributes strictly less than $\binom{r}{2}$ edges to $\overline{\partial_2 \mathcal{H}}$, implying $|\overline{\partial_2 \mathcal{H}}| < |\overline{\mathcal{H}}|$. This completes the proof of the case.

The case $w \le r+1$ is easy, and the calculation showing $a_r(w) \le C_r(k)(w-1)$ with equality only if w = k-1 is standard.

6 Proof of Theorem 3.1, the main upper bound

Proof. Let \mathcal{H} be an *r*-uniform hypergraph on *n* vertices with no Berge cycle of length *k* or longer $(k \ge r+3 \ge 6)$. Let (A, \mathcal{A}) be an SDRP of \mathcal{H} of maximum size. Let $\mathcal{B} := \mathcal{H} \setminus \mathcal{A}, B = \partial_2 \mathcal{B}$. By Lemma 4.3 the graph *G* with edge set $A \cup B$ does not contain a cycle of length *k* or longer.

Let V_1, V_2, \ldots, V_p be the vertex sets of the standard (and unique) decomposition of G into 2connected blocks of sizes n_1, n_2, \ldots, n_p . Then the graph $A \cup B$ restricted to V_i , denoted by G_i , is either a 2-connected graph or a single edge (in the latter case $n_i = 2$), each edge from $A \cup B$ is contained in a single G_i , and $\sum_{i=1}^p (n_i - 1) \leq (n - 1)$.

This decomposition yields a decomposition of $A = A_1 \cup A_2 \cup \cdots \cup A_p$ and $B = B_1 \cup B_2 \cup \cdots \cup B_p$, $A_i \cup B_i = E(G_i)$. If an edge $e \in B_i$ is contained in $f \in \mathcal{B}$, then $f \subseteq V_i$ (because f induces a 2-connected graph K_r in B), so the block-decomposition of G naturally extends to $\mathcal{B}, \mathcal{B}_i := \{f \in \mathcal{B} : f \subseteq V_i\}$ and we have $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p$, and $B_i = \partial_2 \mathcal{B}_i$.

We claim that for each i,

$$|A_i| + |\mathcal{B}_i| \le C_r(k)(n_i - 1), \tag{2}$$

and hence

$$|\mathcal{H}| = |A| + |\mathcal{B}| = \sum_{i=1}^{p} |A_i| + |\mathcal{B}_i| \le \sum_{i=1}^{p} C_r(k)(n_i - 1) \le C_r(k)(n - 1),$$

completing the proof.

To prove (2) observe that the case $n_i \leq k-1$ immediately follows from Lemma 5.3. From now on, suppose that $n_i \geq k$.

Consider the graph G_i and, if necessary, add edges to it to make it a saturated graph with no cycle of length k or longer. Let the resulting graph be G'. Kopylov's Theorem (Theorem 5.1) can be applied to G'. If G is t-disintegrable, then make $(n_i - k + 2)$ disintegration steps and let W be the remaining vertices of V_i (|W| = k - 2). For the edges of A_i and \mathcal{B}_i contained in W we use Lemma 5.3 to see that

$$|A_i[W]| + |\mathcal{B}_i[W]| < C_r(k)(|W| - 1).$$

In the *t*-disintegration steps, we iteratively remove vertices with degree at most *t* until we arrive to *W*. When we remove a vertex *v* with degree $s \leq t$ from *G'*, *a* of its incident edges are from *A*, and the remaining s - a incident edges eliminate at most $\binom{s-a}{r-1}$ hyperedges from \mathcal{B}_i containing *v*. Therefore *v* contributes at most $a + \binom{s-a}{r-1} \leq C_r(k)$ (by Lemma 5.2) to $|\mathcal{B}_i| + |A_i|$. It follows that

$$|A_i| + |\mathcal{B}_i| < \left(\sum_{v \in G' - W} C_r(k)\right) + C_r(k)(|W| - 1) = C_r(k)(n_i - 1).$$

This completes this case.

Next consider the case (5.1.2), W := V(H(G,t)), $|W| = s \le k - 2$. We proceed as in the previous case, making $(n_i - s)$ disintegration steps. Apply Lemma 5.3 for $|A_i[W]| + |\mathcal{B}_i[W]|$ and Lemma 5.2 for the (k - s)-disintegration steps (where $k - s \le t$) to get the desired upper bound (with strict inequality).

Furthermore, if $e(\mathcal{H}) = |A| + |\mathcal{B}| = C_r(k)(n-1)$, then we have $\sum_{i=1}^p (n_i - 1) = n - 1$ (so $A \cup B$ is connected) and $|A_i| + |\mathcal{B}_i| = C_r(k)(n_i - 1)$ for each $1 \leq i \leq p$. From the previous proof and Lemma 5.2, we see that this holds if and only if for each $i, n_i = k - 1$, and either \mathcal{B}_i or A_i is complete. In particular, this implies that each block of $A \cup B$ is a K_{k-1} . We will show that each G_i corresponds to a block in in \mathcal{H} that is $K_{k-1}^{(r)}$ with vertex set V_i .

In the case that \mathcal{B}_i is complete for all $1 \leq i \leq p$, we are done. Otherwise, if some A_i is complete (note r = k - 3 by Lemma 5.2) then there are $\binom{k-1}{2} = \binom{k-1}{k-3} = \binom{k-1}{r}$ hyperedges in \mathcal{A} containing V_i . If all such hyperedges are contained in V_i , again we get $\mathcal{H}[V_i] = K_{k-1}^{(r)}$. So suppose there exists a $f \in \mathcal{A}$ which is paired with an edge $xy \in A_i$ in the SDRP, but for some $z \notin V_i$, $\{x, y, z\} \subseteq f$. Then z belongs to another block G_j of $\mathcal{A} \cup \mathcal{B}$. In $\mathcal{A} \cup \mathcal{B}$, there exists a path from x to z covering $V_i \cup V_j$ which avoids the edge xy. Thus by Lemma 5.3, there is a Berge path from x to z with at least 2(k-1) - 1 base vertices which avoids the hyperedge f (since edge xy was avoided). Adding f to this path yields a Berge cycle of length 2(k-1) - 1 > k, a contradiction.

7 Corollaries for paths

In order to be self-contained, we present a short proof of a lemma by Győri, Katona, and Lemons [6].

Lemma 7.1 (Győri, Katona, and Lemons [6]). Let \mathcal{H} be a connected hypergraph with no Berge path of length k. If there is a Berge cycle of length k on the vertices v_1, \ldots, v_k then these vertices constitute a component of \mathcal{H} .

Proof. Let $V = \{v_1, \ldots, v_k\}$, $E = \{e_1, \ldots, e_k\}$ form the Berge cycle in \mathcal{H} . If some edge, say e_1 contains a vertex v_0 outside of V, then we have a path with vertex set $\{v_0, v_1, \ldots, v_\ell\}$ and edge set E. Therefore each e_i is contained in V. Suppose $V \neq V(\mathcal{H})$. Since \mathcal{H} is connected, there exists an edge $e_0 \in \mathcal{H}$ and a vertex $v_{k+1} \notin V$ such that for some $v_i \in V$, say i = k, $\{v_k, v_{k+1}\} \subseteq e_0$. Then $\{v_1, \ldots, v_k, v_{k+1}\}$, $\{e_1, \ldots, e_{k-1}, e_0\}$ is a Berge path of length k.

Proof of Corrollary 3.3. Suppose $n \ge k+1$ and \mathcal{H} is a connected *n*-vertex *r*-graph with $e(\mathcal{H}) > C_r(k)(n-1)$. Then by Theorem 3.1, \mathcal{H} has a Berge cycle of length $\ell \ge k$. If $\ell \ge k+1$, then removing any edge from the cycle yields a Berge path of length at least k. If $\ell = k$, then by Lemma 7.1, \mathcal{H} again has a Berge path of length k.

Now Theorem 3.1 together with Corollary 3.3 directly imply Corollary 3.4.

Proof of Corollary 3.4: Suppose $k \ge r+3 \ge 6$ and \mathcal{H} is an *r*-graph. Let $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_s$ be the connected components of \mathcal{H} and $|V(\mathcal{H}_i)| = n_i$ for $i = 1, \ldots, s$.

If $n_i \leq k-1$, then $|\mathcal{H}_i| \leq \binom{n_i}{r} < \frac{n_i}{k} \binom{k}{r}$. If $n_i \geq k+1$, then by Corollary 3.3, $|\mathcal{H}_i| \leq C_r(k)(n_i-1) < \frac{n_i}{k} \binom{k}{r}$. Finally, if $n_i = k$, then $|\mathcal{H}_i| \leq \binom{k}{r} = \frac{n_i}{k} \binom{k}{r}$, with equality only if $\mathcal{H}_i = K_k^{(r)}$. This proves the corollary.

Acknowledgment. The authors would like to thank Jacques Verstraëte for suggesting this problem and for sharing his ideas and methods used in similar problems.

References

- R. Anstee and S. Salazar, Forbidden Berge hypergraphs, Electron. J. Combin. 24 (2017), Paper 1.59, 21 pp.
- [2] A. Davoodi, E. Győri, A. Methuku, and C. Tompkins, An Erdős-Gallai type theorem for hypergraphs, European J. Combin. 69 (2018), 159–162.
- [3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.
- [4] D. Gerbner, A. Methuku, and M. Vizer, Asymptotics for the Turán number of Berge- $K_{2,t}$, arxiv:1705.04134, (2017), 24 pp.
- [5] D. Gerbner and C. Palmer, Extremal results for Berge-hypergraphs, SIAM Journal on Discrete Mathematics, **31** (2017), 2314–2337.
- [6] E. Győri, Gy. Y. Katona, and N. Lemons, Hypergraph extensions of the Erdős-Gallai theorem, European Journal of Combinatorics, 58 (2016), 238–246.
- [7] E. Győri, A. Methuku, N. Salia, C. Tompkins and M. Vizer, On the maximum size of connected hypergraphs without a path of given length, arxiv:1710.08364, (2017), 6 pp.
- [8] G. N. Kopylov, Maximal paths and cycles in a graph, Dokl. Akad. Nauk SSSR 234 (1977), 19–21. (English translation: Soviet Math. Dokl. 18 (1977), no. 3, 593–596.)
- [9] A. Kostochka, and R. Luo, On r-uniform hypergraphs with circumference less than r, in preparation.
- [10] R. Luo, The maximum number of cliques in graphs without long cycles, Journal of Combinatorial Theory, Series B, 128 (2018), 219–226.