
Avoiding long Berge cycles
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Abstract

Let n ≥ k ≥ r + 3 and H be an n-vertex r-uniform hypergraph. We show that if

|H| > n− 1

k − 2

(
k − 1

r

)
then H contains a Berge cycle of length at least k. This bound is tight when k−2 divides n−1.

We also show that the bound is attained only for connected r-uniform hypergraphs in which

every block is the complete hypergraph K
(r)
k−1.

We conjecture that our bound also holds in the case k = r + 2, but the case of short cycles,

k ≤ r + 1, is different.

Mathematics Subject Classification: 05D05, 05C65, 05C38, 05C35.
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1 Definitions, Berge F subhypergraphs

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets of a finite set. We

associate an r-graph H with its edge set and call its vertex set V (H). Usually we take V (H) = [n],

where [n] is the set of first n integers, [n] := {1, 2, 3, . . . , n}. We also use the notation H ⊆
(
[n]
r

)
.

Definition 1.1 (Anstee and Salazar [1], Gerbner and Palmer [5]). For a graph F with vertex

set {v1, . . . , vp} and edge set {e1, . . . , eq}, a hypergraph H contains a Berge F if there exist dis-

tinct vertices {w1, . . . , wp} ⊆ V (H) and edges {f1, . . . , fq} ⊆ E(H), such that if ei = vi1vi2, then

{wi1 , wi2} ⊆ fi. The vertices {w1, . . . , wp} are called the base vertices of the Berge F .

Of particular interest to us are Berge cycles.

Definition 1.2. A Berge cycle of length ` in a hypergraph is a set of ` distinct vertices {v1, . . . , v`}
and ` distinct edges {e1, . . . , e`} such that {vi, vi+1} ⊆ ei with indices taken modulo `.

A Berge path of length ` in a hypergraph in a hypergraph is a set of `+ 1 vertices {v1, . . . , v`+1}
and ` hyperedges {e1, . . . , e`} such that {vi, vi+1} ⊆ ei for all 1 ≤ i ≤ `.
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Z. Füredi, A. Kostochka, and Ruth Luo: Avoiding long Berge cycles 2

Let H be a hypergraph and p be an integer. The p-shadow, ∂pH, is the collection of the p-sets

that lie in some edge of H. In particular, we will often consider the 2-shadow ∂2H of a r-uniform

hypergraph H in which each edge of H yields a clique on r vertices.

2 Background

Erdős and Gallai [3] proved the following result on the Turán number of paths.

Theorem 2.1 (Erdős and Gallai [3]). Let k ≥ 2 and let G be an n-vertex graph with no path on k

vertices. Then e(G) ≤ (k − 2)n/2.

This theorem is implied by a stronger result for graphs with no long cycles.

Theorem 2.2 (Erdős and Gallai [3]). Let k ≥ 3 and let G be an n-vertex graph with no cycle of

length k or longer. Then e(G) ≤ (k − 1)(n− 1)/2.

Győri, Katona, and Lemons [6] extended Theorem 2.1 to Berge paths in r-graphs. The bounds

depend on the relationship of r and k.

Theorem 2.3 (Győri, Katona, and Lemons [6]). Suppose that H is an n-vertex r-graph with no

Berge path of length k. If k ≥ r + 2 ≥ 5, then e(H) ≤ n
k

(
k
r

)
, and if r ≥ k ≥ 3, then e(H) ≤ n(k−1)

r+1 .

Both bounds in Theorem 2.3 are sharp for each k and r for infinitely many n. The remaining case

of k = r + 1 was settled later by Davoodi, Győri, Methuku, and Tompkins [2]: if H is an n-vertex

r-graph with |E(H)| > n, then it contains a Berge path of length at least r+1. Furthermore, Győri,

Methuku, Salia, Tompkins and Vizer [7] have found a better upper bound on the number of edges

in n-vertex connected r-graphs with no Berge path of length k. Their bound is asymptotically exact

when r is fixed and k and n are sufficiently large.

The goal of this paper is to present a similar result for cycles.

3 Main result: Hypergraphs without long Berge cycles

Our main result is an analogue of the Erdős–Gallai theorem on cycles for r-graphs.

Theorem 3.1. Let r ≥ 3 and k ≥ r+ 3, and suppose H is an n-vertex r-graph with no Berge cycle

of length k or longer. Then e(H) ≤ n−1
k−2
(
k−1
r

)
. Moreover, equality is achieved if and only if ∂2H is

connected and for every block D of ∂2H, D = Kk−1 and H[D] = K
(r)
k−1.

K
(r)
k−1

K
(r)
k−1 K

(r)
k−1 K

(r)
k−1 K

(r)
k−1 K

(r)
k−1

K
(r)
k−1
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Note that a Berge cycle can only be contained in the vertices of a single block of the 2-shadow.

Hence the aforementioned sharpness examples cannot contain Berge cycles of length k or longer.

Conjecture 3.2. The statement of Theorem 3.1 holds for k = r + 2, too.

Similarly to the situation with paths, the case of short cycles, k ≤ r+ 1, is different. Exact bounds

for k ≤ r − 1 and asymptotic bounds for k = r were found in [9]. The answer for k = r + 1 is not

known.

For convenience, below we will use notation

Cr(k) :=
1

k − 2

(
k − 1

r

)
. (1)

(So C2(k)(n− 1) = (k − 1)(n− 1)/2.) Theorem 3.1 yields the following implication for paths.

Corollary 3.3. Let r ≥ 3 and n ≥ k + 1 ≥ r + 4. If H is a connected n-vertex r-graph with no

Berge path of length k, then e(H) ≤ Cr(k)(n− 1).

This gives a k−2
k−r times stronger bound than Theorem 2.3 for connected r-graphs for all r ≥ 3 and

n ≥ k + 1 ≥ r + 4 and not only for sufficiently large k and n. In particular, Corollary 3.3 implies

the following slight sharpening of Theorem 2.3 for k ≥ r + 3.

Corollary 3.4. Let r ≥ 3 and n ≥ k ≥ r + 3. If H is an n-vertex r-graph with no Berge path

of length k, then e(H) ≤ n
k

(
k
r

)
with equality only if every component of H is the complete r-graph

K
(r)
k .

In the next section, we introduce the notion of representative pairs and use it to derive useful

properties of Berge F -free hypergraphs for rather general F . In Section 5, we cite Kopylov’s

Theorem and prove two useful inequalities. In Section 6 we prove our main result, Theorem 3.1,

and in the final Section 7 we derive Corollaries 3.3 and 3.4.

4 Representative pairs, the structure of Berge F -free hypergraphs

Definition 4.1. For a hypergraph H, a system of distinct representative pairs (SDRP) of H
is a set of distinct pairs A = {{x1, y1}, . . . , {xs, ys}} and a set of distinct hyperedges A = {f1, . . . fs}
of H such that for all 1 ≤ i ≤ s

— {xi, yi} ⊆ fi, and

— {xi, yi} is not contained in any f ∈ H − {f1, . . . , fs}.

Lemma 4.2. Let H be a hypergraph, let (A,A) be an SDRP of H of maximum size. Let B := H\A
and let B = ∂2B be the 2-shadow of B. For a subset S ⊆ B, let BS denote the set of hyperedges

that contain at least one edge of S. Then for all nonempty S ⊆ B, |S| < |BS |.

Proof. Suppose for contradiction there exists a nonempty set S ⊆ B such that |S| ≥ |BS |. Choose

a smallest such S.
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We claim that |S| = |BS |. Indeed, if |S| > |BS | then |S| ≥ 2 because BS 6= ∅ by definition. Take

any edge e ∈ S. The set S \ e is nonempty and |S \ e| = |S| − 1 ≥ |BS | ≥ |BS\e|, a contradiction to

the minimality of S.

Consider the case |S| = |BS |. By the minimality of S, each subset S′ ⊂ S satisfies |S′| < |BS′ |.
Therefore by Hall’s theorem, one can find a bijective mapping of S to BS , where say the edge ei ∈ S
gets mapped to hyperedge fi in BS for 1 ≤ j ≤ |S|. Then (A ∪ {ei, . . . , e|S|},A ∪ {f1, . . . , f|S|}) is

a larger SDRP of H, a contradiction. 2

Lemma 4.3. Let H be a hypergraph and let (A,A) be an SDRP of H of maximum size. Let

B := H \ A, B = ∂2B, and let G be the graph on V (H) with edge set A ∪ B. If G contains a copy

of a graph F , then H contains a Berge F on the same base vertex set.

Proof. Let {v1, . . . , vp} and {e1, . . . , eq} be a set of vertices and a set of edges forming a copy of

F in G such that the edges e1, . . . , eb belong to B. By Lemma 4.2, each subset S of {e1, . . . , eb}
satisfies |S| < |BS |. So we may apply Hall’s Theorem to match each of these ei’s to a hyperedge

fi ∈ B. The edges ei ∈ A can be matched to distinct edges of A given by the SDRP. Since A∩B = ∅
this yields a Berge F in H on the same base vertex set. 2

We have |H| = |A| + |B|. Note that the number of r-edges in B is at most the number of copies

of Kr in its 2-shadow. Therefore Lemma 4.3 gives a new proof for the following result of Gerbner

and Palmer (cited in [4]): for any graph F ,

ex(n,Kr, F ) ≤ exr(n,Berge F ) ≤ ex(n, F ) + ex(n,Kr, F ).

Here exr(n, {F1,F2, . . . }) denotes the Turán number of {F1,F2, . . . }, the maximum number of

edges in an r-uniform hypergraph on n vertices that does not contain a copy of any Fi.

The generalized Turán function ex(n,Kr, F ) is the maximum number of copies of Kr in an F -free

graph on n vertices.

5 Kopylov’s Theorem and two inequalities

Definition: For a natural number α and a graph G, the α-disintegration of a graph G is the

process of iteratively removing from G the vertices with degree at most α until the resulting graph

has minimum degree at least α+ 1 or is empty. This resulting subgraph H(G,α) will be called the

(α+ 1)-core of G. It is well known (and easy) that H(G,α) is unique and does not depend on the

order of vertex deletion.

The following theorem is a consequence of Kopylov [8] about the structure of graphs without long

cycles. We state it in the form that we need.1

Theorem 5.1 (Kopylov [8]). Let n ≥ k ≥ 5 and let t = bk−12 c. Suppose that G is a 2-connected

n-vertex graph with no cycle of length at least k. Suppose that it is saturated, i.e., for every nonedge

xy the graph G ∪ {xy} has a cycle of length at least k. Then either

1A proof and a recent application can be found in [10].
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(5.1.1) the t-core H(G, t) is empty, the graph G is t-disintegrable; or

(5.1.2) |H(G, t)| = s for some t + 2 ≤ s ≤ k − 2, it is a complete graph on s vertices, and

H(G, t) = H(G, k − s), i.e., the rest of the vertices can be removed by a (k − s)-disintegration.

Note that in the second case 2 ≤ k − s ≤ t.
Lemma 5.2. Let k, r, t, s, a nonnegative integers, and suppose k ≥ r+ 3 ≥ 6, t = b(k− 1)/2c, and

0 ≤ a ≤ s ≤ t. Then

a+

(
s− a
r − 1

)
≤ 1

k − 2

(
k − 1

r

)
:= Cr(k).

This is the part of the proof where we use k ≥ r + 3 because this inequality does not hold for

k = r + 2 (then the right hand side is (r + 1)/r while the left hand side could be as large as

b(r + 1)/2c).

Proof. Keeping k, r, t, s fixed the left hand side is a convex function of a (defined on the integers

0 ≤ a ≤ s). It takes its maximum either at a = s or a = 0. So the left hand side is at most

max{s,
(

s
r−1
)
}. This is at most max{t,

(
t

r−1
)
}. We have eliminated the variables a and s.

We claim that t ≤ 1
k−2
(
k−1
r

)
. Indeed, keeping k, t fixed, the right hand side is minimized when

r = k − 3, and then it equals to (k − 1)/2. This is at least b(k − 1)/2c = t.

Finally, we claim that
(

t
r−1
)
≤ 1

k−2
(
k−1
r

)
. If t < r− 1, then there is nothing to prove. For t ≥ r− 1

rearranging the inequality we get

r ≤ k − 1

t
× k − 3

t− 1
× · · · × k − r

t− r + 2
.

Each fraction on the right hand side is at least 2. Since r < 2r−1, we are done. 2

Lemma 5.3. Let w, r ≥ 2 and let H be a w-vertex r-graph. Let ∂2H denote the family of pairs of

V (H) not contained in any member of H (i.e., the complement of the 2-shadow). Then

|H|+ |∂2H| ≤ ar(w) :=


(
w

2

)
for 2 ≤ w ≤ r + 2,(

w

r

)
for r + 2 ≤ w.

Moreover, for 2 ≤ w ≤ k − 1 one has ar(w) ≤ (w − 1)
(
k−1
r

)
/(k − 2) with equality if and only if

w = k − 1 and

— w > r + 2 and H is complete, or

— w = r + 2 and either H or ∂2H is complete.

Proof. The case of w ≥ r + 2 is a corollary of the classical Kruskal-Katona theorem, but one can

give a direct proof by a double counting. If ∂2H is empty, then |H| =
(
w
r

)
if and only if H =

(
V (H)

r

)
.

Otherwise, let H denote the r-subsets of V (H) that are not members of H, H =
(
V (H)

r

)
\ H. Each

pair of ∂2H is contained in
(
w−2
r−2
)

members of H and each e ∈ H contains at most
(
r
2

)
edges of ∂2H.

We obtain

|∂2H|
(
w − 2

r − 2

)
≤ |H|

(
r

2

)
.
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Since
(
w−2
r−2
)
≥
(

r
r−2
)

=
(
r
2

)
, |∂2H| ≤ |H| with equality only when w = r + 2. Furthermore, if ∂2H

and H are both nonempty, then for any xy ∈ ∂2H and uv ∈ ∂2H (with possibly x = u), any r-tuple

e containing {x, y} ∪ {u, v} is in H but contributes strictly less than
(
r
2

)
edges to ∂2H, implying

|∂2H| < |H|. This completes the proof of the case.

The case w ≤ r + 1 is easy, and the calculation showing ar(w) ≤ Cr(k)(w − 1) with equality only

if w = k − 1 is standard. 2

6 Proof of Theorem 3.1, the main upper bound

Proof. Let H be an r-uniform hypergraph on n vertices with no Berge cycle of length k or longer

(k ≥ r + 3 ≥ 6). Let (A,A) be an SDRP of H of maximum size. Let B := H \ A, B = ∂2B. By

Lemma 4.3 the graph G with edge set A ∪B does not contain a cycle of length k or longer.

Let V1, V2, . . . , Vp be the vertex sets of the standard (and unique) decomposition of G into 2-

connected blocks of sizes n1, n2, . . . , np. Then the graph A ∪ B restricted to Vi, denoted by Gi, is

either a 2-connected graph or a single edge (in the latter case ni = 2), each edge from A ∪ B is

contained in a single Gi, and
∑p

i=1(ni − 1) ≤ (n− 1).

This decomposition yields a decomposition of A = A1 ∪A2 ∪ · · · ∪Ap and B = B1 ∪B2 ∪ · · · ∪Bp,

Ai ∪ Bi = E(Gi). If an edge e ∈ Bi is contained in f ∈ B, then f ⊆ Vi (because f induces a

2-connected graph Kr in B), so the block-decomposition of G naturally extends to B, Bi := {f ∈
B : f ⊆ Vi} and we have B = B1 ∪ · · · ∪ Bp, and Bi = ∂2Bi.
We claim that for each i,

|Ai|+ |Bi| ≤ Cr(k)(ni − 1), (2)

and hence

|H| = |A|+ |B| =
p∑

i=1

|Ai|+ |Bi| ≤
p∑

i=1

Cr(k)(ni − 1) ≤ Cr(k)(n− 1),

completing the proof.

To prove (2) observe that the case ni ≤ k− 1 immediately follows from Lemma 5.3. From now on,

suppose that ni ≥ k.

Consider the graph Gi and, if necessary, add edges to it to make it a saturated graph with no cycle

of length k or longer. Let the resulting graph be G′. Kopylov’s Theorem (Theorem 5.1) can be

applied to G′. If G is t-disintegrable, then make (ni − k + 2) disintegration steps and let W be

the remaining vertices of Vi (|W | = k − 2). For the edges of Ai and Bi contained in W we use

Lemma 5.3 to see that

|Ai[W ]|+ |Bi[W ]| < Cr(k)(|W | − 1).

In the t-disintegration steps, we iteratively remove vertices with degree at most t until we arrive

to W . When we remove a vertex v with degree s ≤ t from G′, a of its incident edges are from A,

and the remaining s − a incident edges eliminate at most
(
s−a
r−1
)

hyperedges from Bi containing v.

Therefore v contributes at most a+
(
s−a
r−1
)
≤ Cr(k) (by Lemma 5.2) to |Bi|+ |Ai|.
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It follows that

|Ai|+ |Bi| <
( ∑

v∈G′−W
Cr(k)

)
+ Cr(k)(|W | − 1) = Cr(k)(ni − 1).

This completes this case.

Next consider the case (5.1.2), W := V (H(G, t)), |W | = s ≤ k − 2. We proceed as in the previous

case, making (ni− s) disintegration steps. Apply Lemma 5.3 for |Ai[W ]|+ |Bi[W ]| and Lemma 5.2

for the (k − s)-disintegration steps (where k − s ≤ t) to get the desired upper bound (with strict

inequality).

Furthermore, if e(H) = |A| + |B| = Cr(k)(n − 1), then we have
∑p

i=1(ni − 1) = n − 1 (so A ∪ B
is connected) and |Ai| + |Bi| = Cr(k)(ni − 1) for each 1 ≤ i ≤ p. From the previous proof and

Lemma 5.2, we see that this holds if and only if for each i, ni = k − 1, and either Bi or Ai is

complete. In particular, this implies that each block of A ∪ B is a Kk−1. We will show that each

Gi corresponds to a block in in H that is K
(r)
k−1 with vertex set Vi.

In the case that Bi is complete for all 1 ≤ i ≤ p, we are done. Otherwise, if some Ai is complete

(note r = k − 3 by Lemma 5.2) then there are
(
k−1
2

)
=
(
k−1
k−3
)

=
(
k−1
r

)
hyperedges in A containing

Vi. If all such hyperedges are contained in Vi, again we get H[Vi] = K
(r)
k−1. So suppose there exists

a f ∈ A which is paired with an edge xy ∈ Ai in the SDRP, but for some z /∈ Vi, {x, y, z} ⊆ f .

Then z belongs to another block Gj of A ∪ B. In A ∪ B, there exists a path from x to z covering

Vi ∪ Vj which avoids the edge xy. Thus by Lemma 5.3, there is a Berge path from x to z with at

least 2(k− 1)− 1 base vertices which avoids the hyperedge f (since edge xy was avoided). Adding

f to this path yields a Berge cycle of length 2(k − 1)− 1 > k, a contradiction. 2

7 Corollaries for paths

In order to be self-contained, we present a short proof of a lemma by Győri, Katona, and Lemons [6].

Lemma 7.1 (Győri, Katona, and Lemons [6]). Let H be a connected hypergraph with no Berge

path of length k. If there is a Berge cycle of length k on the vertices v1, . . . , vk then these vertices

constitute a component of H.

Proof. Let V = {v1, . . . , vk}, E = {e1, . . . , ek} form the Berge cycle in H. If some edge, say e1
contains a vertex v0 outside of V , then we have a path with vertex set {v0, v1, . . . , v`} and edge set

E. Therefore each ei is contained in V . Suppose V 6= V (H). Since H is connected, there exists an

edge e0 ∈ H and a vertex vk+1 /∈ V such that for some vi ∈ V , say i = k, {vk, vk+1} ⊆ e0. Then

{v1, . . . , vk, vk+1}, {e1, . . . , ek−1, e0} is a Berge path of length k. 2

Proof of Corrollary 3.3. Suppose n ≥ k + 1 and H is a connected n-vertex r-graph with e(H) >

Cr(k)(n− 1). Then by Theorem 3.1, H has a Berge cycle of length ` ≥ k. If ` ≥ k + 1, then

removing any edge from the cycle yields a Berge path of length at least k. If ` = k, then by

Lemma 7.1, H again has a Berge path of length k. 2

Now Theorem 3.1 together with Corollary 3.3 directly imply Corollary 3.4.
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Proof of Corollary 3.4: Suppose k ≥ r + 3 ≥ 6 and H is an r-graph. Let H1,H2, . . . ,Hs be the

connected components of H and |V (Hi)| = ni for i = 1, . . . , s.

If ni ≤ k− 1, then |Hi| ≤
(
ni
r

)
< ni

k

(
k
r

)
. If ni ≥ k+ 1, then by Corollary 3.3, |Hi| ≤ Cr(k)(ni− 1) <

ni
k

(
k
r

)
. Finally, if ni = k, then |Hi| ≤

(
k
r

)
= ni

k

(
k
r

)
, with equality only if Hi = K

(r)
k . This proves the

corollary. 2

Acknowledgment. The authors would like to thank Jacques Verstraëte for suggesting this prob-

lem and for sharing his ideas and methods used in similar problems.
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[3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar.

10 (1959), 337–356.

[4] D. Gerbner, A. Methuku, and M. Vizer, Asymptotics for the Turán number of Berge-K2,t,

arxiv:1705.04134, (2017), 24 pp.

[5] D. Gerbner and C. Palmer, Extremal results for Berge-hypergraphs, SIAM Journal on Discrete

Mathematics, 31 (2017), 2314–2337.
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