Hypergraphs not containing a tight tree with a bounded trunk II: 3 -trees with a trunk of size 2

Zoltán Füredi* ${ }^{*}$ Tao Jiang ${ }^{\dagger}$ Alexandr Kostochka ${ }^{\ddagger}$
Dhruv Mubayi ${ }^{\S}$ Jacques Verstraëte ${ }^{\S}$

July 16, 2018

Abstract

A tight r-tree T is an r-uniform hypergraph that has an edge-ordering $e_{1}, e_{2}, \ldots, e_{t}$ such that for each $i \geq 2, e_{i}$ has a vertex v_{i} that does not belong to any previous edge and $e_{i}-v_{i}$ is contained in e_{j} for some $j<i$. Kalai conjectured in 1984 that every n-vertex r-uniform hypergraph with more than $\frac{t-1}{r}\binom{n}{r-1}$ edges contains every tight r-tree T with t edges.

A trunk T^{\prime} of a tight r-tree T is a tight subtree T^{\prime} of T such that vertices in $V(T) \backslash V\left(T^{\prime}\right)$ are leaves in T. Kalai's Conjecture was proved in 1987 for tight r-trees that have a trunk of size one. In a previous paper we proved an asymptotic version of Kalai's Conjecture for all tight r-trees that have a trunk of bounded size. In this paper we continue that work to establish the exact form of Kalai's Conjecture for all tight 3 -trees with at least 20 edges that have a trunk of size two.

Mathematics Subject Classification: 05C35, 05C65.
Keywords: Turán problem, extremal hypergraph theory, hypergraph trees.

1 Introduction. Trees, trunks, and Kalai's conjecture

For an r-uniform hypergraph (r-graph, for short) H, the Turán number $\operatorname{ex}_{r}(n, H)$ is the largest m such that there exists an n-vertex r-graph G with m edges that does not contain H. Estimating $\operatorname{ex}_{r}(n, H)$ is a difficult problem even for r-graphs with a simple structure. Here we consider Turán-type problems for so called tight r-trees. A tight r-tree $(r \geq 2)$ is an r-graph whose edges can be ordered so that each edge e apart from the first one contains a vertex v_{e} that does not belong to any preceding edge but the set $e-v_{e}$ is contained in some preceding edge. Such an ordering is called a proper ordering of the edges. A usual graph tree is a tight 2-tree.

A vertex v in a tight r-tree T is a leaf if it has degree one in T. A $\operatorname{trunk} T^{\prime}$ of a tight r-tree T is a tight subtree of T such that in some proper ordering of the edges of T the edges of T^{\prime} are listed first

[^0]and vertices in $V(T) \backslash V\left(T^{\prime}\right)$ are leaves in T. Hence, each $e \in E(T) \backslash E\left(T^{\prime}\right)$ contains an $(r-1)$-subset of some $e^{\prime} \in E\left(T^{\prime}\right)$ and a leaf in T (that lies outside $V\left(T^{\prime}\right)$). In the case of $r=2$ each $e \in E(T) \backslash E\left(T^{\prime}\right)$ is a pendant edge. Every tight tree T with at least two edges has a trunk (for example, T minus the last edge in a proper ordering is a trunk). Let $c(T)$ denote the minimum size of a trunk of T. We write $e(H)$ for the number of edges in H.

In this paper we consider the following classical conjecture.
Conjecture 1.1 (Kalai 1984, see in [1]). Let T be a tight r-tree with t edges. Then $\operatorname{ex}_{r}(n, T) \leq$ $\frac{t-1}{r}\binom{n}{r-1}$.

The coefficient $(t-1) / r$ in this conjecture, if it is true, is optimal as one can see using constructions obtained from partial Steiner systems due to Rödl [4]. The conjecture turns out to be difficult even for very special cases of tight trees, in fact for $r=2$ it is the famous Erdős-Sós conjecture. The following partial result on Kalai's conjecture was proved in 1987.

Theorem $1.2([1])$. Let T be a tight r-tree with t edges and $c(T)=1$. Suppose that G is an n-vertex r-graph with $e(G)>\frac{t-1}{r}\binom{n}{r-1}$. Then G contains a copy of T.

In a previous paper [2], we showed that Conjecture 1.1 holds asymptotically for tight r-trees with a trunk of a bounded size. Our result is as follows. Define $a(r, c):=\left(r^{r}+1-\frac{1}{r}\right)(c-1)$.

Theorem $1.3([2])$. Let T be a tight r-tree with t edges and $c(T) \leq c$. Then

$$
\operatorname{ex}_{r}(n, T) \leq\left(\frac{t-1}{r}+a(r, c)\right)\binom{n}{r-1}
$$

The goal of this paper is to prove the conjecture in exact form for infinitely many 3-trees.
Theorem 1.4. Let T be a tight 3 -tree with t edges and $c(T) \leq 2$. If $t \geq 20$ then

$$
\operatorname{ex}_{3}(n, T) \leq \frac{t-1}{3}\binom{n}{2}
$$

Beside ideas and observations from [2], discharging is quite helpful here.

2 Notation and preliminaries. Shadows and default weights

In this section, we introduce some notation and list a couple of simple observations from [2]. For the sake of self-containment, we present their simple proofs as well.

The shadow of an r-graph G is $\partial(G):=\{S:|S|=r-1$, and $S \subseteq$ e for some $e \in e(G)\}$.
The link of a set $D \subseteq V(G)$ in an r-graph G is defined as $L_{G}(D):=\{e \backslash D: e \in E(G), D \subseteq e\}$.
The degree of $D, d_{G}(D)$, is the number the edges of G containing D. If G is an r-graph and $|D|=r-1$, the elements of $L_{G}(D)$ are vertices. In this case, we also use $N_{G}(D)$ to denote $L_{G}(D)$. Many times we drop the subscript G. For $1 \leq p \leq r-1$, the minimum p-degree of G is

$$
\delta_{p}(G):=\min \left\{d_{G}(D):|D|=p, \text { and } D \subseteq e \text { for some } e \in E(G)\right\}
$$

For an r-graph G and $D \in \partial(G)$, let $w(D):=\frac{1}{d_{G}(D)}$. For each $e \in E(G)$, let

$$
w(e):=\sum_{D \in\binom{e}{r-1}} w(D)=\sum_{D \in\binom{e}{r-1}} \frac{1}{d_{G}(D)} .
$$

We call w the default weight function on $E(G)$ and $\partial(G)$. Frankl and Füredi [1] (and later some others) used the following simple property of this function.

Proposition 2.1. Let G be an r-graph. Let w be the default weight function on $E(G)$ and $\partial(G)$. Then

$$
\sum_{e \in E(G)} w(e)=|\partial(G)| .
$$

Proof. By definition,

$$
\sum_{e \in E(G)} w(e)=\sum_{e \in E(G)}\left(\sum_{D \in\binom{e}{r-1}} \frac{1}{d_{G}(D)}\right)=\sum_{D \in \partial(G)}\left(\sum_{e \in E(G), D \subseteq e} \frac{1}{d_{G}(D)}\right)=\sum_{D \in \partial(G)} 1=|\partial(G)| .
$$

An embedding of an r-graph H into an r-graph G is an injection $f: V(H) \rightarrow V(G)$ such that for each $e \in E(H), f(e) \in E(G)$. The following proposition is folklore.

Proposition 2.2. Let G be an r-graph with $e(G)>q|\partial(G)|$. Then G contains a subgraph G^{\prime} with $\delta_{r-1}\left(G^{\prime}\right) \geq\lfloor q\rfloor+1$.

Proof. Starting from G, if there exists $D \in \partial(G)$ of degree at most $\lfloor q\rfloor$ in the current r-graph, we remove the edges of this r-graph containing D. Let G^{\prime} be the final r-graph. Since we have deleted at most $q|\partial(G)|<e(G)$ edges, G^{\prime} is nonempty. By the stopping rule, $\delta_{r-1}\left(G^{\prime}\right) \geq\lfloor q\rfloor+1$.

3 Lemmas for Theorem 1.4

The idea behind the proof of Theorem 1.4 is to find in the host 3 -graph G a special pair of edges with good properties where we plan to map the trunk of size 2 of T. We use the weight argument together with discharging to find such special pairs in the next two lemmas.

Given edges $e=a b c$ and $f=a d c$ in a 3-graph G sharing pair $a c$, for a pair $\{x, y\} \subset\{a, b, c, d\}$, let $d_{e, f}^{\prime}(x, y)$ denote the number of $z \in V(G) \backslash\{a, b, c, d\}$ such that $x y z \in G$. By definition

$$
\begin{equation*}
d_{e, f}^{\prime}(x, y) \geq d(x, y)-2 \quad \text { for every }\{x, y\} \subset\{a, b, c, d\} \tag{1}
\end{equation*}
$$

Lemma 3.1. Let $m \geq 20$ be a positive integer and let G be a 3 -graph satisfying $e(G)>\frac{m}{3}|\partial(G)|$ and $\delta_{2}(G)>\frac{m}{3}$. Let w be the default weight function on $E(G)$ and $\partial(G)$. Then there exist edges $e=a b c$ and $f=$ adc in G satisfying
(a) $w(e)<\frac{3}{m}$ and $w(a c)<\frac{1}{m}$,
(b) $\min \left\{d_{e, f}^{\prime}(a, b), d_{e, f}^{\prime}(c, b)\right\} \geq\left\lfloor\frac{m}{3}\right\rfloor$,
(c) $\max \left\{d_{e, f}^{\prime}(a, b), d_{e, f}^{\prime}(c, b)\right\} \geq\left\lfloor\frac{2 m}{3}\right\rfloor$, and
(d) either $3\left(w(f)-\frac{3}{m}\right)<\left(\frac{3}{m}-w(e)\right)$ or $\max \left\{d_{e, f}^{\prime}(a, d), d_{e, f}^{\prime}(c, d)\right\} \geq m-1$.

Proof. For convenience, let $w_{0}=\frac{3}{m}$. By Proposition 2.1. $\sum_{e \in G} w(e)=|\partial(G)|$. So,

$$
\begin{equation*}
\frac{1}{e(G)} \sum_{e \in G} w(e)=\frac{|\partial(G)|}{e(G)}<\frac{1}{m / 3}=w_{0} \tag{2}
\end{equation*}
$$

Hence the average weight of an edge in G is less than w_{0}. We call an edge $e \in E(G)$ light if $w(e)<w_{0}$ and heavy otherwise. A pair $\{x, y\}$ of vertices in G is good, if $d(x y) \geq m+1$.

To find the desired pair of edges e, f we first do some marking of edges. For every light edge e, fix an ordering, say a, b, c, of its vertices so that $d(a b) \leq d(b c) \leq d(a c)$. We call $a b, b c, a c$ the low, medium, high sides of e, respectively.

Since e is light, $w(e)=\frac{1}{d(a b)}+\frac{1}{d(b c)}+\frac{1}{d(a c)}<w_{0}=\frac{3}{m}$, it follows that

$$
\begin{equation*}
d(a c)>m, \quad d(b c)>\frac{3 m}{2}, \quad d(a b)>\frac{m}{3} \tag{3}
\end{equation*}
$$

In particular, $a c$ is good. We define markings involving e based on three cases.
Case M1: $\quad d(a b) \geq\lfloor m / 3\rfloor+2$ and $d(b c) \geq\lfloor 2 m / 3\rfloor+2$. In this case, we let e mark every edge containing $a c$ apart from itself.

Case M2: $\quad d(a b) \leq\lfloor m / 3\rfloor+1$. By (3),$d(a b)=\lfloor m / 3\rfloor+1$, and since e is light,

$$
\begin{equation*}
d(a c) \geq d(b c)>\frac{1}{\frac{3}{m}-\frac{3}{m+3}}=\frac{m(m+3)}{9} \tag{4}
\end{equation*}
$$

We let e mark all the edges $a c x \neq e$ containing $a c$ such that $a b x$ is not an edge in G. By (4), in this case

$$
\begin{equation*}
e \text { marks at least } \frac{m(m+3)}{9}-\frac{m+3}{3}=\frac{(m+3)(m-3)}{9} \quad \text { edges. } \tag{5}
\end{equation*}
$$

Case M3: $\quad d(b c) \leq\lfloor 2 m / 3\rfloor+1$. By (3),$d(b c)=\lfloor 2 m / 3\rfloor+1$. Let e mark all the edges $a c x \neq e$ containing $a c$ such that $b c x$ is not an edge in G. Since e is light,

$$
\begin{equation*}
d(a c)>\frac{1}{\frac{3}{m}-2 \frac{3}{2 m+3}}=\frac{m(2 m+3)}{9} \tag{6}
\end{equation*}
$$

Similarly to (5), in this case

$$
\begin{equation*}
e \text { marks at least } \frac{m(2 m+3)}{9}-\frac{2 m+3}{3}=\frac{(2 m+3)(m-3)}{9} \quad \text { edges. } \tag{7}
\end{equation*}
$$

We perform the above marking procedure for each light edge e.

Claim 1. If e is a light edge and f is an edge marked by e then (a)-(c) hold. Further, if f is light, then the lemma holds for (e, f).

Proof of Claim 1. Suppose $e=a b c$, where a, b, c are ordered as described earlier and suppose $f=a c d$. Then (a) holds by e being light and by (3). (b) holds, since either $d(a b) \geq\lfloor m / 3\rfloor+2$ or $d(a b)=\lfloor m / 3\rfloor+1$ and $d_{e, f}^{\prime}(a, b)=d(a b)-1$ (because $a b d \notin G$). Similarly, (c) holds, since either $d(b c) \geq\lfloor 2 m / 3\rfloor+2$ or $d(b c)=\lfloor 2 m / 3\rfloor+1$ and $d_{e, f}^{\prime}(b, c)=d(b c)-1$ (because $b c d \notin G$). Now, if f is also a light edge then (d) holds since $w(f)-\frac{3}{m}<0<\frac{3}{m}-w(e)$.

By Claim 1, we may henceforth assume that every marked edge is heavy. We will now use a discharging procedure to find our pair (e, f). Let the initial charge $c h(e)$ of every edge e in G equal to $w(e)$. Then $\sum_{e \in G} c h(e)=\sum_{e \in G} w(e)=|\partial(G)|$. We will redistribute charges among the edges of G so that the total sum of charges does not change and the resulting charge of each heavy edge remains at least w_{0}.

The discharging rule is as follows. Suppose a heavy edge f was marked by exactly q light edges. If $q=0$, then let the new charge $c h^{*}(f)$ equal $c h(f)$. Otherwise, let f transfer to each light edge e that marks it a charge of $\left(\operatorname{ch}(f)-w_{0}\right) / q$ so that $c h^{*}(f)=w_{0}$. It is easy to see that the total charge does not change in this discharging process. Hence, by (2), there is an edge e with $c h^{*}(e)<w_{0}$. By our discharging rule, e must be a light edge. Suppose e marked p edges. In each of Cases M1,M2, M3, e marks at least one edge. So $p>0$. Among all edges e marked, let f be one that gave the least charge to e. By definition, f gave e a charge of at most $\left(c h^{*}(e)-c h(e)\right) / p<\left(w_{0}-c h(e)\right) / p$. We claim that the pair (e, f) satisfies the lemma. Suppose $e=a b c$, where a, b, c are ordered as before, and suppose $f=a c d$. By Claim 1, (a), (b), and (c) hold. It remains to prove (d). If all three pairs in f are good, then $w(f)<\frac{3}{m}$, contradicting f being heavy. So, at most two of the pairs in f are good. By our earlier discussion, $a c$ is good. If one of $a d$ and $c d$ is also good, then the second part of (d) holds. So we may assume that $a c$ is the only good pair in f. Let q be the number of the light edges that marked f. By the marking process, a light edge only marks edges containing its high side and the high side is a good pair. Since $a c$ is the only good pair in f, each of the q light edges that marked f contains ac and has $a c$ as its high side.

First, suppose that Case M1 was applied to e. Then all the edges containing $a c$ other than e were marked, which by our assumption must be heavy. In particular, this implies that $q=1$. By our rule, f gave e a charge of $c h(f)-w_{0}$. By our choice of f, each of the $d(a c)-1 \geq m$ edges of G containing $a c$ (other than e) gave e a charge of at least $\operatorname{ch}(f)-w_{0}$. Hence, $w_{0}>c h^{*}(e) \geq \operatorname{ch}(e)+m\left(c h(f)-w_{0}\right)$, from which the first part of (d) follows.

Next, suppose that Case M2 was applied to e. Then $d(a b) \leq\lfloor m / 3\rfloor+1$. If $q>\lfloor m / 3\rfloor+1$, then one of light edges containing $a c$, say $a c x$, satisfies that $a b x \notin G$. By rule, e marked $a c x$, contradicting our assumption that no light edge was marked. So $q \leq\lfloor m / 3\rfloor+1$. Similarly if Case 3 was applied to e then $q \leq\lfloor 2 m / 3\rfloor+1$. In both of these cases, e marked at least $\frac{(m+3)(m-3)}{9}$ edges, and by the choice of f, each of these edges gave to e charge at least $\left(\operatorname{ch}(f)-w_{0}\right) / q$. Since $c h^{*}(e)<w_{0}$, we conclude

$$
w_{0}-\operatorname{ch}(e)>\frac{(m+3)(m-3)}{9} \frac{\operatorname{ch}(f)-w_{0}}{q} \geq \frac{(m+3)(m-3)}{3(2 m+3)}\left(\operatorname{ch}(f)-w_{0}\right) .
$$

Since $m \geq 20$, this means

$$
\frac{\operatorname{ch}(f)-w_{0}}{w_{0}-\operatorname{ch}(e)}<\frac{3(2 m+3)}{(m+3)(m-3)} \leq \frac{3 \cdot 45}{24 \cdot 18}=\frac{5}{16}<\frac{1}{3} .
$$

So, the first part of (d) holds.
For an edge e, by $d_{\min }(e)$ we denote the minimum codegree over all three pairs of vertices in e.
Lemma 3.2. Let G be a 3-graph satisfying $e(G)>\gamma|\partial(G)|$. Let w be the default weight function on $E(G)$ and $\partial(G)$. Then there exists a pair of edges e,f with $|e \cap f|=2$ such that

1. $w(e)<\frac{1}{\gamma}$,
2. $d(e \cap f)=d_{\text {min }}(e)$,
3. $w(f)<\frac{1}{\gamma}+\frac{3}{d_{\min }(e)-1}\left(\frac{1}{\gamma}-w(e)\right)$.

Proof. For convenience, let $w_{0}=\frac{1}{\gamma}$. As in the proof of Lemma 3.1, call an edge e with $w(e)<w_{0}$ light and an edge e with $w(e) \geq w_{0}$ heavy. As before, the average average of $w(e)$ over all e is $|\partial(G)| / e(G)<w_{0}$. For each light edge e, let us mark a pair of vertices in that has codegree $d_{\min }(e)$. If e is a light edge with a marked pair $x y$ and f is another light edge containing $x y$, then our statements already hold. So we assume that no marked pair of any light edge lies in another light edge. Let us initially assign a charge of $w(e)$ to each edge e in G. Then the average charge of an edge in G is less than w_{0}. We now apply the following discharging rule. For each heavy edge f, transfer $\frac{1}{3}\left(w(f)-w_{0}\right)$ of the charge to each light edge e whose marked pair is contained in f. Note that for each f there are at most 3 such e. In particular, each heavy edge still has charge at least w_{0} after the discharging.

Since discharging does not change the total charge, there exists some edge e with charge less than w_{0}. By the previous sentence, e is a light edge in G. Let $x y$ be its marked pair. There are $d_{\min }(e)-1$ other edges containing it, each of which is heavy. Each such edge f has given a charge of $\frac{1}{3}\left(w(f)-w_{0}\right)$ to w_{0}. For e to still have a charge less than w_{0}, one of these edges f satisfies $\frac{1}{3}\left(w(f)-w_{0}\right)<\frac{w_{0}-w(e)}{d_{\min }(e)-1}$. Hence $w(f)<\frac{1}{\gamma}+\frac{3}{d_{\min }(e)-1}\left(\frac{1}{\gamma}-w(e)\right)$.

Our third lemma proves a special case of Theorem 1.4 .
Lemma 3.3. Let T be a tight 3 -tree with $t \geq 5$ edges. Suppose T has a trunk $\left\{e_{1}, e_{2}\right\}$ of size 2 such that $d_{T}\left(e_{1} \cap e_{2}\right) \geq\left\lfloor\frac{t-1}{3}\right\rfloor+2$. Let G be an n-vertex 3 -graph that does not contain T. Then $e(G) \leq \frac{t-1}{3}|\partial(G)|$.

Proof. For convenience, let $m=t-1$. Let G be a 3-graph with $e(G)>\frac{m}{3}|\partial(G)|$. Then G contains a subgraph G^{\prime} such that $e\left(G^{\prime}\right)>\frac{m}{3}\left|\partial\left(G^{\prime}\right)\right|$ and $\delta_{2}\left(G^{\prime}\right)>\frac{m}{3}$. For convenience, we assume G itself satisfies these two conditions. Let w be the default weight function on $E(G)$ and $\partial(G)$. Then G satisfies the conditions of Lemma 3.1. Let the edges $e=a b c$ and $f=a d c$ satisfy the claim of that lemma, where a, b, c are ordered as in Lemma 3.1. In particular, by (a), e is light and $a c$ is good, i.e. $d(a c) \geq m+1$. By our assumptions, $d(a b) \leq d(b c)$. By parts (b) and (c),

$$
\begin{equation*}
d_{e, f}^{\prime}(a, b) \geq\left\lfloor\frac{m}{3}\right\rfloor \quad \text { and } \quad d_{e, f}^{\prime}(c, b) \geq\left\lfloor\frac{2 m}{3}\right\rfloor . \tag{8}
\end{equation*}
$$

We rename pairs $\{a, d\}$ and $\{c, d\}$ as D_{1} and D_{2} so that $d_{e, f}^{\prime}\left(D_{1}\right)=\min \left\{d_{e, f}^{\prime}(a, d), d_{e, f}^{\prime}(c, d)\right\}$ and $d_{e, f}^{\prime}\left(D_{2}\right)=\max \left\{d_{e, f}^{\prime}(a, d), d_{e, f}^{\prime}(c, d)\right\}$. We claim that in these terms,

$$
\begin{equation*}
d_{1}^{\prime}:=d_{e, f}^{\prime}\left(D_{1}\right) \geq\left\lfloor\frac{m}{3}\right\rfloor-1 \quad \text { and } \quad d_{2}^{\prime}:=d_{e, f}^{\prime}\left(D_{2}\right) \geq\left\lfloor\frac{m}{3}\right\rfloor . \tag{9}
\end{equation*}
$$

By (11) and the fact that $\delta_{2}(G)>\frac{m}{3}, d_{1}^{\prime}, d_{2}^{\prime} \geq\left\lfloor\frac{m}{3}\right\rfloor-1$. We will use part (d) of Lemma 3.1 to show that $d_{2}^{\prime} \geq\left\lfloor\frac{m}{3}\right\rfloor$. If the second part of (d) holds, then $d_{2}^{\prime} \geq m-1$ and we are done. So suppose the first part of Lemma 3.1 (d) holds instead, i.e. $3\left(w(f)-w_{0}\right)<\left(w_{0}-w(e)\right)$. Then $w(f)<\frac{4}{3} w_{0}=\frac{4}{m}$. If $d_{1}^{\prime}=d_{2}^{\prime}=\left\lfloor\frac{m}{3}\right\rfloor-1$, then $d\left(D_{1}\right)=d\left(D_{2}\right)=\left\lfloor\frac{m}{3}\right\rfloor+1$ and hence

$$
w(f)>\frac{2}{\left\lfloor\frac{m}{3}\right\rfloor+1} \geq \frac{6}{m+3} \geq \frac{4}{m}
$$

when $m>9$, a contradiction. Thus, $d_{2}^{\prime} \geq\left\lfloor\frac{m}{3}\right\rfloor$ and (9) holds.
By our assumption, T has a trunk $\left\{e_{1}, e_{2}\right\}$ with $d_{T}\left(e_{1} \cap e_{2}\right) \geq\left\lfloor\frac{m}{3}\right\rfloor+2$. Suppose $e_{1}=x y u$ and $e_{2}=x y v$ so that $e_{1} \cap e_{2}=x y$. By our assumption, each edge in $E(T) \backslash\left\{e_{1}, e_{2}\right\}$ contains a pair in e_{1} or e_{2} and a vertex outside $e_{1} \cup e_{2}$. For each pair B contained in e_{1} or e_{2}, let $N_{T}^{\prime}(B)=N_{T}(B) \backslash\{x, y, u, v\}$ and $\mu(B)=\left|N_{T}^{\prime}(B)\right|$. Then $\mu(x y)=d_{T}(x y)-2$, and $\mu(B)=d_{T}(B)-1$ for each $B \in\{x u, x v, y u, y v\}$, By definition,

$$
\begin{equation*}
\mu(x y)+\mu(x u)+\mu(x v)+\mu(y u)+\mu(y v)=t-2=m-1 . \tag{10}
\end{equation*}
$$

Since $\mu(x y)=d_{T}(x y)-2 \geq\left\lfloor\frac{m}{3}\right\rfloor>\frac{m}{3}-1$, we have

$$
\begin{equation*}
\mu(x u)+\mu(x v)+\mu(y u)+\mu(y v)<\frac{2 m}{3} . \tag{11}
\end{equation*}
$$

We consider three cases, and in each case we find an embedding of T into G.
Case 1. $d_{e, f}^{\prime}(a, b) \geq\left\lfloor\frac{2 m}{3}\right\rfloor$. Recall that by (8), $d_{e, f}^{\prime}(c, b) \geq\left\lfloor\frac{2 m}{3}\right\rfloor$. By symmetry we may assume that $\mu(x u)+\mu(y u) \geq \mu(x v)+\mu(y v)$ and that $\mu(x v) \geq \mu(y v)$. Then by (11) $\mu(x v)+\mu(y v) \leq\left\lfloor\frac{m}{3}\right\rfloor$, so we construct an embedding ϕ of T into G as follows.

First, let $\phi(u)=b$ and $\phi(v)=d$. Then choose distinct $\phi(x), \phi(y) \in\{a, c\}$ so that $\phi(\{y, v\})=D_{1}$ and $\phi(\{x, v\})=D_{2}$. This maps e_{1} to e and e_{2} to f. Since $\mu(y v)<\frac{1}{4} \frac{2 m}{3}=\frac{m}{6}$, by (9) we can next map $N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}\left(D_{1}\right)$. Now, since $\mu(y v)+\mu(x v)<\frac{1}{2} \frac{2 m}{3}=\frac{m}{3}$, again by (91) we can map $N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}\left(D_{2}\right) \backslash \phi\left(N_{T}^{\prime}(y v)\right)$. If $\phi(x)=a, \phi(y)=c$, then by the condition of Case 1 and (11), we can map $N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c) \backslash \phi\left(N_{T}^{\prime}(y v) \cup N_{T}^{\prime}(x v)\right)$ and $N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a c) \backslash \phi\left(N_{T}^{\prime}(y v) \cup N_{T}^{\prime}(x v)\right)$. The case $\phi(x)=c, \phi(y)=a$ is similar. Finally, embed $N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c)$.

Case 2. $\left\lfloor\frac{m}{3}\right\rfloor \leq d_{e, f}^{\prime}(a, b) \leq\left\lfloor\frac{2 m}{3}\right\rfloor-1$ and $d_{1}^{\prime} \geq\left\lfloor\frac{m}{3}\right\rfloor$. Then we can strengthen the second part of (9) to

$$
\begin{equation*}
d_{2}^{\prime} \geq\left\lfloor\frac{m}{2}\right\rfloor . \tag{12}
\end{equation*}
$$

Indeed, (9) holds immediately if the second part of (d) holds in Lemma 3.1 so we may assume $3\left(w(f)-w_{0}\right)<\left(w_{0}-w(e)\right)$. By the condition of Case 2,

$$
w_{0}-w(e) \leq \frac{3}{m}-\frac{3}{2 m+3}=\frac{3(m+3)}{m(2 m+3)} .
$$

From this, we get

$$
w(f)<\frac{3}{m}+\frac{(m+3)}{m(2 m+3)}=\frac{7 m+12}{m(2 m+3)} .
$$

If $d_{2}^{\prime} \leq\left\lfloor\frac{m}{2}\right\rfloor-1$, then

$$
w(f)>\frac{2}{d_{2}^{\prime}+2} \geq 2 \frac{2}{m+2}
$$

which is larger than $\frac{7 m+12}{m(2 m+3)}$ for $m \geq 24$. This contradiction proves (12).
For convenience, suppose $D_{1}=c d$ (the case $D_{1}=a d$ is similar). By symmetry, we may assume that $\mu(x u)+\mu(y v) \leq \mu(y u)+\mu(x v)$ and that $\mu(y u) \geq \mu(x v)$. Then by (11),

$$
\begin{equation*}
\mu(x u)+\mu(y v) \leq\left\lfloor\frac{m}{3}\right\rfloor, \quad \mu(x u)+\mu(y v)+\mu(x v) \leq\left\lfloor\frac{m}{2}\right\rfloor \tag{13}
\end{equation*}
$$

We embed T into G by mapping x, y, u, v to a, c, b, d, respectively and embedding in order $N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}(c d), N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a b), N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}(a d), N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c)$, and $N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c)$ greedily. Conditions (10), (11), (12) and (13) ensure that such an embedding exists.

Case 3. $\left\lfloor\frac{m}{3}\right\rfloor \leq d_{e, f}^{\prime}(a, b) \leq\left\lfloor\frac{2 m}{3}\right\rfloor-1$ and $d_{1}^{\prime}=\left\lfloor\frac{m}{3}\right\rfloor-1$. We now strengthen (12) to

$$
\begin{equation*}
d_{2}^{\prime} \geq\left\lfloor\frac{2 m}{3}\right\rfloor \tag{14}
\end{equation*}
$$

Indeed, exactly as in the proof of (12), we derive that $w(f)<\frac{7 m+12}{m(2 m+3)}$. If $d_{2}^{\prime} \leq\left\lfloor\frac{2 m}{3}\right\rfloor-1$, then

$$
\frac{3}{2 m+3} \leq \frac{1}{d_{2}^{\prime}+2}<\frac{7 m+12}{m(2 m+3)}-\frac{1}{d_{1}^{\prime}+2} \leq \frac{7 m+12}{m(2 m+3)}-\frac{3}{m+3}
$$

which is not true for $m \geq 20$. This proves (14).
As in Case 2, suppose $D_{1}=c d$ (the case $D_{1}=a d$ is similar). By symmetry, we may assume that $\mu(x u)+\mu(y v) \leq \mu(y u)+\mu(x v)$ and that $\mu(x u) \geq \mu(y v)$. Then by (11),

$$
\begin{equation*}
\mu(x u)+\mu(y v) \leq\left\lfloor\frac{m}{3}\right\rfloor, \quad \mu(y v) \leq\left\lfloor\frac{m}{6}\right\rfloor \tag{15}
\end{equation*}
$$

We embed T into G by mapping x, y, u, v to a, c, b, d, respectively and embedding in order $N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}(c d), N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a b), N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}(a d), N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c)$, and $N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c)$ greedily. Conditions (10), (11), (14) and (15) ensure that such an embedding exists.

4 Proof of Theorem 1.4

We prove the shadow version of Theorem 1.4, which immediately implies Theorem 1.4 ,
Theorem 1.4. Let $t \geq 20$ be an integer. Let T be a tight 3 -tree with t edges and $c(T) \leq 2$. If G is an r-graph that does not contain T then $e(G) \leq \frac{t-1}{3}|\partial(G)|$.

Proof. First, let us point that in this proof, we exploit Lemma 3.2 and will not need Lemma 3.1 in an explicit way. Let T be a tight 3 -tree with $t \geq 20$ edges that contains a trunk $\left\{e_{1}, e_{2}\right\}$ of size 2 . For convenience, let $m=t-1$. Let G be a 3 -graph with $e(G)>\frac{m}{3}|\partial(G)|$. We prove that G contains T. As before we may assume that $\delta_{2}(G)>\frac{m}{3}$. Let w be the default weight function on $E(G)$ and $\partial(G)$.

By Lemma 3.2, there exist edges e and f in G such that $d(e \cap f)=d_{\min }(e), w(e)<\frac{3}{m}$, and (using $m \geq 19$)

$$
\begin{equation*}
\text { if } d(e \cap f)>\frac{m}{2} \text {, then } w(f)<\frac{3}{m}+\frac{3}{(m+1) / 2-1}\left(\frac{3}{m}-w(e)\right) \leq \frac{3}{m}+\frac{1}{3}\left(\frac{3}{m}-w(e)\right) \leq \frac{4}{m} \text {, } \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } d(e \cap f) \leq \frac{m}{2} \text {, then } w(f)<\frac{3}{m}+\frac{3}{\lceil m / 3\rceil-1}\left(\frac{3}{m}-w(e)\right) \leq \frac{3}{m}+\frac{1}{2}\left(\frac{3}{m}-\frac{2}{m}\right)=\frac{4}{m} . \tag{17}
\end{equation*}
$$

Suppose $e=a c b$ and $f=a c d$, so that $e \cap f=a c$. For each pair D contained in e or f, let $N_{G}^{\prime}(D)=N_{G}(D) \backslash\{a, b, c, d\}$ and $d_{G}^{\prime}(D)=\left|N_{G}^{\prime}(D)\right|$. Then $d_{G}^{\prime}(D) \geq d_{G}(D)-2$. Consider T. Suppose $e_{1}=x y u$ and $e_{2}=x y v$, so that $e_{1} \cap e_{2}=x y$. If $d_{T}(x y) \geq\left\lfloor\frac{m}{3}\right\rfloor+2$, then we apply Lemma 3.3 and are done. Hence we may assume that

$$
d_{T}(x y) \leq\left\lfloor\frac{m}{3}\right\rfloor+1 .
$$

For each pair B contained in e_{1} or e_{2}, let $N_{T}^{\prime}(B)=N_{T}(B) \backslash\{x, y, u, v\}$ and let $\mu(B)=\left|N_{T}^{\prime}(B)\right|$. Then $\mu(x y)=d_{T}(x y)-2$ and $\mu(B)=d_{T}(B)-1$ for the other pairs. Also, we have

$$
\begin{equation*}
\mu(x u)+\mu(y u)+\mu(x v)+\mu(y v)+\mu(x y)=m-1 . \tag{18}
\end{equation*}
$$

Since $\mu(x y)=d_{T}(x y)-2 \leq \frac{m}{3}-1$,

$$
\begin{equation*}
\mu(x y)+\frac{i}{4}(m-1-\mu(x y)) \leq \frac{m}{3}+\frac{i m}{6}-1 \quad \forall i \in[4] . \tag{19}
\end{equation*}
$$

Let us view e, f as glued together at $a c$ with e on the left and f on the right. Let

$$
\begin{aligned}
L_{\max } & =\max \left\{d_{G}(a b), d_{G}(b c)\right\}, & & L_{\min }=\min \left\{d_{G}(a b), d_{G}(b c)\right\}, \\
R_{\max } & =\max \left\{d_{G}(a d), d_{G}(c d)\right\}, & & R_{\min }=\min \left\{d_{G}(a d), d_{G}(c d)\right\} .
\end{aligned}
$$

Since $d(a c)=d_{\min }(e), L_{\max } \geq L_{\text {min }} \geq d_{G}(a c)$. Since $w(e)<\frac{3}{m}$, we have

$$
\begin{equation*}
L_{\max }>m . \tag{20}
\end{equation*}
$$

We consider two cases. In each case, we find an embedding of T into G.
Case 1. $L_{\text {min }}>m$. This implies $d_{G}^{\prime}(a b), d_{G}^{\prime}(b c) \geq m-1$. By symmetry, we may assume that $d_{G}(a d) \geq d_{G}(c d)$ so that $d_{G}(a d)=R_{\max }$ and $d_{G}(c d)=R_{\text {min }}$. Now, consider T. By symmetry, we may assume that $\mu(x u)+\mu(y u) \geq \mu(x v)+\mu(y v)$ and that $\mu(x v) \geq \mu(y v)$. Then $\mu(y v) \leq \frac{1}{4}(m-1-\mu(x y))$ and $\mu(x v)+\mu(y v) \leq \frac{1}{2}(m-1-\mu(x y))$. This, together with (19) implies

$$
\begin{array}{cl}
\mu(y v) \leq\left\lfloor\frac{m}{4}\right\rfloor, & \mu(x v)+\mu(y v) \leq\left\lfloor\frac{m}{2}\right\rfloor-1, \\
\mu(y v)+\mu(x y) \leq\left\lfloor\frac{m}{2}\right\rfloor-1, & \mu(x v)+\mu(y v)+\mu(x y) \leq\left\lfloor\frac{2 m}{3}\right\rfloor-1 . \tag{21}
\end{array}
$$

Case 1.1. $d_{G}(a c)>\frac{2 m}{3}$. By (16),$\frac{1}{R_{\max }}+\frac{1}{R_{\min }}<w(f)<\frac{4}{m}$, so $R_{\max }>\frac{m}{2}$. Since $\delta_{2}(G)>\frac{m}{3}$, we have $R_{\text {min }}>\frac{m}{3}$. Hence

$$
\begin{equation*}
d_{G}^{\prime}(a b), d_{G}^{\prime}(b c) \geq m-1, \quad d_{G}^{\prime}(a c) \geq\left\lfloor\frac{2 m}{3}\right\rfloor-1, \quad d_{G}^{\prime}(a d) \geq\left\lfloor\frac{m}{2}\right\rfloor-1, \quad d_{G}^{\prime}(c d) \geq\left\lfloor\frac{m}{3}\right\rfloor-1 \tag{22}
\end{equation*}
$$

Now we can embed T into G as follows. First, we map x, y, u, v to a, b, c, d respectively. This maps e_{1} to e and e_{2} to f. Then we map $N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}(c d)$ followed by $N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}(a d)$. Next, we map $N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c), N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c)$, and $N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a b)$ in that order. Conditions (21) and (22) ensure that such an embedding exists.

Case 1.2. $d_{G}(a c) \leq \frac{2 m}{3}$. Then $w(e) \geq \frac{3}{2 m}$. If $d_{G}(a c)>\frac{m}{2}$, then by (16), $w(f)<\frac{3}{m}+\frac{1}{3}\left(\frac{3}{m}-\frac{3}{2 m}\right)=$ $\frac{7}{2 m}$. On the other hand, if $d_{G}(a c) \leq \frac{m}{2}$, then $w(e) \geq \frac{2}{m}$ and by (17), $w(f)<\frac{3}{m}+\frac{1}{2}\left(\frac{3}{m}-\frac{2}{m}\right)=\frac{7}{2 m}$. So in any case,

$$
\frac{1}{R_{\max }}+\frac{1}{R_{\min }}<w(f)-w(a c)<\frac{7}{2 m}-\frac{3}{2 m}=\frac{2}{m} .
$$

Then $R_{\max }>m$ and $R_{\min }>\frac{m}{2}$. Also, since $\delta_{2}(G)>\frac{m}{3}$, we have $d_{G}(a c)>\frac{m}{3}$. Hence,

$$
\begin{equation*}
d_{G}^{\prime}(a b), d_{G}^{\prime}(b c) \geq m-1, \quad d_{G}^{\prime}(a c) \geq\left\lfloor\frac{m}{3}\right\rfloor-1, \quad d_{G}^{\prime}(a d) \geq m-1, \quad d_{G}^{\prime}(c d) \geq\left\lfloor\frac{m}{2}\right\rfloor-1 . \tag{23}
\end{equation*}
$$

Now we can embed T into G as follows. First, we map x, y, u, v to a, b, c, d respectively. This maps e_{1} to e and e_{2} to f. Then we map $N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c)$. This is doable since $d_{T}^{\prime}(x y)=d_{T}(x y)-2 \leq\left\lfloor\frac{m}{3}\right\rfloor-1$ while $d_{G}^{\prime}(a c) \geq\left\lfloor\frac{m}{3}\right\rfloor-1$. Then we map $N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}(c d)$ followed by $N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}(a d)$. Next, we map $N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c)$, and $N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a b)$ in that order. Conditions (21) and (23) ensure that such an embedding exists.

Case 2. $L_{\min } \leq m$. By symmetry, we may assume that $d_{G}(a b) \geq d_{G}(b c)$ so that $d_{G}(a b)=L_{\text {max }}$ and $d_{G}(b c)=L_{\text {min }}$. We have $\frac{1}{L_{\text {min }}}+\frac{1}{d_{G}(a c)}<w(e)<\frac{3}{m}$. Since $d(a c)=d_{\min }(e), d_{G}(a c) \leq L_{\text {min }} \leq m$. This yields $L_{\min }>\frac{2 m}{3}, \frac{m}{2}<d_{G}(a c) \leq m$, and $w(e)>\frac{2}{m}$. By (20), $L_{\max }>m$. Thus,

$$
\begin{equation*}
d_{G}^{\prime}(a b) \geq m-1, \quad d_{G}^{\prime}(b c) \geq\left\lfloor\frac{2 m}{3}\right\rfloor-1, \quad d_{G}^{\prime}(a c) \geq\left\lfloor\frac{m}{2}\right\rfloor-1 . \tag{24}
\end{equation*}
$$

Since $d_{G}(a c)>m / 2$, by (16),

$$
\begin{equation*}
w(f)<\frac{3}{m}+\frac{1}{3} \frac{1}{m}=\frac{10}{3 m} \text { and } \frac{1}{R_{\max }}+\frac{1}{R_{\min }} \leq w(f)-\frac{1}{d_{G}(a c)}<\frac{10}{3 m}-\frac{1}{m}=\frac{7}{3 m} . \tag{25}
\end{equation*}
$$

Case 2.1 $R_{\max }>m$. By our assumption and (25),

$$
R_{\max }>m, \quad R_{\min }>\frac{3 m}{7} .
$$

First suppose that $d_{G}(a d) \geq d_{G}(c d)$. Then

$$
\begin{equation*}
d_{G}^{\prime}(a d) \geq m-1, \quad d_{G}^{\prime}(c d) \geq\left\lfloor\frac{3 m}{7}\right\rfloor-1 . \tag{26}
\end{equation*}
$$

By symmetry, we may assume that $\mu(x u)+\mu(x v) \geq \mu(y u)+\mu(y v)$ and that $\mu(y u) \geq \mu(y v)$. Then by these assumptions and (19), we have

$$
\begin{equation*}
\mu(y v) \leq\left\lfloor\frac{m}{4}\right\rfloor-1, \quad \mu(y v)+\mu(x y) \leq\left\lfloor\frac{m}{2}\right\rfloor-1, \quad \mu(y v)+\mu(x y)+\mu(y u) \leq\left\lfloor\frac{2 m}{3}\right\rfloor-1 \tag{27}
\end{equation*}
$$

Now we can embed T into G as follows. First, we map x, y, u, v to a, b, c, d respectively. This maps e_{1} to e and e_{2} to f. Then we $\operatorname{map} N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}(c d)$ followed by $N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c)$. Next, we $\operatorname{map} N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c), N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}(a d)$, and $N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a b)$ in that order. Conditions (24), (26) and (27) ensure that such an embedding exists.

Next, suppose that $d_{G}(c d) \geq d_{G}(a d)$. Then

$$
\begin{equation*}
d_{G}^{\prime}(a d) \geq\left\lfloor\frac{3 m}{7}\right\rfloor-1, \quad d_{G}^{\prime}(c d) \geq m-1 \tag{28}
\end{equation*}
$$

By symmetry, we may assume that $\mu(x u)+\mu(y v) \geq \mu(x v)+\mu(y u)$ and that $\mu(y u) \geq \mu(x v)$. By these assumptions and (19), we have

$$
\begin{equation*}
\mu(x v) \leq\left\lfloor\frac{m}{4}\right\rfloor-1, \quad \mu(x v)+\mu(x y) \leq\left\lfloor\frac{m}{2}\right\rfloor-1, \quad \mu(x v)+\mu(x y)+\mu(y u) \leq\left\lfloor\frac{2 m}{3}\right\rfloor-1 \tag{29}
\end{equation*}
$$

Now we can embed T into G as follows. First, we map x, y, u, v to a, b, c, d respectively. This maps e_{1} to e and e_{2} to f. Then we $\operatorname{map} N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}(a d)$ followed by $N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c)$. Next, we $\operatorname{map} N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c), N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}(c d)$, and $N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a b)$ in that order. Conditions (24), (28) and (29) ensure that such an embedding exists.

Case 2.2 $R_{\max } \leq m$. Since $R_{\min } \leq R_{\max } \leq m$, by (25), we again have $R_{\max }>\frac{6 m}{7}$, and

$$
\frac{1}{R_{\min }}<\frac{7}{3 m}-\frac{1}{m}=\frac{4}{3 m} ; \quad \text { so } \quad R_{\min }>\frac{3 m}{4}
$$

By (25), $w(f)<\frac{10}{3 m}$. Also, $\frac{1}{L_{\min }} \geq \frac{1}{L_{\max }} \geq \frac{1}{m}$. Hence,

$$
\begin{equation*}
w(a c)<\frac{10}{3 m}-\frac{2}{m}=\frac{4}{3 m} \quad \text { and hence } \quad d_{G}^{\prime}(a c) \geq\left\lfloor\frac{3 m}{4}\right\rfloor-1 \tag{30}
\end{equation*}
$$

First, suppose that $d_{G}(a d) \geq d_{G}(c d)$. Then

$$
\begin{equation*}
d^{\prime}(a d) \geq\left\lfloor\frac{6 m}{7}\right\rfloor-1, \quad d^{\prime}(c d) \geq\left\lfloor\frac{3 m}{4}\right\rfloor-1 \tag{31}
\end{equation*}
$$

By symmetry, we may assume that $\mu(x u)+\mu(x v) \geq \mu(y u)+\mu(y v)$ and that $\mu(x u) \geq \mu(x v)$. In particular,

$$
\begin{equation*}
\mu(x u) \geq \frac{1}{4}(m-1-\mu(x y)) \geq \frac{1}{4}\left(m-1-\frac{m}{3}+1\right)=\frac{m}{6} \tag{32}
\end{equation*}
$$

By (19), (24), (31), and (32), we can greedily embed T into G by mapping x, y, u, v to a, c, b, d, respectively and mapping in order $N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}(c d), N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c), N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c)$,
$N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}(a d)$, and $N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a b)$.
Next, suppose that $d_{G}(c d) \geq d_{G}(a d)$. Then $d^{\prime}(a d) \geq\left\lfloor\frac{3 m}{4}\right\rfloor-1$ and $d^{\prime}(c d) \geq\left\lfloor\frac{6 m}{7}\right\rfloor-1$. By symmetry, we may assume that $\mu(x u)+\mu(y v) \geq \mu(x v)+\mu(y u)$ and that $\mu(x u) \geq \mu(y v)$. Again, (32) holds. We can greedily embed T into G by mapping x, y, u, v to a, c, b, d, respectively and mapping in order $N_{T}^{\prime}(y u)$ into $N_{G}^{\prime}(b c), N_{T}^{\prime}(x y)$ into $N_{G}^{\prime}(a c), N_{T}^{\prime}(x v)$ into $N_{G}^{\prime}(a d), N_{T}^{\prime}(y v)$ into $N_{G}^{\prime}(c d)$, and $N_{T}^{\prime}(x u)$ into $N_{G}^{\prime}(a b)$.

Acknowledgement. This research was partly conducted during an American Institute of Mathematics Structured Quartet Research Ensembles workshop, and we gratefully acknowledge the support of AIM.

References

[1] P. Frankl, Z. Füredi, Exact solution of some Turán-type problems. J. Combin. Theory Ser. A 45 (1987), 226-262.
[2] Z. Füredi, T. Jiang, A. Kostochka, D. Mubayi, J. Verstraëte, Hypergraphs not containing a tight tree with a bounded trunk, submitted, https://arxiv.org/pdf/1712.04081.pdf.
[3] G. Kalai, Personal communication, 1984.
[4] V. Rődl, On a packing and covering problem, European Journal of Combinatorics 6 (1985), 69-78.

Zoltán Füredi

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Reáltanoda utca 13-15
H-1053, Budapest, Hungary
E-mail: zfuredi@gmail.com.

Alexandr Kostochka
University of Illinois at Urbana-Champaign
Urbana, IL 61801
and Sobolev Institute of Mathematics
Novosibirsk 630090, Russia.
E-mail: kostochk@math.uiuc.edu.

Tao Jiang
Department of Mathematics
Miami University
Oxford, OH 45056, USA.
E-mail: jiangt@miamioh.edu.

Dhruv Mubayi

Department of Mathematics, Statistics
and Computer Science
University of Illinois at Chicago
Chicago, IL 60607.
E-mail: mubayi@uic.edu.

Jacques Verstraëte

Department of Mathematics
University of California at San Diego
9500 Gilman Drive, La Jolla, California 92093-0112, USA.
E-mail: jverstra@math.ucsd.edu.

[^0]: *Research supported by grant K116769 from the National Research, Development and Innovation Office NKFIH, and by the Simons Foundation Collaboration grant \#317487.
 ${ }^{\dagger}$ Research partially supported by NSF award DMS-1400249.
 ${ }^{\ddagger}$ Research of this author is supported in part by NSF grant DMS-1600592 and by grants 18-01-00353A and 16-01-00499 of the Russian Foundation for Basic Research.
 ${ }^{\S}$ Research partially supported by NSF award DMS-1300138.
 ${ }^{\top}$ Research supported by NSF award DMS-1556524.

