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Abstract

The distinguishing number of a graph G, denoted D(G), is the minimum number
of colors needed to produce a coloring of the vertices of G so that every nontrivial
isomorphism interchanges vertices of different colors. A list assignment L on a graph
G is a function that assigns each vertex of G a set of colors. An L-coloring of G is a
coloring in which each vertex is colored with a color from L(v). The list distinguishing
number of G, denoted Dℓ(G) is the minimum k such that every list assignment L that
assigns a list of size at least k to every vertex permits a distinguishing L-coloring.
In this paper, we prove that when and n is large enough, the distinguishing and list-
distinguishing numbers of Kn✷Km agree for almost all m > n, and otherwise differ by
at most one. As a part of our proof, we give (to our knowledge) the first application of
the Combinatorial Nullstellensatz to the graph distinguishing problem and also prove
an inequality for the binomial distribution that may be of independent interest.

Keywords: distinguishing, list distinguishing, 05C60, 05C15

1 Introduction

Given a graph G, a k-coloring φ : X → {1, . . . , k} of G is distinguishing if the only auto-

morphism of G that fixes φ is the identity automorphism. The minimum k for which G has

a distinguishing k-coloring is called the distinguishing number of G, and is denoted D(G).

The distinguishing number of a graph G is, in some sense, a measure of the resilience of

Aut(G), in that a distinguishing coloring serves to “break” all of the symmetries of G.
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Inspired by a problem of Rubin [22], which creatively asked for the distinguishing number

of the cycle Cn, Albertson and Collins initiated the study of distinguishing numbers in [2].

Since that initial work, the distinguishing number of a graph has been determined for a

number of graph classes, including planar graphs [4], Cartesian powers [1, 20], forests [11]

and interval graphs [10]. The distinguishing problem has also been studied extensively for

infinite graphs (see [21] for a recent example).

In 2011, Ferrara, Flesch, and Gethner [13] first considered the natural extension of graph

distinguishing to list colorings. A list assignment L on a graph G is a function that assigns

each vertex ofG a set of colors. An L-coloring ofG is a coloring in which each vertex is colored

with a color from L(v). List coloring was first introduced in the setting of proper colorings

by Erdős, Rubin, and Taylor [12], and has been studied extensively across numerous settings.

The list-distinguishing number of G, denoted Dℓ(G) is the minimum k such that every list

assignment L that assigns a list of size at least k to every vertex permits a distinguishing

L-coloring.

In [13], Ferrara, Flesch, and Gethner posed the following question.

Question 1. Is there a graph G for which D(G) 6= Dℓ(G)?

Question 1 is unanswered, but in subsequent years, there has been an accumulation of

evidence suggesting that the negative answer to Question 1 is correct. This includes proofs

that D(G) = Dℓ(G) when G has a dihedral automorphism group [13], is a forest [14], and

when G is an interval graph [17].

We note that the problem of how one can distinguish the vertices of a graph, be it

through coloring or the identification of a “special” set of vertices, has been broadly studied.

As a significant recent example, Babai’s proof of the existence of a near polynomial-time

algorithm for the graph isomorphism problem [6] relies on the idea of a distinguishing set of

vertices, which is a set S of vertices such that every vertex not in the set has a unique subset

of S in its neighborhood [7]. Further examples include identifying codes [19], many variants

of vertex-distinguishing edge-colorings [9], and a number of other concepts throughout the

literature.

2 Results

In this paper, we study the list-distinguishing number of Cartesian products of complete

graphs. The distinguishing number for Cartesian products of complete graphs was deter-

mined independently by Imrich, Jerebic, and Klavžar [18] and also Fisher and Isaak [16].

2



Interestingly, Fisher and Isaak’s result was not phrased in terms of graph distinguishing, but

rather in the setting of a particular class of edge colorings of the complete bipartite graph.

Theorem 1 ([18]). Let n, m, k be positive integers with k ≥ 2. If (k − 1)n < m ≤ kn, then

D(Kn✷Km) =

{

k if m ≤ kn − ⌈logk n⌉ − 1;

k + 1 if m ≥ kn − ⌈logk n⌉ + 1.

If m = kn − ⌈logk n⌉, then D(Kn✷Km) is either k or k + 1 and can be computed recursively

in O(log∗(m)) time.

Our main result is the following.

Theorem 2. Let n, m, and k be positive integers. If n < m ≤ kn(1− log1.09 n√
2n

), then

Dℓ(Kn✷Km) ≤ k.

Comparing Theorems 1 and 2 in light of Question 1, we see that Theorem 2 shows that

for n sufficiently large, the distinguishing and list-distinguishing numbers of Kn✷Km agree

for almost all m, and otherwise differ by at most one.

Throughout the paper we treat the vertices of Kn✷Km as the points on an integer lattice

with n rows and m columns. Each copy of Km in the product will correspond to a row of

the lattice, and each copy of Kn in the product will correspond to a column of the lattice

(see Figure 1). The vertices will be labeled by vi,j with 1 ≤ i ≤ n and 1 ≤ j ≤ m, with

vertex v1,1 in the top left corner and vertex vn,m in the bottom right corner (like the entries

of an n×m matrix).

To prove Theorem 2, we begin by determining the list distinguishing number ofKn✷Kn+1.

We prove this using the Combinatorial Nullstellensatz.

Theorem 3 (Alon [3]). Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a polynomial

in F [x1, . . . , xn]. Suppose that the degree of f is
∑n

i=1 ti where each ti is a nonnegative integer,

and suppose that the coefficient of
∏n

i=1 x
ti
i in f is nonzero. If S1, . . . , Sn are subsets of F

with |Si| > ti, then there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

f(s1, . . . , sn) 6= 0.

We adopt the notation f
[
∏n

i=1 x
ti
i

]

to denote the coefficient of
∏n

i=1 x
ti
i in f .

Lemma 4. For n ≥ 1, Dℓ(Kn✷Kn+1) = 2.
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Figure 1: Kn✷Km.

Proof. By Theorem 1, we know that D(Kn✷Kn+1) = 2. Since Dℓ(G) ≥ D(G) for all graphs,

it follows that Dℓ(Kn✷Kn+1) ≥ 2. Let L be a list assignment to V (Kn✷Kn+1) in which

every list has two distinct elements, and assume that those elements are from R. It remains

to show that there is a distinguishing L-coloring of Kn✷Kn+1.

To apply the Combinatorial Nullstellensatz, we will create a polynomial F of degree n2 in

n(n+1) variables such that nonzero valuations of F correspond to distinguishing L-colorings

of Kn✷Kn+1. The variables of the polynomial are {xi,j | i ∈ [n], j ∈ [n + 1]}, and the value

of xi,j will be taken from L(vi,j).

To build the polynomial F , we first define two families of polynomials whose product is

F . The first family is used to differentiate the columns of the graph. The second family will

then be used to differentiate the rows of the graph.

For 1 ≤ i < j ≤ n+ 1, define

Ci,j =

n
∑

k=1

(xk,j)−
n
∑

k=1

(xk,i),

and set C =
∏

1≤i<j≤n+1Ci,j. For 1 ≤ h < l ≤ n, define

Rh,l = xl,h − xh,h

and set R =
∏

1≤h<l≤nRh,l. Finally, define

F = C ·R.
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We claim that a nonzero valuation of F corresponds to a distinguishing coloring of

Kn✷Kn+1. In such a valuation, Ci,j 6= 0 for all 1 ≤ i < j ≤ n + 1, and Rh,l 6= 0 for

1 ≤ h < l ≤ n. If Ci,j 6= 0, then the multiset of the colors used in columns i and j

are distinct, and hence the columns are uniquely identified by their multiset of colors. If

Rh,l 6= 0, then rows h and l differ in column h. Working though these polynomials in order,

R1,2, . . . , R1,n use column 1 to distinguish row 1 from all other rows. After row h has been

distinguished from all rows with lower indices, the polynomials Rh,l for l > h use column

h to distinguish row h from all rows with higher indices. Thus when F 6= 0 each row and

column of Kn✷Kn+1 is identifiable by its coloring, and hence the coloring is distinguishing.

Now we apply the Combinatorial Nullstellensatz to prove that F has a nonzero valuation.

We have that

deg(F ) = deg(C) + deg(R) =

(

n+ 1

2

)

+

(

n

2

)

= n2.

We show that the monomial
∏

i 6=j xi,j has a nonzero coefficient in F . Split the variables of

the monomial into two sets: xi,j is above the diagonal if i < j, and xi,j is below the diagonal

if i > j. There are (n+1)(n)
2

variables that are above the diagonal, and these variables only

occur in the polynomials Ci,j. Since there are (n+1)(n)
2

polynomials Ci,j, it follows
∏

Ci,j

must contribute the term
∏

i<j xi,j to the term
∏

i 6=j xi,j in F . It follows that
∏

Ri,j must

contribute the term
∏

i>j xi,j to the term
∏

i 6=j xi,j in F . Thus

F

[

∏

i 6=j

xi,j

]

= C

[

∏

i<j

xi,j

]

· R
[

∏

i>j

xi,j

]

.

We argue by induction on the width of our matrix that

(

∏

1≤i<j≤n+1

Ci,j

)[

∏

1≤i<j≤n+1

xi,j

]

=

n
∏

r=1

r!.

Our induction argument will go from k = 1 to k = n. If k = 1, then
∏

1≤i<j≤k+1Ci,j =

(x1,2 + . . .+ xn,2)− (x1,1 + . . .+ xn,1), and

(

∏

1≤i<j≤2

Ci,j

)[

∏

1≤i<j≤2

xi,j

]

= 1 =
1
∏

r=1

r!.

For 2 ≤ k ≤ n, assume that

(

∏

1≤i<j≤k

Ci,j

)[

∏

1≤i<j≤k

xi,j

]

=
k−1
∏

r=1

r!.
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There are k variables above the diagonal in column k + 1, and they only appear in the k

polynomials of the form Cl,k+1 for l ∈ [k]. Furthermore, they each appear once in each of those

polynomials, and always with the coefficient +1. Thus
(

∏k
l=1Cl,k+1

) [

∏k
i=1 xi,k+1

]

= k!.

Therefore,
(

∏

1≤i<j≤k+1

Ci,j

)[

∏

1≤i<j≤k+1

xi,j

]

=

(

∏

1≤i<j≤k

Ci,j

)[

∏

1≤i<j≤k

xi,j

]

·
(

k
∏

l=1

Cl,k+1

)[

k
∏

i=1

xi,k+1

]

=

(

k−1
∏

r=1

r!

)

· k!

=

k
∏

r=1

r!.

Thus, when k = n, we have that
(

∏

1≤i<j≤n+1

Ci,j

)[

∏

1≤i<j≤n+1

xi,j

]

=
n
∏

r=1

r!.

It remains to determine R
[

∏

i>j xi,j

]

. Each variable below the diagonal appears in

exactly one polynomial Rh,l, and they all have a coefficient of +1. Since they appear in

distinct polynomials, it follows that

R

[

∏

i>j

xi,j

]

= 1.

We conclude that

F

[

∏

i 6=j

xi,j

]

= C

[

∏

i<j

xi,j

]

· R
[

∏

i>j

xi,j

]

=
n
∏

r=1

r!.

Since the coefficient of
∏

i 6=j xi,j in F is nonzero, each variable appears with power 1 or 0 in

the monomial, and each list has size 2, we conclude from the Combinatorial Nullstellensatz

that there is a distinguishing L-coloring of Kn✷Kn+1.

A closer analysis of Lemma 4 actually shows that any precoloring of a set of elements of

Kn✷Kn+1 that contains at most one element of each row and column can be extended to

a distinguishing L-coloring. We refer the interested reader to [15] for further results about

precoloring extensions in the context of graph distinguishing.

Given Lemma 4, when n is large enough we are able to produce distinguishing colorings

of Kn✷Km when m is exponential in n, albeit with a base smaller than 2. We first include

a small technical lemma that works for all values of n.

6



Lemma 5. Let S(x1,1, x1,2, x2,1, x2,2, . . . , xn,1, xn,2) =
∏n

i=1(xi,1 + xi,2). For any assignment

of the xi,j to formal variables from {c1, . . . , cr} such that xi,1 6= xi,2 for all i ∈ [n], the

coefficient of each monomial
∏r

i=1 c
αi
i in S is at most

(

n
⌈n
2
⌉
)

.

Proof. We apply induction on n to prove the assertion. When n = 1, every term has

coefficient 1, as desired.

If {xi,1, xi,2} = {xj,1, xj,2} for all i and j, then S(c1, . . . , cr) =
∑n

k=1

(

n
k

)

xk
1,1x

n−k
1,2 , and the

result holds. Therefore we assume there are values i and j such that {xi,1, xi,2} 6= {xj,1, xj,2}.
Assume without loss of generality that c1 occurs exactly in the first β terms, where β ∈ [n−1].

Write S = S1S2, where S1(x1,2, . . . , xβ,2) =
∏β

i=1(c1+xi,2), S2(xβ+1,1, xβ+1,2, . . . , xn,1, xn,2) =
∏n

j=β+1(xj,1 + xj,2), and xi,2, xj,1, xj,2 ∈ {c2, . . . , cr}.
In order to create

∏r
i=1 c

αi
i in S, we must choose c1 from α1 terms in S1. There are

(

β
α1

)

ways we can create cα1
1 in S1. Fix one term in S1 in which the power of c1 is α1. Suppose

that this term is of the form cα1
1

∏r
i=2 c

γi
i . This term can be used to create

∏r
i=1 c

αi
i in S

only if
∏r

i=2 c
αi−γi
i has a nonzero coefficient in S2. By the induction hypothesis,

∏r
i=2 c

αi−γi
i

has coefficient at most
( n−β

⌈n−β
2 ⌉
)

in S2. Therefore
∏r

i=1 c
αi
i has coefficient at most

(

β
α1

)( n−β

⌈n−β
2 ⌉
)

which is at most
(

n

⌈n
2 ⌉
)

, as desired.

Lemma 6. For n ≥ 2222 and n < m ≤ ⌈1.09n⌉ + n+ 1,

Dℓ(Kn✷Km) ≤ 2.

Proof. Let G = Kn✷Km. Let L be a list assignment on V (G) in which all lists have size 2.

The proof proceeds in two steps. In the first step, we select a set of columns which we will

color so that no nontrivial row transposition of G is color-preserving. In the second step we

extend this coloring to all of the other columns so that no nontrivial column transposition

is color-preserving.

We say that a column is list-uniform if every vertex in the column has the same list of

colors. Let A′ be the set of list-uniform columns. If |A′| ≥ n+1, set A = A′. If |A′| < n+1,

let A consist of A′ with n+1−|A′| additional columns, chosen arbitrarily. Let V (A) denote

the set of vertices contained in the columns in A.

Define the color pattern of a colored column to be the multiset of the colors used to color

the vertices of the column. Define the color vector of a colored column to be the vector of

the colors used to color the vertices of the column, 〈c(v1,j), c(v2,j), . . . , c(vn,j)〉. We will color

the columns of G−A so that (1) no column in G−A shares its color pattern with a column

in A, and (2) no two vectors in G− A have the same color vector.

7



If |A′| ≥ n + 1, then A = A′. Fix a distinguishing 2-coloring c of Kn✷K|A| with no

monochromatic columns, and let the colors be 0 and 1. Theorem 1 implies that such a

coloring exists because ⌈1.09n⌉+n+1 ≤ 2n ⌈log2 n⌉−3. Assume that the colors of the graph

have been ordered. Color G[V (A)] using c so that in column j, the vertices colored 0 are

assigned the minimum color in the list of column j and the vertices colored 1 are assigned

the maximum color in the list of column j. This is a distinguishing coloring of G[V (A)].

Now, all remaining columns contain at least three colors. Greedily color these columns so

that (1) there are at least three different colors on their vertices and (2) so that their color

vectors are all different from each other. It follows that there are at least 2n−3 colorings of

each column, and because n ≥ 4, we have that 2n−3 ≥ ⌈1.09n⌉. The resulting coloring of G

is distinguishing because the coloring of each column in A uses two colors and distinguishes

the rows of G, while the remaining columns are all distinguished because they have distinct

color vectors with at least three colors.

For the rest of the proof, assume that |A′| < n + 1. In this case, we first obtain a

distinguishing coloring of G[V (A)] by using Lemma 4. For Cj /∈ A, let L(Cj) =
⋃n

i=1 L(vi,j),

and note that |L(Cj)| ≥ 3. Therefore there is a color ci in this union that appears in at

most 2n/3 lists in the column. We will show that each column in G− A has at least 1.09n

possible color vectors that do not share their color pattern with any column of A. We will

proceed with two cases.

Case 1: Two colors appear in at least 7
8
n− n2/3 terms. It follows that there are at least

3
4
n−2n2/3 lists that have the same list of two colors. Let L(Cj) = {c1, . . . , cℓ} and let {c1, c2}

be the list on at least 3
4
n− 2n2/3 vertices.

Since the column is not list-uniform, there are at least two distinct color patterns on Cj

for the colors {c3, . . . , cℓ}. Thus we may color the vertices in Cj whose lists are not {c1, c2}
so that at most (n + 1)/2 columns in A match that color pattern on {c3, . . . , cℓ}.

The extensions of the partial coloring of Cj have at least 3
4
n − 2n2/3 + 1 distinct color

patterns, depending on the number of vertices with list {c1, c2} that receive color c1. There-

fore, there is an α ∈
{⌊

n
8
− n2/3

⌋

− 1,
⌊

n
8
− n2/3

⌋

, . . . ,
⌈

5n
8
− n2/3

⌉

+ 1
}

such that none of

the patterns comes from a column in A with at least α vertices colored c1. Therefore, for

n ≥ 2222, it follows that the number of extensions of the colorings to Cj that do not match

the color pattern of any column in A is bounded by

(

3n/4− 2n2/3

⌊n/8− n2/3⌋ − 1

)

≥
(

3n/4− 2n2/3

n/8− n2/3 − 1

)n/8−n2/3

≥ 6n/8−n2/3 ≥ 2n/8 ≥ ⌈1.09n⌉ .

This finishes Case 1.
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Case 2: No two colors appear in at least 7
8
n − n2/3 terms. Thus there is at most one

color that is used in at least 7
8
n− n2/3 terms. Let L(Cj) = {c1, . . . , cℓ} such that

1. if a color appears at least 7
8
n− n2/3 terms, then it is cℓ;

2. colors {c1, . . . , cℓ−1} are ordered so that the function k(h), which denotes the number

of vertices in Cj whose list contains ch but does not contain cg for any g < h, is

decreasing.

Thus there is a set D = {c1, . . . , cℓ′} such that

n2/3 <
ℓ′
∑

i=1

k(i) ≤ 7

8
n.

We will color the vertices in Cj with color {c1, . . . , ch} in their lists so that after the

coloring there are at most
n + 1

∏h
i=1(k(i) + 1)

columns in A whose color pattern in colors {c1, . . . , ch} matches the color pattern of Cj in

those colors. This statement is trivially true before any vertices in Cj have been colored.

Prior to coloring the vertices with color ch in their lists, there are at most

n + 1
∏h−1

i=1 (k(i) + 1)

columns in A whose color pattern matches the color pattern of Cj on the first h− 1 colors.

When processing color ch, there are k(h) vertices with the color ch in their lists that have

not been colored (note that some vertices with ch in their list may have been colored when

earlier colors were processed). Therefore there are k(h) + 1 possibilities for the number of

vertices with color ch in Cj. By the pigeonhole principle, it follows that there is a choice for

the number of vertices that will be colored ch so that there are only

n + 1
∏h

i=1(k(i) + 1)

columns in A whose color pattern matches the color pattern of Cj on the first h colors. After

processing all of the colors in D, the number of columns in A whose color pattern matches

the color pattern of Cj on the colors in D is bounded by

n+ 1
∏ℓ′

i=1(k(i) + 1)
<

n+ 1

n2/3
< n1/3.

9



For simplicity, let k =
∑ℓ′

i=1 k(i). At this point, there are n− k uncolored vertices in Cj.

Therefore, there are 2n−k extensions of the coloring to all of Cj . By Lemma 5, each column

in A whose color pattern matches the color pattern of Cj on the colors in D can match the

color pattern of at most
(

n−k
⌈(n−k)/2⌉

)

of the colorings of Cj. When n − k is even, we will use

the approximation
(

n−k
(n−k)/2

)

≤ 2n−k√
3
2
(n−k)+1

. When n − k is odd, this approximation gives us
(

n−k
⌈(n−k)/2⌉

)

≤ 2n−k√
3
2
(n−k)− 1

2

n−k
n−k+1

. Thus
(

n−k
⌈(n−k)/2⌉

)

≤ 2n−k√
3
2
(n−k)+1

is true for all values of n − k.

Therefore, because n ≥ 2194, the number of colorings of Cj whose color pattern matches the

color pattern of no column in A is bounded by

2n−k − n1/3

(

n− k

⌈(n− k)/2⌉

)

≥ 2n−k − n1/3 2n−k

√

3
2
(n− k) + 1

≥ 2n/8



1− n1/3

√

3
16
n+ 1





≥ ⌈1.09n⌉ .

This finishes Case 2.

In both cases, each column in G−A has at least ⌈1.09n⌉ colorings that do not match the

color pattern of any column in A. Greedily choose such colorings for the columns of G− A

so that no two of these columns have the same color vector.

We claim that the coloring we have generated is a distinguishing coloring of G. By

construction, the columns in A are distinguishable from the columns not in A since the

color patterns of the columns in A are not repeated outside of A. Once the columns of

A have been identified, the coloring of A is distinguishing on the induced subgraph of A.

Therefore the coloring of the columns of A uniquely identifies the vertices in A and hence

distinguished the rows of G. Finally, once the rows have been distinguished, each column of

G − A is distinguishable, since they all have distinct color vectors. Thus the coloring is a

distinguishing coloring.

We now proceed to the proof of Theorem 2. We first give two lemmas that provide a

bound on the coefficients that we will see in the generating functions that allow us to color

our graph.

Although the following inequality seems to be quite natural, several experts in probability

theory were not aware of it, and a classical book of inequalities [8] did not include it. Hence,

it may be of independent interest.
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Lemma 7. If a and n are positive integers with a < n and 0 < p < 1 is a real number, then

(

n

a

)

pa(1− p)n−a <
C

√

np(1− p)
,

where C =
(

3
2e

)
3
2 .

While the proof of Lemma 7 relies only on elementary calculus, it is somewhat long and

we feel that a full proof would detract from the proof of Theorem 2, so have elected to

present it in full in Appendix A.

Lemma 8. Let k be an integer that is at least three and let

S(x1,1, . . . , x1,k, x2,1, . . . , x2,k, . . . , xn,1, . . . , xn,k) =

n
∏

i=1

(xi,1 + . . .+ xi,k).

For any assignment of the xi,j to formal variables from {c1, . . . , cr} such that xi,j are all

distinct for all j ∈ k, the coefficients of each monomial
∏r

i=1 c
αi
i in S are all at most Ckn+1

4
√
n

,

where C =
(

3
2e

)
3
2 .

Proof. Let Pi = xi,1 + xi,2 + . . .+ xi,k. If there is a pair of variables cj and cj′ such that no

Pi contains both of them, then replace all appearances of cj′ with cj in S to obtain a new

polynomial S ′. Since the coefficient of c
αj+αj′

j

∏

i 6=j,j′ c
αi
i in S ′ is at least the coefficient of

cα1
1 . . . cαr

r in S, we may make the assumption that every pair of variables cj and cj′ appear

together in at least one term. Therefore we have
(

r
2

)

≤ n
(

k
2

)

, which implies that

r ≤ 1 +
√

1 + 4nk(k − 1)

2
<

√
2nk2.

For each i ∈ [r], let βi be the number of terms that contain ci. Without loss of generality

assume that β1 ≥ βi for each i. By the choice of β1, we have that β1 ≥ ⌈nk/r⌉. Because

r <
√
2nk2, we have

β1 >
nk√
2nk2

=

√

n

2
. (1)

The coefficient c∗ of cα1
1 . . . cαr

r in S is at most
(

β1

α1

)

(k−1)β1−α1(k)n−β1. Note that if α1 = 0,

then this value is at most

c∗ ≤ (k − 1)β1kn−β1 ≤ (k − 1)⌈nk/r⌉kn−⌈nk/r⌉ = kn

(

1− 1

k

)⌈nk/r⌉
.

11



Using our upper bound (1) on r, and the inequality (1− x)y ≤ e−xy (true for all 0 ≤ x < 1,

y ≥ 0) we have

c∗ ≤ kn

(

1− 1

k

)

√
n/2

≤ kn

e
√

n/2k2
<

Ckn+1

4
√
n

.

If α1 = β1, then the coefficient is at most kn−β1, which is also bounded by Ckn+1

4
√
n

by the

argument above. Thus we may assume that 0 < α1 < β1.

By Lemma 7,
(

n
a

)

pa(1− p)n−a < C√
np(1−p)

when a and n are positive integers with a < n

and p ∈ (0, 1). Therefore, letting a = α1, n = β1, and p = 1
k
, we have

c∗

kn
≤
(

β1

α1

)

1

kα1

(

k − 1

k

)β1−α1

<
Ck

√

β1(k − 1)
.

Apply (1) again, we have that the maximum coefficient in S satisfies

c∗ <
C
√
2 · kn+1

√
k − 1 4

√
n

<
C · kn+1

4
√
n

.

Given Lemmas 5, 6, and 8, we can now show that with lists of size k we are able to find

a distinguishing colorings of Kn✷Km for n sufficiently large where m = kn(1− o(1)).

Theorem 9. For n sufficiently large and n < m ≤ kn(1 + o(1)),

Dℓ(Kn✷Km) ≤ k.

Proof. Let A be the set of the first ⌈log1.09 n⌉ columns in G. By Theorem 6, there is a

distinguishing coloring of the graph induced by A.

First consider the case when k = 2. By Lemma 5, each column in A has a color pattern

that matches the color pattern of at most
(

n
⌈n⌉2
)

of these colorings. Therefore the number of

colorings of each column in G−A that does not have a color pattern of a column in A is at

least

kn − ⌈log1.09 n⌉
(

n

⌈n/2⌉

)

≥ kn

(

1− 1
√

3n/2 + 1

)

= kn(1− o(1)).

Otherwise, k ≥ 3 and each remaining column has kn colorings. By Lemma 8, each column

in A has a color pattern that matches the color pattern of at most Ckn+1

4
√
n

of these colorings.

12



Therefore the number of colorings of each column in G−A that does not have a color pattern

of a column in A is at least

kn − ⌈log1.09 n⌉
(

Ckn+1

4
√
n

)

= kn

(

1− Ck ⌈log1.09 n⌉
4
√
n

)

= kn(1− o(1)).

To complete the coloring, we greedily select colorings for the columns in G−A that do not

have the same color pattern as the columns in A so that no two of these columns have the

same color vector.

As in the proof of Lemma 6, this coloring is distinguishing since the columns in A are

identifiable by their color patterns. The coloring on A is distinguishing on those columns,

and hence it distinguishes the rows of G. All remaining columns are distinguishable due to

their distinct color vectors.

We do observe here that the value of n is quite large for Theorem 9 to apply. Since we

depend on the width of the first collection of columns to be given by ⌈log1.09 n⌉ to apply

Lemma 6, we require ⌈log1.09 n⌉ ≥ 2222. Thus n ≥ 1.45104×1083 is sufficient for the theorem.

3 Open Questions

Question 1 is the clearest future direction to go with this work. We ask the question for the

list coloring of grids here.

Conjecture 1. For all n and m, Dℓ(Kn✷Km) equals D(Kn✷Km).

In the process of proving Theorem 2, we encountered a seemingly simple conjecture that

we approximated with Lemma 8. We present this conjecture here.

Conjecture 2. Let k be an integer that is at least three and let

S(x1,1, . . . , x1,k, x2,1, . . . , x2,k, . . . , xn,1, . . . , xn,k) =
n
∏

i=1

(xi,1 + . . .+ xi,k).

For any assignment of the xi,j to formal variables from {c1, . . . , cr} such that xi,j are all

distinct for all j ∈ k, the coefficient of each monomial
∏r

i=1 c
αi
i in S are all at most the

balanced k-multinomial coefficient

(

n

⌈n/k⌉ , . . . , ⌊n/k⌋

)

.
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A An inequality concerning the binomial distribution

Here we prove Lemma 7.

Lemma 7. If a and n are positive integers with a < n, and 0 < p < 1 is a real number,

then
(

n

a

)

pa(1− p)n−a <
C

√

np(1− p)
,

where C = (3/2e)3/2 = 0.409916 . . . .

Proof. Define f(n, a, p) =
√
n
(

n
a

)

pa+(1/2)(1− p)n−a+(1/2). Our aim is to show that

f(n, a, p) < C.
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For 1 ≤ a ≤ n − 1, the function g(p) = pa+(1/2)(1 − p)n−a+(1/2) takes its maximum in the

interval [0, 1] when

0 = g′(p)

= pa+(1/2)(n− a− (1/2))(1− p)n−a−(1/2) + (a+ (1/2))pa−(1/2)(1− p)n−a+(1/2)

= pa−(1/2)(1− p)n−a−(1/2)

[(

n− a +
1

2

)

p−
(

a +
1

2

)

(1− p)

]

.

Therefore

f(n, a, p) ≤ f

(

n, a,
a+ (1/2)

n + 1

)

.

Define

f(n, a) = f

(

n, a,
a+ (1/2)

n + 1

)

=
√
n

(

n

a

)(

a + (1/2)

n + 1

)a+(1/2) (

1− a+ (1/2)

n+ 1

)n−a+(1/2)

.

Since f(2, 1) =
√
2/4 < 0.35356 and f(3, 2) = f(3, 1) = (675/4096)

√
5 < 0.36850, these

values are less than C. From now on we may suppose that n ≥ 4. Also, f(n, a) = f(n, n−a),

so from now on we may suppose that 1 ≤ a ≤ n
2
.

We now wish to show that f(n, a) is decreasing in terms of a so that f(n, 1) ≥ f(n, a).

We have that for 2 ≤ a ≤ n/2,

f(n, a− 1)

f(n, a)
=

√
n
(

n
a−1

)

(

a− 1
2

n+1

)a− 1
2
(

1− a− 1
2

n+1

)n−a+ 3
2

√
n
(

n
a

)

(

a+ 1
2

n+1

)a+ 1
2
(

1− a+ 1
2

n+1

)n−a+ 1
2

=
1

n−a+1

(

a− 1
2

)a− 1
2
(

n− a+ 3
2

)n−a+ 3
2

1
a

(

a+ 1
2

)a+ 1
2
(

n− a+ 1
2

)n−a+ 1
2

=

a
(a− 1

2
)a−

1
2

(a+ 1
2
)a+

1
2

(n− a + 1)
(n−a+ 1

2
)(n−a+1

2 )

(n−a+ 3
2
)(n−a+3

2 )

.

Define the sequence

X(a) = a
(a− (1/2))a−(1/2)

(a + (1/2))a+(1/2)
.

Thus we wish to determine if X(a)/X(n− a+1) > 1 under the condition that 1 ≤ a ≤ n/2.

Taking the logarithm of both sides yields the following inequality that we wish to prove:

0 < log(X(a)/X(n− a+ 1))

= log(X(a))− log(X(n− a+ 1)).
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For all real a > 0, define the continuous function x(a) = logX(a+ (1/2)), so

x(a) = log(a+ (1/2)) + a log a− (a + 1) log(a+ 1).

We claim that x(a) is strictly decreasing.

To prove that x(a) is decreasing, we use the fact that if x(a) : (0,∞) → R is a real

function that is convex and lima→∞ x(a) exists and is finite, then x(a) is strictly decreasing.

The limit of x(a) exists since

lim
a→∞

x(a) = lim
a→∞

log
(a + 1

2
)

(a + 1)
+ lim

a→∞
log

((

a

a + 1

)a)

= −1.

We have that

x′(a) = (a+ 1/2)−1 + (1 + log a)− (1 + log(a+ 1))

and therefore

x′′(a) =
−1

(a+ (1/2))2
+

1

a
− 1

a+ 1

=
−1

a2 + a+ (1/4)
+

1

a2 + a

> 0.

Hence the function x(a) is convex (for a > 0) and has a finite limit, so x(a) is strictly

decreasing. Therefore we have shown that f(n, 1) ≥ f(n, a), so

f(n, a) ≤ n3/2

(

3/2

n + 1

)3/2(
n− (1/2)

n + 1

)n−(1/2)

.

Finally, define the function

f(n) = n3/2

(

3/2

n+ 1

)3/2(
n− (1/2)

n+ 1

)n−(1/2)

.

For all real n > 1 define the function y(n) = log f(n), so

y(n) =
3

2
log

3

2
+

3

2
log n+

(

n− 1

2

)

log

(

n− 1

2

)

− (n+ 1) log(n + 1).

We claim that y(n) is strictly increasing.

To prove that y(n) is increasing, we use the fact that if y(n) : (1,∞) → R is a real

function that is concave and limn→∞ y(n) exists and is finite, then y(n) is strictly increasing.

The limit of y(n) exists since

lim
n→∞

y(n) =
3

2
log

3

2
− 3

2
.
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We have that

y′(n) = (3/2)n−1 +

(

1 + log

(

n− 1

2

))

− (1 + log(n + 1)),

and therefore

y′′(n) =
−3/2

n2
+

1

n− (1/2)
− 1

n+ 1

=
−3/2

n2
+

3/2

n2 + (n/2)− (1/2)

< 0.

Hence the function y(n) is concave (for n > 1) and has a finite limit, so y(n) is strictly

increasing. Hence f(n) is also increasing, and f(n) < (3/2e)3/2.

Therefore we have

f(n, a, p) ≤ f

(

n, a,
a + 1

2

n+ 1

)

≤ f(n, 1)

< lim
n→∞

f(n, 1)

=

(

3

2e

)3/2

.

Considering the sequence of f(n, 1) one can see that the value of C is the best possible.

It is well known that
(

n
n/2

)

< 2n/
√
2πn for all even n ≥ 2, so one would expect that

Lemma 7 should hold with D = 1/
√
2π, but it is only 0.398942 . . . , about 2.7% smaller than

C. However, using the first line of the proof and the precise Sterling formula (i.e., n! =

nne−n
√
2πn exp(1/(12n+ Θn)) where 0 < Θn < 1), one can prove that if a → ∞, a ≤ n/2,

then f(n, a) = (1 + o(1))/
√
2π.
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