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Abstract

Let F' be a fixed graph. The rainbow Turdn number of F is defined as the maximum
number of edges in a graph on n vertices that has a proper edge-coloring with no
rainbow copy of F' (where a rainbow copy of ' means a copy of F' all of whose edges have
different colours). The systematic study of such problems was initiated by Keevash,
Mubayi, Sudakov and Verstraéte.

In this paper, we show that the rainbow Turan number of a path with k£ 4 1 edges
is less than (% + 2) n, improving an earlier estimate of Johnston, Palmer and Sarkar.

1 Introduction

Given a graph F', the maximum number of edges in a graph on n vertices that contains no
copy of F'is known as the Turdn number of F'; and is denoted by ex(n, F'). An edge-colored
graph is called rainbow if all its edges have different colors. Given a graph F, the rainbow
Turdn number of F' is defined as the maximum number of edges in a graph on n vertices
that has a proper edge-coloring with no rainbow copy of F', and it is denoted by ex*(n, F').

The systematic study of rainbow Turdn numbers was initiated in [6] by Keevash, Mubayi,
Sudakov and Verstraéte. Clearly, ex*(n, F') > ex(n, F'). They determined ex*(n, F') asymp-
totically for any non-bipartite graph F', by showing that ex*(n, F') = (14 0(1))ex(n, F'). For
bipartite F' with a maximum degree of s in one of the parts, they proved ex*(n, F) = O(n!/*).
This matches the upper bound for the (usual) Turdn numbers of such graphs.

Keevash, Mubayi, Sudakov and Verstraéte also studied the rainbow Turan problem for
even cycles. More precisely, they showed that ex*(n, Cy) = Q(n'+/*) using the construction
of large Bj-sets of Bose and Chowla [2]- it is conjectured that the same lower bound holds for

*Department  of Mathematics, Central  European  University, Budapest. E-mail:
beka.ergemlidzeQgmail.com

TRényi Institute, Hungarian Academy of Sciences and Department of Mathematics, Central European
University, Budapest. E-mail: gyori.ervin@renyi.mta.hu

iDepartment of Mathematics, Central European University, Budapest. (Corresponding) E-mail:
abhishekmethuku@gmail.com


http://arxiv.org/abs/1805.04180v1

ex*(n, Cy,) and is a well-known difficult open problem in extremal graph theory. They also
proved a matching upper bound in the case of six-cycle Cg, so it known that exz*(n,Cg) =
O(n*3) = ex(n, Cs). However, interestingly, they showed that ex*(n,Cg) is asymptotically
larger than ex(n,Cs) by a multiplicative constant. Recently, Das, Lee and Sudakov [3]

(14-€z)Ink
showed that ex*(n, Co) = O(n'* % ), where €, — 0 as k — oo.

For an integer k, let P, denote a path of length k, where the length of a path is defined
as the number of edges in it. Erdds and Gallai [4] proved that ex(n, Py+1) < &n; moreover,
they showed that if k£ + 1 divides n, then the unique extremal graph is the vertex-disjoint
union of kLH copies of Kj .

On the other hand, Keevash, Mubayi, Sudakov and Verstraéte [6] showed that in some
cases, the rainbow Turan number of P, can be strictly larger than the usual Turdn number
of Py: Maamoun and Meyniel [7] gave an example of a proper coloring of Ky« containing no
rainbow path with 2 —1 edges. By taking a vertex-disjoint union of such K,’s, Keevash et.
al. showed that ex*(n, Por_;) > (2;) L%J = (1+0(1))%e:ﬂ(n, Pyi_1)—so ex*(n, Pyx_;) is not
asymptotically equal to ex(n, Py:_;). They also mentioned that determining the asymptotic
behavior of ex*(n, Py.1) is an interesting open problem, and stated the natural conjecture
that the optimal construction is a disjoint union of cliques of size ¢(k), where c(k) is chosen
as large as possible so that the cliques can be properly colored with no rainbow Pj.,. For
Py, this conjecture was disproved by Johnston, Palmer and Sarkar [5]: Since any properly
edge-colored K5 contains a rainbow Py, and K4 does not contain a Py, the conjecture for P
would be that ex*(n, Py) ~ 2. But they show that in fact, ez*(n, Py) ~ 2n by showing a
proper edge-coloring of K} 4 without no rainbow Py, and then taking ¢ vertex-disjoint copies

of Ky44. For general k, they proved the following:

Theorem 1 (Johnston, Palmer and Sarkar [5]). For any positive integer k, we have

3k + 1}
n.

k
5" s ex™(n, Pry1) < {

We improve the above bound by showing the following:

Theorem 2. For any positive integer k, we have

k
ex*(n, Pei1) < <97 + 2) n.

We remark that using the ideas introduced in this paper, it is conceivable that the upper
bound may be further improved. However, it would be very interesting (and seems to be
difficult) to prove an upper bound less than kn.

We give a construction which shows that ex*(n, Pyx) > ex*(n, Py ) for any k > 2.

Construction. Let us first show a proper edge-coloring of Ko o1 (a complete bipartite
graph with parts A and B, each of size 2¥) with no rainbow Py. The vertices of A and B are
both identified with the vectors F%. Each edge uv with u € A and v € B is assigned the color
c(uv) := v —v. Clearly this gives a proper edge-coloring of Ky ox. Moreover, if it contains
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a rainbow path vgv; ... vr then such a path must use all of the colors from F5. Therefore
Z?ial c(viviy1) = 0. On the other hand, z?igl c(viviyy) = Z?igl(vi —V;11) = vg— vk Thus,
v9 — v = 0. But notice that since the length of the path vgvy ...vqr is even, its terminal
vertices vy and vyr are either both in A or they are both in B. So they could not have been
identified with the same vector in %, a contradiction. Taking a vertex-disjoint union of such

Kok o1 ’s we obtain that ex*(n, Pyr) > (2F)? {n/2k+1J =(1+ o(l))%em(n, Pyy).

Remark. This construction provides a counterexample to the above mentioned conjec-
ture of Keevash, Mubayi, Sudakov and Verstraéte [6] whenever the largest clique that can
be properly colored without a rainbow Py has size 2¥. This is the case for k = 2, as noted
before. The question of determining whether this is the case for any £ > 3 remains an
interesting open question (see [1] for results in this direction).

Overview of the proof and organization. Let G be a graph which has a proper
edge-coloring with no rainbow Pj.;. By induction on the length of the path, we assume
there is a rainbow path vyvy ...v; in G. Roughly speaking, we will show that the sum of
degrees of the terminal vertices of the path, vy and vy is small. Our strategy is to find a set

of distinct vertices M := {aq, b1, a0,ba, ..., am, by} C {vo,v1,...,v;} (whose size is as large
as possible) such that for each 1 < i < m, there is a rainbow path P of length k£ with a;
and b; as terminal vertices and V(P) = {vg, v1,...,v}; then we show that there are not

many edges of GG incident to the vertices of M, which will allow us to delete the vertices of
M from G and apply induction. To this end, we define the set T" C {vg, v1,..., v} as the
set of all vertices v € {vg, v1,...,vx} where v is a terminal vertex of some rainbow path P
with V(P) = {vg,v1,...,vr}; we call T the set of terminal vertices. We will then find M as
a subset of T'; moreover, it will turn out that if the size of T" is large, then the size of M is
also large—therefore, the heart of the proof lies in showing that 7' is large.

In Section 2.1l we introduce the notation and prove some basic claims. Using these claims,
in Section 2.2 we will show that T is large (i.e., that there are many terminal vertices). Then
in Section 2.3] we will find the desired subset M of T' (which has few edges incident to it).

2 Proof of Theorem

Let G be a graph on n vertices, and suppose it has a proper edge-coloring ¢ : E(G) — N
without a rainbow path of length k + 1. Consider a longest rainbow path P* in G. We may
suppose it is of length &, otherwise we are done by induction on k. For the base case k =1,
notice that any path of length 2, has to be a rainbow path. Thus G can contain at most
5 < (% + 2)n edges, so we are done.

2.1 Basic claims and Notation

In the rest of the paper, the degree of a vertex v € V(G) be denoted by d(v).

Definition 1. Let P* = vgvy...v,. Suppose the color of the edge v;_jv; is c(v;i_1v;) = ¢
for each 1 < i < k. Let L and R denote the sets of colors of edges incident to vy and vy



respectively. (Notice that since the edges of G are colored properly, we have |L| = d(vy) and
|R| = d(vy).)
We define the following subsets of L, R and {ci,ca,...,c,} corresponding to P*.

o Let Loy (respectively R,y ) be the set of colors of the edges connecting vy (respectively
vg) to a verter outside P*.

Note that Loy C {c1,¢2,...,¢ck} and Ry € {c1,¢, ..., ¢}, otherwise we can extend
P* to a rainbow path longer than k in G.
o Let Ly, = L\ Loy and Ry, = R\ Rout-

o Let Loy = LN{ci,co,... ¢} and Lyew = L\ {c1,00,...,c1}. Similarly, let Ryq =
Rﬂ {01,02,...,Ck}, Rnew = R\{Cl,CQ,...,Ck}.

o Let S;, = {c(vj_1v;) = ¢; | vov; € E(G) and c(vov;) € Lpew and 2 < j < k} and
Sk = {c(vjvjt1) = ¢j11 | vpv; € E(G) and c(vgv;) € Rpew and 0 < j < k — 2}.
Notice that | S| = |Lnew| and |Sr| = |Ruew)-

o Let Lyiee = LN Sk and let Ry;e = RN SE.

o Let Lres = Lm \ (Lnew U Lnice) = Lold \ (Lnice U Lout); and Rres = Rzn \ (Rnew U Rnice) =
Rold \ (Rnice U Rout) .

Notation 3. For convenience, we let |L| = | and |R| = r. Moreover, let |Lowt| = lout, | Lota] =
lolda |Lm'ce| = lm’cea |Lnew| = lnew and |Rout| = Tout, |Rold| = Told, |Rm'ce| = Tnice, |Rnew| = Thew-

Note that
d(UO) - lzn + lout = lnew + lold

and
d(vk) = Tin T Tout = Tnew + Told-

Now we prove some inequalities connecting the quantities defined in Definition [l for the
path P*.

Claim 1. L,; NSk =0 = Ry NSy. This implies that Loy N Lyjce = 0 = Rowt N Ryice (Since
Lnice C SR and Rnice C SL)

Proof. Suppose for a contradiction that L., N Sg # (. So there exists a vertex w ¢
{vo,v1,..., v} such that c(vyv;) € Ryew and c(wvg) = c(vjvjiq) for some 0 < j < k — 2.
Consider the path v;11v;42... 050051 ... vow. The set of colors of the edges in this path
is {c1,¢2, ... e} \ {c(vjvjsr)} U {c(wwy), c(vkv;)} = {c1,c0, ..., e} U {c(vg;)}, so it is a
rainbow path of length £+ 1 in GG, a contradiction.

Similarly, by a symmetric argument, we have R,,; NSt = 0. O]

Claim 2. [,,; < k — rpew and Tour < k — Lyew-



Proof. By Claim [I Ly, N Sg = 0. Since both L,,; and Sk are subsets of {ci,ca, ..., ¢k},
this implies, |Lowt| = lous < k — |Sr| = k — Tpew, as desired. Similarly, 7o, < k — Lyew- O

We will prove Theorem [2] by induction on the number of vertices n. For the base cases,
note that for all n < k, the number of edges is trivially at most

" < kn < ok +2

2) =2 “\77°)"
so the statement of the theorem holds. If d(v) < % + 2 for some vertex v of G, then we
delete v from G to obtain a graph G’ on n— 1 vertices. By induction hypothesis, the number
of edges in G is less than (% + 2)(n — 1). So the total number of edges in G is less than

(% + 2)n, as desired.
Therefore, from now on, we assume that for all v € V(G),

d(v) > % +2.

Since d(vg) =1 = lgg + lnew and lyq < k, we have that

2k

lpew > — + 2. (1)
7

Similarly,

2

Tnew > —k + 2. (2)
7

Claim 3. We have
4k

lnice + T'nice D + 4.
7

Proof. First notice that L,.s NSk = (). Indeed, by definition, L,.s N Sgp = (Lyes N L) NS =
Lyes N (LN SR) = Lyes N Lpice = 0. Moreover, by Claim [0, L, N Sg = 0. Therefore, we
have (Lyes U Loy) N Sk = 0. Moreover, (Lyes U Loys) U Sk C {c1,¢9,...,¢,}. Therefore,
lres +lowt < k—|Sgr| =k —rpew. On the other hand, by definition, l,es + lowt = | — lnew — lnice-
So

l - lnew - lnice S k — Tnew-

By a symmetric argument, we get
" = Thew — Tnice S k - lnew-

Adding the above two inequalities and rearranging, we get [ + 7 — lyice — Tnice < 2k, SO

4k
lnice + Tnice > L+ 1 — 2k = d(vo) + d(vg) — 2k > = +4,

as required.



2.2 Finding many terminal vertices

Definition 2 (Set of terminal vertices). Let T' be the set of all vertices v € {vg,v1, Vo, ..., vk}
such that v is a terminal (or end) vertex of some rainbow path P with V (P) = {vg, v1, v, ..., Ux}.
For convenience, we will denote the size of T by t.

The next lemma yields a lower bound on the number of terminal vertices and is crucial
to the proof of Theorem

Lemma 4. We have 3k
T :t27+1.5.

The rest of this subsection is devoted to the proof of Lemma [l

Proof of Lemma [4

Recall that P* = vyv; ... v, and ¢(vjv,41) = ¢;. First we make a simple observation.

Observation 5. If c(vgvg) € Lpew U Rpew, then every verter v; € T. Indeed, the path
ViU;_1Vi_9 . . . VgUkUk_1 - - - Vi1 48 a rainbow path with v; as a terminal vertex. Thus |T| =
k+1> % + 1.5, and we are done. So from now on, we assume c(vVovx) & Lpew U Ryew-

This implies that c(vgvy) € Lpice and c(vgvi—1) & Rpice, because c(vov1) ¢ Sk and
C(’Uk’Uk_l) ¢ SL.

Claim 4. If vgu; is an edge such that c(vgv;) € Lpeyw then vy € T.

Proof. Consider the path v;_1v;_o...vov;v;11 ...v;. Clearly it is a rainbow path of length &
in which v;_; is a terminal vertex. OJ

Suppose vgv; is an edge such that ¢(vov;) € Lpice. Since c(vovg) € Ryew, by the definition
of Lyice, there exists an integer j (with 1 < j < k — 2) such that c(vzv;) € Rypew and

C(’U()UZ'> = C(UjUj+1) = Cj.

Claim 5. If c(vov;) € Lypjce then vy €T or vy € T

Moreover, let j be an integer (with 1 < j < k — 2) such that c(vyv;) € Rpew and
C(’U()UZ'> = C(UjUj+1) = Cj.

If >4, thenv,_y €T, and if j <1 then v €T.

Proof. Observe that since ¢(vov;) € Lpice C Sg, we have that c(vgv;) € Ry (by definition
of SR)

First let 7 > 7. In this case consider the path v;_1v,—2... VoVVi41 .. . VjULVE—1 ... Vj41. Tt
is easy to see that the set of colors of the edges in this path is {c1, co, . . ., ¢} \{c;: }U{c(vjur) }
As c(vjug) € Ryew, the path is rainbow with v;_; as a terminal vertex. So v;_; € T

If 7 < 4, then consider the path v;11vj49... 00901 ... VUEVE_1 ... Viy1. It is easy to see
that the set of colors of the edges in this path is {c1,co, ..., ¢} \ {cit1} U {c(vjug)}, so the
path is rainbow again, with v;; as a terminal vertex. So v;,; € T O



Definition 3. Let b be the largest integer such that c(vovy) € Lpew and there exists b > b
with c(vgvy) € Lpew. (In other words, b is the second largest and b is the largest integer j
such that c(vov;) € Lpew.) Let a be the smallest integer such that c(vgv,) € Ryew and there
exists ' < a with c(vgv)) € Rpew. (That is, a is the second smallest and a' is the smallest
integer j such that c(vgv;) € Rpew.)

Notation 6. For any integers, 0 < x <y < k, let
T ={v;,eT |z <i<y},

and |T®Y| = %Y.
Notice that t = t%% = 2 + t"%=1 as vy and vy, are both terminal vertices.

Now we will show that if a > b, then Lemma [ holds. Suppose a > b. Then by the
definition of a and b, we have

{i |2 <i<band c(vov;) € Lpew}| = |Lnew| — 1 = lpew — 1.

By Claim (@ we know that whenever c¢(vgv;) € Lypew, we have v;_; € T. This shows that
t'0=1 > [ ., — 1. Similarly, by a symmetric argument, we get t**1*=1 >y — 1. Therefore,

t=24 " =2 T P T > 9 4 (e — 1)+ (Prew — 1) = lnew + Tneuw-
Now using ([Il) and (2)), we have

2k 2k 4k
t:lnew new = o 2 = 2=— 47
+r - P24 T h2=

proving Lemma [ Therefore, from now on, we always assume a < b.
Claim 6. If c(vov;) € Lpew o1 c(vk0;) € Rpew, and a < i < b, then v;_1 € T and v;11 € T

Proof of Claim. First suppose ¢(vgv;) € Lyew. Then by Claim [l v;_; € T. We want to show
that v, € T.

Observe that if ¢ = a, then by Claim M again, we have v;;1 € T because vyv; € Ryer-
So let us assume a < i and show that v;,; € T. Notice that there exists a* € {a,a’} (see
Definition [3] for the definition of a and a’) such that c(vgv;) # c(ve=vx). Now consider the
path v« 1V 40 ... V;UQVL . . . Vg URUL_1 . . . V;41. The set of colors of the edges in this path are
{c1, ¢, e} \ {cars1, iz} U {c(vov;), c(vgvr) }, and it is easy to check that all the colors
are different, so the path is rainbow with v;,; as a terminal vertex.

Now suppose ¢(vv;) € Rpew. Then a similar argument shows that v,y € T and v, € T
again, completing the proof of the claim. O

Now we introduce some helpful notation.



Notation 7. For any integers, 0 < x <y < k, let

nice

Lx,y = {C UO'Ui) S Lnice | €T S l S y}a
)

(
Rirvzie = {C(Ukvi c Rnice | X S l S y},
Ly = {c(vgvi) € Lpew | £ <1 <y},

new

Ryt = {c(upvi) € Rpew | @ < i <y,

T ={v,eT |z <i<y}.

Moreover, let |L;Y | =100 |Ry2| =, |LEY | =158 0 |REY | = r*y

nice nice’ nice nice’ new new’ new new*

Note that by definition of a and b, lye = (991 4120 + 1 and rpep = 1 + 7% 4+ potLL

new new new new
Using Observation [ for any integer z, we have the following:

LO,Z — L2,Z

nice nice

and RZF = R=F-2 (3)

nice nice

Moreover, by definition of L,.,, and R,.,, we have

LO,Z — L2,z and Rz,k — Rz7k_2. (4)

new new new new

Informally speaking, Claim [l and Claim [@ assert that each edge e = wyv; such that
c(vov;) € Lpew U Lypjee “creates” a terminal vertex © = v;_1 € T or x = v;4q € T (or
sometimes both). Similarly, each edge e = vgv; such that c(viv;) € Rpew U Rpjce “creates”
a terminal vertex * = v;_1 € T or x = v;4; € T (or both). In the next two claims, by
double counting the total number of such pairs (e, x), we prove lower bounds on the number
of terminal vertices in different ranges (i.e., %=1 t**1F and t*%) in terms of Lyew, Tnew, lnice
and 7p;ce.

Claim 7. We have,

tO,a—l Z

|~

TO,a
0,a 0,a nice
<lnice + lnew + T) )
and

1 ik
> 5 (ot 4 )

Proof of Claim. By Claim [, and by the fact that there is only one j such that c(vyv;) €

RYa~1 it is easy to see that for all but at most one i, we have the following: if c(vov;) €

L0 = [0 (equality here follows from (), then v;_, € T4~ So there are at least 12, —1
pairs (vgvs, ) such that c(vgv;) € L2¢, and @ = v;_y € TH 1,

If c(vgv;) € L%a, = L2 (equality here follows from (@), then by Claim @ v;_; € The~1.
So there are [%¢

2a pairs (vgv;, z) such that c(vv;) € L2 and x = v,y € ThHo™ 1,

Adding the previous two bounds, the total number of pairs (vgv;, z) such that c¢(vov;) €

0,a 0,0 _ 720 2,a _ l,a—1 : 2a 2,a S :
Lice U Lgew =Ly UL and x =v,_y €T , is at least [;;., — 1+ 2% . This implies
tha=t > [>% — 1+ 122 . Therefore, using that vy is also a terminal vertex, we have

R R (5)

8



If c(vpv;) € RV then by Claim [ there is a vertex @ € {v;_1,v;41} such that = € T.
0,a—1

So the number of pairs (vgv;, ) such that c(vpv;) € Rye. s © € {vi_1,v;01} and z € T,

is at least r,o;;gl. By the pigeon-hole principle, either the number of pairs (viv;, v;—1) with
c(vpy;) € R%{Z;l, v;—1 € T, or the number of pairs (vxv;, vi41) with c(vgv;) € Rﬁ;ﬁgl,vm eT,
is at least o~ ' /2. In the first case, we get t%¢=2 > r22~1 /9 and in the second case, we get

nice nice

the > 7“0’“_1/2. As 001 > ¢0:a=2 gpd %=1 > ¢the in hoth cases we have,

nice

0 1 < Tniee
e > % (6)
Therefore, adding up (&) and (@), we get
0,a-1 0,
20 2 I+ D, T = U 4 10, 4+ e

Note that the equality follows from (B) and the fact that %" = %% because c(vzv,) €

R,c,. By a symmetric argument, we have

b+1k [k
2T > it e = e+ it + T
This finishes the proof of the claim. O
Now we prove a lower bound on .
Claim 8.
£ > i (Iniee” ™ riiee” ™ 200080 + i) = 2).

Proof of Claim. Let us construct a set S of pairs (e, z) such that e € L;, UR;, and x € T
with certain properties.
If ¢(e) € LEFLP "N U RYFIP™! then by Claim [ there is a vertex 2 € {v;_1, v;41} such that

r € T (in particular, € T%%). Add all such pairs (e,z) to S. Therefore, the number of
pairs (e, z) added to S so far, is (%7071 4 porlo=t

For each e such that c(e) € L¢1b U R&P-1 we have both v;_1,v;,1 € T by Claim B} we

add both the pairs (e, v;_1) and (e, v;11) to S. Therefore the number of pairs (e, z) added to
S in this step is 2(12F510 + r@b=1)  Thus,

new new

|S| — la-l-l,b—l + ,r,a-i-l,b—l + 2(la+1,b + ,r,a,b—l).

nice nice new new

Note that except the pairs (vpvy, Vpr1), (VoUa, Va—1), all other pairs (e, z) in S are such that
x € T%". Moreover, for each z € T%®, there are at most four pairs (e, z) in S. Therefore, we
have

4t > |S| = 2 > IET T 2t et ) - 2,

nice nice new new

finishing the proof of the claim. O



By Claim [7 and Claim [ we have

0,a b,k
T [,
2(2t0,a—1 + 2tb+1’l) + 4ta,b Z 2 (l(],a + lg,eaw + nice + T’b’k + Tb’k + nzce)

nice 2 nice new 2

+1,6—1 +1,6—1 1,b ,b—1
_'_lgzice + T?Lice + 2(la+ + Ta ) -2

new new
This implies,

0,b a,l 0,a b,l
4t Z lm'ce + Tnice + 2lnew + 2rnew + lnice + Tnice — 2.

By the definition of @ and b, [%* =1,., — 1 and 7%

02 & = Tnew — 1. S0, we get

4t Z lnice + T'nice + 21new + anew + lg’;e + T’Z’Z'lce - 6

Z lm’ce + T'nice _I' 2(lnew _I' Tnew) - 6
Now by Claim B and inequalities (1) and (2), we get that

4k 2k 2k 12k
44> — 4442 —4+24+4—+2)—-6=—+6.
_7++(7++7+) —+
Therefore,
3k
t>—+4+15
_7+ ;

completing the proof of Lemma 4l

2.3 Finding a large subset of vertices with few edges incident to
it
Now we define an auxiliary graph H with the vertex set V(H) = T and edge set F(H) such

that ab € E(H) if and only if there is a rainbow path P in G with a and b as its terminal
vertices and V(P) = V(P*) = {vo, vy, ..., Uk}

Claim 9. The degree of every vertexr u in H is at least % + 2.

Proof of Claim. As w € V(H) = T, u is a terminal vertex. So there is a rainbow path
P = uguy ... ug in G such that ug = v and {ug, uq, ..., ur} = {vg,v1,...,vr}. We define the
sets L, R, Lyew, Ryew corresponding to P in the same way as we did for P* (in Definition
). Moreover, since P* was defined as an arbitrary rainbow path of length k, (2]) holds for
P as well — ie., |Ruew| = Thew > % + 2. We claim that if uu; is an edge in G such that
c(uruj) € Rpew, then uujy € E(H). Indeed, consider the path wou ... wjupug_1 ... uj11.
This is clearly a rainbow path with terminal vertices u = uy and w;;;. So v and w;q; are
adjacent in H, as required. This shows that degree of v in H is at least 7,0, > % + 2, as
desired. O

Size of a matching is defined as the number of edges in it. The following proposition is
folklore.
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Proposition 8. Any graph G with minimum degree §(G) has a matching of size
min {5(G), {@J} .

We know that 6(H) > 2 + 2 by Claim @ Moreover |V (H)| = |T'| = t. So applying
Proposition [§ for the graph H and using Lemma [l we obtain that the graph H contains a
matching M of size

. [2k 13 3k
m = min {7+2, bJ} Zﬁ' (7)

Let the edges of M be a1by, asbs, ..., a,,b,,. Moreover, let
n; = {zy |2y & E(G),x € {a;,b;} and y € {vg, v1,va,..., v} \ {as, bi} .

Claim 10. The number of edges in the subgraph of G induced by M 1is

2m ™, o,
> - = —om?—om—S
|E(G[M])| > < 5 ) <i:1 5 +m> 2m* — 2m 25

Proof of Claim. Note that the sum Y ; n; counts each pair xy ¢ E(G) with z,y € V(M)
exactly twice unless xy = a;b; for some i. Therefore, the number of pairs xy ¢ E(G) in the
subgraph of G' induced by M is at most Y>; % +m. Thus the number of edges of G in the
subgraph induced by M is at least (2’; ) — (32 % +m), which implies the desired claim. [

Claim 11. The sum of degrees of a; and b; in G is at most 3k — 5.

Proof of Claim. Since a;b; is an edge in the auxiliary graph H, there is a rainbow path
P = uguy ... ug in G such that uy = a;, up = b; and {ug, uy,...,ux} = {vo,v1,...,v5}. We
define the sets L, R, L;,, Lout, Rin, Lnew, Rnew corresponding to P in the same way as we did
for P* (in Definition [Il). Therefore, degree of a; is | < I, + k. Similarly, degree of b; is at
most 7,e + k. So the sum of degrees of a; and b; in G is at most

2k + Lyow + Trew- (8)

On the other hand, the sum of degrees of a; and b; in G is [ + 7 = l;;, + lowr + Tin + Tout-
By Claim 2] this is at most (l; + 7im) + & — Tnew + k& — lnew = (Lin + Tin) + 2k — lpew — Thew-
Moreover, it is easy to see that l;, + 1, < 2k —n; by the definition of n;. Therefore, the sum
of degrees of a; and b; in G is at most

2k —n; + 2k — lyew — Thew- (9)

Adding up (8) and (@) and dividing by 2, we get that the sum of degrees of a; and b; in G
is at most

(2k + 2k —n; +2k)  (6k —ny,) g
2 N 2 N 27

as desired. O
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The sum "7, (d(a;) +d(b;)) counts each edge in the subgraph of G induced by M exactly
twice (note that here d(v) denotes the degree of the vertex v in G). Therefore, the number
of edges of G incident to the vertices of M is at most 37, (d(a;) + d(b;)) — |E(G[M])|. Now
using Claim [0 and Claim [[Il the number of edges of G incident to the vertices of M is at
most

m

Z(Bk——)— <2m2—2m—2%> = 3km — 2m* 4+ 2m = (3k +2 — 2m)m

1=1

Now by (), this is at most

2 (st2-2 (%) o= (2 1)2m < (% 12)2m

We may delete the vertices of M from G to obtain a graph G’ on n — 2m vertices. By
induction hypothesis, G’ contains less than (2 + 2)(n — 2m) edges. Therefore, G contains

less than ok ok ok
(7+2> 2m—|— (74‘2) (n—Qm) = ( 7 +2)

edges, as desired. This completes the proof of Theorem
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