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Abstract

In this paper we estimate the expected tracking error of a fixed gain stochas-
tic approximation scheme. The underlying process is not assumed Markovian, a
mixing condition is required instead. Furthermore, the updating function may
be discontinuous in the parameter.
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1 Introduction

Let N := {0,1,2, . . .}. We are interested in stochastic approximation procedures
where a parameter estimate θt , t ∈ N is updated by a recursion of the form

θt+1 = θt + γt+1H(θt , X t+1), t ∈ N, (1)

starting from some guess θ0. Here X t is a stationary signal, γt is a sequence of real
numbers and H(·, ·) is a given functional. The most common choices are γt = 1/t

(decreasing gain) and γt := λ (fixed gain). The former family of procedures is
aimed to converge to θ ∗ with G(θ ∗) = 0 where G(θ) := EH(θ , X t). The latter type
of procedures is supposed to “track” θ ∗, even when the system dynamics is (slowly)
changing.

In most of the related literature the error analysis of (1) was carried out only
in the case where H is (Lipschitz-)continuous in θ . This restrictive hypothesis fails
to accommodate discontinuous procedures which are common in practice, e.g. the
signed regressor, signed error and sign-sign algorithms (see [3], [7], [8]) or the Ko-
honen algorithm (see [27, 1]). Recently, the decreasing gain case was investigated
in [9] for controlled Markov chains and the procedure (1) was shown to converge
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almost surely under appropriate assumptions, without requiring continuity of H.
We refer to [9] for a review of the relevant literature and for examples.

The purpose of the present article is an exploration of the case where X t has
possibly non-Markovian dynamics. We consider fixed gain procedures and weaken
continuity of H to continuity in the sense of conditional expectations, see (6) below,
compare also to condition H4 in [9].

We follow the methodology of the papers [19, 14, 17] which are based on the
concept of L-mixing, coming from [12]. Our arguments work under a modification
of the original definition of L-mixing, see Section 2. We furthermore assume a
certain asymptotic forgetting property, see Assumption 3.4. We manage to estimate
the tracking error for (1), see our main result, Theorem 3.6 in Section 3.

At this point we would like to make comparisons with another important ref-
erence, [28], where no Markovian or continuity assumptions were made, certain
averaging properties of the driving process were required instead. It follows from
Subsection 4.2 of [28] that almost sure convergence of a decreasing gain procedure
can be guaranteed under the α-mixing property of the driving process, see e.g. [6]
about various mixing concepts. It seems that establishing the L-mixing property is
often relatively simple while α-mixing is rather stringent and difficult to prove. In
addition, our present work provides explicit estimates for the error. See Section 4
for examples illustrating the scope of Theorem 3.6.

Section 5 reports simulations showing that the theoretical estimate is in accor-
dance with numerical results. Proofs for Sections 2 and 3 are relegated to Section
6.

2 L-mixing and conditional L-mixing

Estimates for the error of stochastic approximation schemes like (1) can be proved
under various ergodicity assumptions on the driving process. It is demonstrated in
[14] and [17] that the concept of L-mixing (see its definition below in the present
section) is sufficiently strong for this purpose. An appealing feature of L-mixing is
that it can easily be applied in non-Markovian contexts as well, see Section 4.

It turns out, however, that for discontinuous updating functions H the argu-
ments of [14, 17] break down. To tackle discontinuities, we introduce a new con-
cept of mixing here, which is of interest on its own right.

Throughout this paper we are working on a probability space (Ω,F, P) that is
equipped with a discrete-time filtration Fn, n ∈ N as well as with a decreasing
sequence of sigma-fields F+

n
, n ∈ N such that Fn is independent of F+

n
, for all n.

Expectation of a random variable X will be denoted by EX . For any m ≥ 1,
for any Rm-valued random variable X and for any 1 ≤ p <∞, let us set ‖X‖p :=

p
p

E|X |p. We denote by Lp the set of X satisfying ‖X‖p <∞. The indicator function
of a set A will be denoted by 1A.

We now present the class of L-mixing processes which were introduced in [12].
This concept proved to be extremely useful in solving certain hard problems of
system identification, see e.g. [15, 16, 13, 18, 30].

Fix an integer N ≥ 1 and let D ⊂ RN be a set of parameters. A measurable
function X : N×D×Ω→ Rm is called a random field. We will drop dependence on
ω ∈ Ω and use the notation X t (θ), t ∈ N, θ ∈ D.
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For any r ≥ 1, a random field X t (θ), t ∈ N, θ ∈ D is called bounded in L r if

Mr(X ) := sup
θ∈D

sup
t∈N
‖X t (θ)‖r <∞. (2)

For an L r -bounded X t(θ), define also the quantities

γr(τ, X ) := sup
θ∈D

sup
t≥τ
‖X t (θ)− E[X t(θ)|F+t−τ]‖r , τ ≥ 1,

and

Γr(X ) :=
∞∑

τ=1

γr(τ, X ). (3)

For some r ≥ 1, a random field X t (θ) is called uniformly L-mixing of order r

(ULM-r) if it is bounded in L r ; for all θ ∈ D, X t(θ), t ∈ N is adapted to Ft , t ∈ N;
and Γr(X ) <∞. Here uniformity refers to the parameter θ . Furthermore, X t(θ) is
called uniformly L-mixing if it is uniformly L-mixing of order r for all r ≥ 1.

In the case of a single stochastic process (which corresponds to the case where
the parameter set D is a singleton) we apply the terminology “L-mixing process of
order r” and “L-mixing process”.

Remark 2.1. The L-mixing property shows remarkable stability under various op-
erations, this is why it proved to be a versatile tool in the analysis of stochastic
systems, see [14, 17, 15, 16, 13, 18, 30]. If F is a Lipschitz function and X t (θ) is
ULM-r then F(X t (θ)) is also ULM-r, by (33) in Lemma 6.1 below. Actually, if F

is such that |F(x) − F(y)| ≤ K(1 + |x |k + |y |k)|x − y | for all x , y ∈ R with some
k, K > 0 then F(X t (θ)) is uniformly L-mixing whenever X t(θ) is, see Proposition
2.4 of [30]. Stable linear filters also preserve the L-mixing property, see [12]. Prov-
ing that F(X t (θ)) is L-mixing for discontinuous F is more delicate, see Section 4
for helpful techniques.

Other mixing conditions could alternatively be used. Some of these are inherited
by arbitrary measurable functions of the respective processes (e.g. φ-mixing, see
Section 7.2 of [6]). However, they are considerably difficult to verify while L-mixing
(and its conditional version to be defined below) is relatively simple to check, see
also the related remarks on page 2129 of [18].

Recall that, for any family Zi , i ∈ I of real-valued random variables, ess. supi∈I Zi

denotes a random variable that is an almost sure upper bound for each Zi and it
is a.s. smaller than or equal to any other such bound. Such an object is known to
exist, independently of the cardinality of I , and it is a.s. unique, see e.g. Proposition
VI.1.1. of [29].

Now we define conditional L-mixing, inspired by (2) and (3). Let X t (θ), t ∈ N,
θ ∈ D be a random field bounded in L r for some r ≥ 1 and define, for each n ∈ N,

Mn
r
(X ) := ess sup

θ∈D

sup
t∈N

E1/r[|Xn+t (θ)|r
��Fn],

γn
r
(τ, X ) := ess sup

θ∈D

sup
t≥τ

E1/r[|Xn+t (θ)− E[Xn+t (θ)|F+n+t−τ ∨Fn]|r
��Fn], τ≥ 1,

Γ
n
r
(X ) :=

∞∑

τ=1

γn
r
(τ, X ).

For some s, r ≥ 1, we call X t(θ), t ∈ N, θ ∈ D uniformly conditionally L-
mixing of order (r, s) (abbreviation: UCLM-(r, s)) if it is L r -bounded; X t (θ), t ∈ N
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is adapted to Ft , t ∈ N for all θ ∈ D and the sequences Mn
r
(X ), Γ n

r
(X ), n ∈ N

are bounded in Ls. When the UCLM-(r, s) property holds for all r, s ≥ 1 then we
simply say that the random field is uniformly conditionally L-mixing. In the case
of stochastic processes (when D is a singleton) the terminology “conditionally L-
mixing process of order (r, s)” (respectively, conditionally L-mixing process) will be
used.

Remark 2.2. Note that if F0 is trivial and X t (θ) is UCLM-(r, 1) then it is also ULM-r.
Indeed, in that case

Mr(X ) = M0
r
(X ), Γr(X ) = Γ

0
r
(X ).

For non-trivial F0, however, no such implication holds.

Remark 2.3. If F is a Lipschitz function and X t (θ) is UCLM-(r, 1) then F(X t (θ)) is
also UCLM-(r, 1), by Lemma 6.1 below. Conditional versions of the arguments in
Lemma 6.2 show that if X t (θ) is UCLM-(rp, 1) and Yt (θ) is UCLM-(rq, 1) (where
1/p + 1/q = 1) then

Mn
r
(X Y ) ≤ Mn

rp
(X )Mn

rq
(Y ), (4)

Γ
n
r
(X Y ) ≤ 2Mn

rp
(X )Γ n

rq
(Y ) + 2Γ n

rp
(X )Mn

rq
(Y ). (5)

We now present another concept, a surrogate for continuity in θ ∈ D. We say
that the random field X t(θ) ∈ L1, t ∈ N, θ ∈ D satisfies the conditional Lipschitz-

continuity (CLC) property if there is a deterministic K > 0 such that, for all θ1,θ2 ∈
D and for all n ∈ N,

E

h
|Xn+1(θ1)− Xn+1(θ2)|

���Fn

i
≤ K |θ1 − θ2|, a.s. (6)

Pathwise discontinuities of θ → Xn(θ) can often be smoothed out and (6) can
be verified by imposing some conditions on the one-step conditional distribution of
Xn+1 given Fn, see Assumption 4.3 and Lemma 4.7 below.

Remark 2.4. We comment on the differences between condition H4 of [9] and our
CLC property. Assume that X is stationary and Markovian. On one hand, H4 of [9]
stipulates that, for δ > 0

sup
θ∈Dc

E

�
sup

θ ′∈Dc , |θ−θ ′|≤δ
|H(θ , X1)−H(θ ′, X1)|

�
≤ Kδα (7)

for any compact Dc ⊂ D with some K > 0 (that may depend on Dc) and with some
0< α ≤ 1 (independent of Dc). On the other hand, CLC is equivalent to

sup
θ ,θ ′∈D, |θ−θ ′|≤δ

E
���H(θ , X1)−H(θ ′, X1)

�� ��X0 = x
�
≤ Kδ. (8)

for Law(X0)-almost every x . Clearly, (7) allows Hölder-continuity (i.e. α < 1) while
(8) requires Lipschitz-continuity. In the case α = 1 (7) is not comparable to CLC
though both express a kind of “continuity in the average”.

The main results of our paper require a specific structure for the sigma-algebras
which facilitates to deduce properties of conditional L-mixing processes from those
of “unconditional” ones. More precisely, we rely on the crucial Doob-type inequality
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in Theorem 2.5 below. This could probably be proved for arbitrary sigma-algebras
but only at the price of redoing all the tricky arguments of [12] in a more difficult
context. We refrain from this since Theorem 2.5 can accommodate most models of
practical importance. Let Z denote the set of integers.

Theorem 2.5. Fix r > 2, n ∈ N. Assume that, for all t ∈ N, Ft = σ(ǫ j , j ∈ N, j ≤ t),

F+
t

:= σ(ǫ j , j > t) for some i.i.d. sequence ǫ j , j ∈ Z with values in some Polish

space X. Let Wt , t ∈ N be a conditionally L-mixing process of order (r, 1), satisfying

E[Wt |Fn] = 0 a.s. for all t ≥ n. Let m > n and let bt , n < t ≤ m be deterministic

numbers. Then we have

E1/r



 max
n<t≤m

�����

t∑

s=n+1

bsWs

�����

r ��Fn



≤ Cr

�
m∑

s=n+1

b2
s

�1/2q
Mn

r
(W )Γ n

r
(W ), (9)

almost surely, where Cr is a deterministic constant depending only on r but independent

of n, m.

The proof is reported in Section 6.

3 Fixed gain stochastic approximation

Let N ≥ 1 be an integer and let RN be the Euclidean space with norm |x | :=Ç∑N

i=1 x2
i
, x ∈ RN . Let D ⊂ RN be a bounded (nonempty) open set representing

possible system parameters. Let H : D ×Rm → RN be a bounded measurable func-
tion. We assume throughout this section that for all t ∈ N, Ft = σ(ǫ j , j ∈ N, j ≤ t),
F+

t
:= σ(ǫ j , j > t) for some i.i.d. sequence ǫ j, j ∈ Z with values in some Polish

space X, in particular the condition on the sigma algebras in the statement of The-
orem 2.5 holds.

Let
X t := g(ǫt ,ǫt−1, . . .), t ∈ N, (10)

with some fixed measurable function g : X−N → Rm. Clearly, X is a (strongly)
stationary Rm-valued process, see Lemma 10.1 of [24].

Remark 3.1. We remark that, in the present setting, the CLC property holds if, for
all θ1,θ2 ∈ D,

E
h
|H(θ1, X1)− H(θ2, X1)|

���F0

i
≤ K |θ1 − θ2|, a.s.,

due to the fact that the law of (Xk+1,ǫk,ǫk−1, . . .) is the same as that of (X1,ǫ0,ǫ−1, . . .),
for all k ∈ Z.

Define G(θ) := EH(θ , X0). Note that, by stationarity of X , G(θ) = EH(θ , X t )

for all t ∈ N. We need some stability hypotheses formulated in terms of an ordinary
differential equation related to G.

Assumption 3.2. On D, the function G is twice continuously differentiable and bounded,

together with its first and second derivatives.
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Fix λ > 0. Under Assumption 3.2, the equation

ẏt = λG(yt), ys = ξ, (11)

has a unique solution for each s ≥ 0 and ξ ∈ D, on some (finite or infinite) interval
[s, v(s,ξ)) with v(s,ξ) > s. We will denote this solution by y(t, s,ξ), t ∈ [s, v(s,ξ)).
Let D1 ⊂ D such that for all ξ ∈ D1 we have y(t, 0,ξ) ∈ D for any t ≥ 0. We denote

φ(D1) = {u ∈ D : u= y(t, 0,ξ), for some t ≥ 0, ξ ∈ D1}.

The ǫ-neighbourhood of a set D1 is denoted by S(D1,ǫ), i.e.

S(D1,ǫ) = {u ∈ RN : |u− θ |< ǫ for some θ ∈ D1}.

We remark that, under Assumption 3.2, the function y(t, s,ξ) is continuously dif-
ferentiable in ξ.

Notice that all the above observations would be true under weaker hypotheses
than those of Assumption 3.2. However, the proof of Lemma 6.5 below requires the
full force of Assumption 3.2, see [17].

Assumption 3.3. There exist open sets

; 6= Dξ ⊂ Dy ⊂ Dθ ⊂ Dy ⊂ D

such that φ(Dξ) ⊂ Dy , S(Dy , d) ⊂ Dθ for some d > 0 and φ(Dθ ) ⊂ Dy , S(Dy , d ′) ⊂ D

for some d ′ > 0. The ordinary differential equation (11) is exponentially asymptot-

ically stable with respect to initial perturbations, i.e. there exist C∗ > 0,α > 0 such

that, for each λ sufficiently small, for all 0≤ s ≤ t, ξ ∈ D

����
∂

∂ ξ
y(t, s,ξ)

���� ≤ C∗e−λα(t−s). (12)

We furthermore assume that there is θ ∗ ∈ D such that

G(θ ∗) = 0. (13)

It follows from φ(Dξ) ⊂ Dy and (12) that θ ∗ actually lies in the closure of Dy

and that there is only one θ ∗ satisfying (13).
While Assumptions 3.2, 3.3 pertained to a deterministic equation, our next hy-

pothesis is of a stochastic nature.

Assumption 3.4. For all n ∈ N,

E

�
sup
ϑ∈D

∞∑

k=n

|E[H(ϑ, Xk+1)|Fn]− G(ϑ)|
�
<∞ (14)

Remark 3.5. Assumption 3.4 expresses a certain kind of “forgetting”: for k large,
E[H(ϑ, Xk+1)|Fn] is close to G(ϑ) = EH(θ , Xk+1)|θ=ϑ in L1, uniformly in ϑ and the
convergence is fast enough so that the sum in (14) is finite. In other words, this is
again a kind of mixing property.

In certain cases, the validity of Assumption 3.4 indeed follows from L-mixing.
Let X t , t ∈ N be L-mixing of order 1 and let x → H(θ , x) be Lipschitz-continuous
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with a Lipschitz constant L† that is independent of θ . We claim that Assumption
3.4 holds under these conditions. Indeed, for every ϑ ∈ D

∞∑

k=n

E |E [H(ϑ, Xk+1)|Fn]− E[H(θ , Xk+1)]|θ=ϑ| ≤

∞∑

k=n

��E [H(ϑ, Xk+1)|Fn]− E
�
H(ϑ, E[Xk+1|F+n ])|Fn

��� +

∞∑

k=n

��E
�
H(θ , E[Xk+1|F+n ])

�
|θ=ϑ − E[H(θ , Xk+1)]|θ=ϑ

�� ≤

2L†
∞∑

k=n

��Xk+1 − E[Xk+1|F+n ]
��

noting that

E
�
H(ϑ, E[Xk+1|F+n ])|Fn

�
= E

�
H(θ , E[Xk+1|F+n ])

�
|θ=ϑ,

by independence of Fn and F+
n

. Hence

E

�
sup
ϑ∈D

∞∑

k=n

|E[H(ϑ, Xk+1)|Fn]− G(ϑ)|
�
≤ 2L†

Γ1(X ) <∞.

Assumption 3.4 can also be verified in certain cases where H is discontinuous, see
Section 4.

We now state the main result of our article.

Theorem 3.6. Let H(θ , X t ) be UCLM-(r, 1) for some r > 2, satisfying the CLC property

(see (6) above). Let Assumptions 3.2, 3.3 and 3.4 be in force. For some ξ ∈ Dξ, define

the recursive procedure

θ0 := ξ, θt+1 = θt +λH(θt , X t+1), (15)

with some λ > 0. Define also its “averaged” version,

z0 := ξ, zt+1 = zt +λG(zt ). (16)

Let d, d ′ in Assumption 3.3 be large enough and letλ be small enough. Then θt , zt ∈ Dθ
for all t and there is a constant C, independent of t ∈ N and of λ, such that

E |θt − zt | ≤ Cλ1/2, t ∈ N.

An important consequence of the main theorem is provided as follows.

Corollary 3.7. Under the conditions of Theorem 3.6, there is t0(λ) ∈ N such that

E |θt − θ ∗| ≤ Cλ1/2, t ≥ t0(λ).

Furthermore, t0(λ) ≤ C◦ ln(1/λ)/λ for some C◦ > 0 .

The proofs of Theorem 3.6 and Corollary 3.7 are postponed to Section 6.
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Remark 3.8. Our current investigations were motivated by [17] where not only
the random field H(θ , X t ) was assumed L-mixing, but also its “derivative field”

H(θ1, X t )−H(θ2, X t )

θ1 − θ2
, t ∈ N, θ1,θ2 ∈ D, θ1 6= θ2. (17)

As shown in Section 3 of [12], the latter hypothesis necessarily implies the conti-
nuity (in θ) of H(θ , X t ). For our purposes such an assumption is thus too strong.
We are able to drop continuity at the price of modifying the L-mixing concept, as
explained in Section 2 above.

We point out that our results complement those of [17] even in the case where H

is Lipschitz-continuous (in that case the CLC property of our paper obviously holds).
In [17], the derivative field (17) was assumed to be L-mixing. In the present paper
we do not need this hypothesis (but we assume conditional L-mixing of order (r, 1)
for some r > 2 instead of L-mixing).

4 Examples

The present section serves to illustrate the power of Theorem 3.6 above by exhibit-
ing processes X t and functions H to which that theorem applies.

The (conditional) L-mixing property can be verified for arbitrary bounded mea-
surable functionals of Markov processes with the Doeblin condition (see [20]) and
this could probably be extended to a larger family of Markov processes using ideas of
[2] or [22]. We prefer not to review the corresponding methods here but to present
some non-Markovian examples because they demonstrate better the advantages of
our approach over the existing literature.

In Subsection 4.1 linear processes (see e.g. Subsection 3.2 of [21]) with poly-
nomial autocorrelation decay are considered, while Subsection 4.2 presents a class
of Markov chains in a random environment with contractive properties.

4.1 Causal linear processes

Assumption 4.1. Let ǫ j , j ∈ Z be a sequence of independent, identically distributed

real-valued random variables such that E|ǫ0|ζ <∞ for some ζ ≥ 2 and Eǫ0 = 0. We

set Fn = σ(ǫi , i ≤ n), and F+
n
= σ(ǫi , i > n) for each n ∈ Z. Let us define the process

X t :=
∞∑

j=0

a jǫt− j, t ∈ Z, (18)

where a j ∈ R, j ∈ N. We assume a0 6= 0 and

|a j | ≤ C1( j + 1)−β , j ∈ N,

for some constants C1 > 0 and β > 1/2.

Note that the series (18) converges a.s. (by Kolmogorov’s theorem, see e.g.
Chapter 4 of [24]). As a warm-up, we now check the conditional L-mixing property
for X .

Lemma 4.2. Let Assumption 4.1 be in force. If β > 3/2 then the process X t , t ∈ N is

conditionally L-mixing of order (ζ, 1).

8



Proof. We have, for t ∈ N,

E1/ζ[|X t |ζ|F0] ≤ E1/ζ



2ζ−1|
t−1∑

j=0

a jǫt− j|ζ
��F0



+ E1/ζ



2ζ−1|
∞∑

j=t

a jǫt− j|ζ
��F0





≤ 2
ζ−1
ζ

t−1∑

j=0

|a j |‖ǫt− j‖ζ + 2
ζ−1
ζ

∞∑

j=t

|a jǫt− j|

using the simple inequality (x + y)ζ ≤ 2ζ−1(xζ + yζ), x , y ≥ 0; properties of the
norm ‖ · ‖ζ; independence of ǫ j, j ≥ 1 from F0 and F0-measurability of ǫ j, j ≤ 0.
Hence

E1/ζ[|X t |ζ|F0] ≤ 2
ζ−1
ζ ‖ǫ0‖ζ

∞∑

j=0

|a j |+ 2
ζ−1
ζ

∞∑

j=0

C1(t + j + 1)−β |ǫ− j |

≤ 2
ζ−1
ζ ‖ǫ0‖ζ

∞∑

j=0

|a j |+ 2
ζ−1
ζ

∞∑

j=0

C1( j + 1)−β |ǫ− j |

≤ C2



1+
∞∑

j=0

|ǫ− j |( j + 1)−β



 ,

for some C2 > 0. Note that the latter bound is independent of t. Similar estimates
prove that, for all n≥ 0,

Mn
ζ
(X ) ≤ C2



1+
∞∑

j=0

|ǫn− j |( j + 1)−β



 .

The right-hand side has the same law for all n and it is in L1 since β > 1. This
implies that the sequence Mn

ζ
(X ), n ∈ N is bounded in L1.

For 1≤ m and for any t ∈ Z, define

X+
t ,m :=

m−1∑

j=0

a jǫt− j,

and, for t ≥ m, let

X ◦
t ,m := X+

t ,m +

∞∑

j=t

a jǫt− j.

9



Notice that E[X t |F+t−m
∨F0] = X ◦

t ,m and, by independence of ǫ j , j ≥ 1 from F0,

E[|X t − X ◦
t ,m|ζ

��F0] =








t−1∑

j=m

a jǫt− j








ζ

ζ

≤ (19)

C3E

 
t−1∑

j=m

a2
j
ǫ2

t− j

!ζ/2
≤

C3

 
t−1∑

j=m

‖a2
j
ǫ2

t− j
‖ζ/2

!ζ/2
≤

C3

 
C2

1

∞∑

j=m

(1+ j)−2β‖ǫ0‖2ζ

!ζ/2
≤
�
C ′3m−2β+1

�ζ/2
,

with some constants C3, C ′3 > 0, using the Marczinkiewicz-Zygmund inequality. De-

fine bm :=
Æ

C ′3m−β+1/2. An analogous estimate gives γn
ζ
(m, X ) ≤ bm for all n ∈ N.

Since
∑∞

m=1 bm <∞ by β > 3/2, Γ n
ζ
(X ) is actually bounded by a constant, uni-

formly in n.

We also need in the sequel that the law of the driving noise is smooth enough.
This is formulated in terms of the characteristic function φ of ǫ0.

Assumption 4.3. We require that

∫

R

|φ(u)| du <∞. (20)

Remark 4.4. Assumption 4.3 implies the existence of a (continuous and bounded)
density f for the law of ǫ0 (with respect to the Lebesgue measure). Indeed, f is the
inverse Fourier transform of φ:

f (x) =
1

2π

∫

R

φ(u)e−iux du, x ∈ R.

Conversely, if the law of ǫ0 has a twice continuously differentiable density f such
that f ′, f ′′ are integrable over R then (20) holds. The latter observation follows by
standard Fourier-analytic arguments.

Lemma 4.5. Let Assumptions 4.1 and 4.3 be in force. Then the law of X0 (resp. X+0,m)

has a density f∞ (resp. fm) with respect to the Lebesgue measure. Moreover, there is

a constant K̃ > 0 such that

sup
m∈N∪{∞}

sup
x∈R

fm(x) ≤ K̃.

Proof. Denote by φm the characteristic function of X+0,m. Since |φ(u)| ≤ 1 for all u,
we see that

|φm(u)|=
�����

m−1∏

j=0

φ(a ju)

����� ≤ |φ(a0u)|, (21)

10



which implies, by applying an inverse Fourier transform, the existence of fm and
the estimate

| fm(x)| ≤
1

2π

∫

R

|φ(a0u)| du =: K̃ <∞, for all x ∈ R, m ≥ 1,

by Assumption 4.3. As X+0,m tends to X0 in probability when m→∞, φm(u) tends
to φ∞(u) for all u, where φ∞ is the characteristic function of X0. The integrable
bound (21) is uniform in m, so f∞ exists and the dominated convergence theorem
implies that fm(x) tends to f∞(x), for all x ∈ R. The result follows.

Let D ⊂ RN be a bounded open set. In the sequel we consider functionals of the
form

H(θ , x) :=
M∑

j=1

g j(θ , x)1{x∈I j (θ )}, x ∈ R, θ ∈ D, (22)

where the g j are bounded and Lipschitz-continuous functions (jointly in the two
variables) and the intervals I j(θ) are of the form (−∞,h j(θ)), (h j(θ),∞) or (h1

j
(θ),h2

j
(θ))

with h j,h
1
j
,h2

j
: D→ R Lipschitz-continuous functions.

Remark 4.6. The intervals I j(θ) can also be closed or half-closed and the results
below remain valid, this is clear from the proofs. In the one-dimensional case,
the signed regressor, signed error, sign-sign and Kohonen algorithms all have an
updating function of the form (22), see [7], [8], [27], [1]. For simplicity, we only
treat the one-dimensional setting (i.e. x ∈ R) in the present paper but we allow D

to be multidimensional.

Lemma 4.7. Let Assumptions 4.1 and 4.3 be in force. Then a random field H(θ , X t ),

t ∈ N, θ ∈ D as in (22) satisfies the CLC property (6).

Proof. It suffices to consider H(θ , X1) = g(θ , X1)1{X1∈I(θ )} with g Lipschitz-continuous,
bounded and I of the form (−∞,h(θ)), (h(θ),∞) or (h1(θ),h2(θ)) with h,h1,h2

Lipschitz. We only prove the first case, the other cases being similar. Recall also
Remark 3.1.

Denoting by C4 a Lipschitz-constant for g and by C5 an upper bound for |g|, we
get the estimate

|H(θ1, X1)−H(θ2, X1)| ≤
|1{X1<h(θ1)}g(θ1, X1)− 1{X1<h(θ1)}g(θ2, X1)| +
|1{X1<h(θ1)}g(θ2, X1)− 1{X1<h(θ2)}g(θ2, X1)| ≤

C4|θ1 − θ2|+ C5|1{X1<h(θ1)} − 1{X1<h(θ2)}| ≤
C4|θ1 − θ2|+ C5

�
1{X1∈[h(θ1),h(θ2))} + 1{X1∈[h(θ2),h(θ1))}

�
.

We may and will assume h(θ1) < h(θ2). It suffices to prove that

P (X1 ∈ [h(θ1),h(θ2))|F0) ≤ C6|θ1 − θ2|
with a suitable C6 > 0. Noting that the density of a0ǫ1 is x → (1/|a0|) f (x/a0), we
have

P (X1 ∈ [h(θ1),h(θ2))|F0) =

∫ h(θ2)−
∑∞

j=1 a jǫ1− j

h(θ1)−
∑∞

j=1 a jǫ1− j

1

|a0|
f (x/a0) d x ≤

1

|a0|
K0|h(θ1)− h(θ2)| ≤

1

|a0|
K0C7|θ1 − θ2|,

11



where K0 is an upper bound for f (see Remark 4.4) and C7 is a Lipschitz constant
for h. This completes the proof.

Theorem 4.8. Let Assumptions 4.1 and 4.3 be in force. Let H be of the form specified

in (22). Let ζ ≥ 2r and let β satisfy β > 4r + 1/2. Then the random field H(θ , X t ),

t ∈ N, θ ∈ D is UCLM-(r, 1).

Proof. We may and will assume

H(θ , X t ) = g(θ , X t )1{X t∈I(θ )}

with some bounded Lipschitz function g and with some interval I(θ) of the type as
in (22). As H is bounded, Mn

r
(H), n ∈ N is trivially a bounded sequence in L1.

In view of (4), (5), it suffices to establish that 1{X t∈I(θ )}, t ∈ N is UCLM-(2r, 1)
(since g(θ , X t ), 1{X t∈I(θ )} are bounded and g(θ , X t ) is UCLM-(2r, 1), by ζ ≥ 2r,
Lemma 4.2 and Remark 2.3). We show this for I(θ) = (−∞,h(θ)) with h Lipschitz-
continuous as other types of intervals can be handled similarly.

As
Law(X t+n, t ∈ N, ǫn− j , j ∈ N) = Law(X t , t ∈ N, ǫ− j, j ∈ N)

for all n ∈ N, we may reduce the proof to estimations for the case n := 0. Let us
start with

���1{X ◦t,m<h(θ )} − 1{X t<h(θ )}

��� =

1{X ◦t,m<h(θ ),X t≥h(θ )} + 1{X t<h(θ ),X ◦t,m≥h(θ )} ≤
1{X t∈(h(θ )−ηm,h(θ )+ηm)} + 1{|X ◦t,m−X t |≥ηm},

for all ηm > 0. We will choose a suitable ηm later. Using Lemma 4.5 and the
conditional Markov inequality we obtain

E
�
|1{X ◦t,m<h(θ )} − 1{X t<h(θ )}|2r |F0

�
≤

C8P(X t ∈ (h(θ)−ηm,h(θ) +ηm)|F0) +

C8P(|X ◦
t ,m − X t | ≥ ηm|F0) ≤

2C8K̃ηm + C8E
�
|X t − X ◦

t ,m|
��F0

�
/ηm, (23)

with some constant C8, noting that powers of indicators are themselves indicators
and that the conditional density of X t with respect to F0 is x → ft (x −

∑∞
j=t

a jǫt− j)

and the latter is≤ K̃ by Lemma 4.5. Using (19), the second term in (23) is bounded
by C8

Æ
C ′3m−β+1/2/ηm hence it is reasonable to choose ηm := 1/m(β−1/2)/2, which

leads to
E1/2r

�
|1{X ◦t,m<h(θ )} − 1{X t<h(θ )}|2r

��F0

�
≤ C9/m

(β−1/2)/(4r),

with some C9 > 0. Notice that X ◦
t ,m is F+

t−m
∨ F0-measurable. Lemma 6.1 implies

that γ2r(X , m) ≤ 2C9/m
(β−1/2)/(4r). As (β − 1/2)/(4r) > 1 by our hypotheses, we

obtain the UCLM-(2r, 1) property for 1{X t∈I(θ )}.

Remark 4.9. When ǫ0 has moments of all orders then one can reduce the lower
bound 4r + 1/2 for β in Theorem 4.8 to r + 1/2. Indeed, in this case g(θ , X t ) is
UCLM-(q, 1) for arbitrarily large q by Lemma 4.2 and Remark 2.3 so it suffices to
show the UCLM-(r ′, 1) property for 1{X t∈I(θ )} for some r ′ > r that can be arbitrarily

12



close to r (and not for r ′ = 2r as in Theorem 4.8). The estimate of the above proof
can be improved to

E
�
|1{X ◦t,m<h(θ )} − 1{X t<h(θ )}|r

′ |F0

�
≤

2C8K̃ηm + C8E
�
|X t − X ◦

t ,m|q
��F0

�
/ηq

m
,

for arbitrarily large q. Choosing ηm := 1/m[q(β−1/2)]/(q+1), we arrive at

E1/r′
�
|1{X ◦t,m<h(θ )} − 1{X t<h(θ )}|r

′ ��F0

�
≤ C9/m

[q(β−1/2)]/[(q+1)r′].

Let β > r + 1/2. If r ′ > r is chosen close enough to r and q is chosen large
enough then [q(β − 1/2)]/[(q + 1)r ′] > 1 which shows the UCLM-(r, 1) property
for H(θ , X t ).

Lemma 4.10. Let Assumptions 4.1 and 4.3 be in force, let β > 3/2. Then, for all

n ∈ N,

E

�∞∑

k=n

sup
ϑ∈D

|E [H(ϑ, Xk+1)|Fn]− G(ϑ)|
�
≤ C10

with some fixed C10 <∞. That is, Assumption 3.4 holds.

Proof. We need to estimate

∞∑

k=n

���E
�
g(ϑ, Xk+1)1{Xk+1<h(ϑ)}|Fn

�
− E[g(θ , Xk+1)1{Xk+1<h(θ )}]|θ=ϑ

��� ,

where h : D→ R is Lipschitz-continuous and g is a bounded, Lipschitz-continuous
function with a bound C11 for |g| and with Lipschitz constant C12. It suffices to
prove

E

�
sup
ϑ∈D

∞∑

k=1

��E
�
g(ϑ, X0)1{X0<h(ϑ)}|F−k

�
− E[g(θ , X0)1{X0<h(θ )}]|θ=ϑ

��
�
<∞,

since the law of (X0,ǫ−k,ǫ−k−1, . . .) equals that of (Xn+k,ǫn,ǫn−1, . . .), for all k ≥ 1,
n ∈ Z. We can estimate a given term in the above series as follows:

��E
�
g(ϑ, X0)1{X0<h(ϑ)}|F−k

�
− E[g(θ , X0)1{X0<h(θ )}]|θ=ϑ

�� ≤
���E
�
g(ϑ, X0)1{X0<h(ϑ)}|F−k

�
− E[g(ϑ, X+0,k)1{X+0,k<h(ϑ)}|F−k]

��� +
���E[g(θ , X+0,k)1{X+0,k<h(θ )}]|θ=ϑ − E[g(θ , X0)1{X0<h(θ )}]|θ=ϑ

��� ≤

C12E

h
|X0 − X+0,k|

���F−k

i
+ C11E

h
|1{X+0,k<h(ϑ)} − 1{X0<h(ϑ)}|

���F−k

i
+

C12|X0 − X+0,k|+ C11E
�
|1{X+0,k<h(θ )} − 1{X0<h(θ )}|

�
|θ=ϑ (24)

noting that E[g(θ , X+0,k)1{X+0,k<h(θ )}]|θ=ϑ = E[g(ϑ, X+0,k)1{X+0,k<h(ϑ)}|F−k]. The first

and third terms on the right-hand side of (24) are equal and they are ≤ C13k−β+1/2

with some C13 > 0, by the proof of Lemma 4.2, hence their sum (when k goes from
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1 to infinity) is finite. The expression in the second term of (24) can be estimated
as

E

h
|1{X+0,k<h(ϑ)} − 1{X0<h(ϑ)}|

���F−k

i
≤

P

 
X0 ∈

 
h(ϑ)−

∞∑

j=k

a jǫ− j,h(ϑ) +
∞∑

j=k

a jǫ− j

!
|F−k

!
≤

2K̃

�����

∞∑

j=k

a jǫ− j

����� , (25)

noting that the conditional density of X0 with respect toF−k is x → fk

�
x −

∑∞
j=k

a jǫ− j

�

and this is bounded by K̃ , using Lemma 4.5. Since (25) is independent of ϑ, a sim-
ilar estimate guarantees that

E
�
|1{X+0,k<h(θ )} − 1{X0<h(θ )}|

�
|θ=ϑ ≤ 2K̃

�����

∞∑

j=k

a jǫ− j

����� .

Note that the upper estimates obtained so far do not depend on ϑ. It follows that,
even taking supremum in ϑ ∈ D, the expectations of the second and fourth terms
on the right-hand side of (24) are both ≤ C14k(−β+1/2) with some C14 > 0. As
β > 3/2, the infinite sum of these terms is finite, too, finishing the proof of the
present lemma.

Assumption 4.11. Let f satisfy

| f (x)| ≤ bCe−
bδ|x | for all x ∈ R, (26)

with some bC , bδ > 0

Assumption 4.12. Let ∫

R

u2|φu| du <∞ (27)

hold.

Remark 4.13. Clearly, Assumption 4.11 implies that ǫ0 has finite moments of all
orders. Note also that Assumption 4.12 implies Assumption 4.3.

Remark 4.14. If f is four times continuously differentiable such that f ′, f ′′, f ′′′,
f ′′′′ are integrable then (27) holds, compare to Remark 4.4 above.

Lemma 4.15. Let Assumptions 4.1, 4.11 and 4.12 hold. Let the functions gi , h1
i
, h2

i
,

hi of (22) be twice continuously differentiable with bounded first and second deriva-

tives. Then G(θ) := EH(θ , X0) is bounded and twice continuously differentiable with

bounded first and second derivatives, i.e. Assumption 3.2 holds.

Proof. We may and will assume that

H(θ , x) = 1{x<h(θ )}g(θ , x)

with h Lipschitz-continuous, g bounded and Lipschitz-continuous. G is bounded
since g is. We proceed to establish its differentiability and the boundedness of its
derivatives.
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Recall that

φ∞(u) =
∞∏

j=0

φ(a ju), u ∈ R,

where φ∞ is the characteristic function of X0 and the product converges pointwise.
Since |φ(u)| ≤ 1 for all u, (27) implies that

∫

R

u2|φ∞(u)| du <∞.

Clearly, this implies
∫
R
|uφ∞(u)| du <∞ and

∫
R
|φ∞(u)| du <∞ as well (since

φ∞ is bounded, being a Fourier transform). Now one can directly show, using the
inverse Fourier transform, that f∞, the density of the law of X0, is twice continu-
ously differentiable.

Inequality (26) implies thatφ has a complex analytic extension in a strip around
R. Since the sequence a j , j ∈ N is bounded, there is even a strip such that u →
φ(a ju) is analytic in it, for all j ∈ N, thus φ∞ is also analytic there. Then so are
−iuφ∞(u) and−u2φ∞(u). These being integrable, we get that their inverse Fourier
transforms, f ′∞ and f ′′∞, satisfy

| f ′∞(x)|+ | f ′′∞(x)| ≤ C̃ e−δ̃|x | for all x ∈ R, (28)

with some C̃ , δ̃ > 0, see e.g. Theorem 11.9.3 of [25]. In particular, f ′∞, f ′′∞ are
integrable.

For notational simplicity we consider only the case N = 1, i.e. D ⊂ R. Using the
change of variable y = x − h(θ), we see that

EH(θ , X0) =

∫

R

g(θ , x)1{x<h(θ )} f∞(x) d x =

∫ 0

−∞
g(θ , y + h(θ)) f∞(y + h(θ)) d y.

We calculate ∂θ g(θ , y + h(θ)) f∞(y + h(θ)):

[∂1 g(θ , y+h(θ))+∂2 g(θ , y+h(θ))h′(θ)] f∞(y+h(θ))+g(θ , y+h(θ)) f ′∞(y+h(θ))h′(θ),

where ∂1 (resp. ∂2) denote differentiation with respect to the first (resp. second)
variable. As f∞ (resp. f ′∞) satisfy (26) (resp. (28)) and g,∂1 g,∂2 g,h′ are bounded,
the dominated convergence theorem implies that

∂θ EH(θ , X0) =
∫ 0

−∞
[∂1 g(θ , y + h(θ)) + ∂2 g(θ , y + h(θ))h′(θ)] f∞(y + h(θ)) d y +

∫ 0

−∞
g(θ , y + h(θ)) f ′∞(y + h(θ))h′(θ) d y =

∫

R

1{x<h(θ )}[∂1 g(θ , x) + ∂2 g(θ , x)h′(θ)] f∞(x) d x +

∫

R

1{x<h(θ )}g(θ , x) f ′∞(x)h
′(θ) d x ,

where both integrals are clearly bounded in θ . Similar calculations involving the
second derivatives of g,h, f∞ show that ∂ 2

θ
EH(θ , X0) exists and it is bounded in

θ .
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The following corollary summarizes our findings in the present section.

Corollary 4.16. Let H be of the form (22) such that g j ,h j ,h
1
j
,h2

j
are twice contin-

uously differentiable with bounded first and second derivatives. Let Assumptions 4.1,

4.11 and 4.12 hold and assume β > 5/2. Then Theorem 3.6 applies to the random

field H(θ , X t ), t ∈ N, θ ∈ D, provided that Assumption 3.3 holds.

Proof. Recalling 4.13 and 4.9, this corollary follows from the results of the present
section.

Assumptions 4.11 and 4.12 apply, in particular, when ǫ0 is Gaussian. There does
not seem to be a general condition guaranteeing the validity of Assumption 3.3: this
needs checking in every concrete application of Theorem 3.6.

4.2 Markov chains in a random environment

If β ≤ 5/2 in the setting of Subsection 4.1 above then Corollary 4.16 cannot be
established with our methods. Hence X t cannot be a “long memory processes” in
the sense of [21]. In this subsection we show that it is nonetheless possible to apply
Theorem 3.6 to important classes of random fields that are driven by a long memory
process, see Example 4.18 below.

Let ǫ1
t
, t ∈ Z, ǫ2

t
, t ∈ Z be i.i.d. real-valued sequences, independent of each

other.

Assumption 4.17. We denote χt := (ǫ1
j+t
) j∈Z, for each t ∈ Z. Let F : RZ×R×Rm→

R
m be a measurable function such that, for all w ∈ RZ, s ∈ R,

|F(w, s, z1)− F(w, s, z2)| ≤ ρ|z1 − z2|,

for all z1, z2 ∈ Rm with some 0 < ρ < 1. Furthermore, there is x ∈ Rm such that for

all w ∈ RZ and for all s ∈ R,

|F(w, s, x)− x | ≤ C(1+ |s|)

and E|ǫ2
0 |r <∞ for some r > 2.

Fix x ∈ R as in Assumption 4.17 and define, for all t ∈ Z, X̃ t
0 := x , and for j ≥ 0,

X̃ t
j+1 := F(χt ,ǫ

2
t
, ·) ◦ F(χt−1,ǫ2

t−1, ·) ◦ · · · F(χt− j,ǫ
2
t− j

, ·)(x).

Standard arguments (such as Proposition 5.1 of [5]) show that X̃ t
j

converges
almost surely as j→∞. Define

X t := lim
j→∞

X̃ t
j
.

Then X t , t ∈ Z is clearly a stationary process, satisfying

X t+1 = F(χt+1,ǫ2
t+1, X t ), t ∈ Z.

When freezing the values of ǫ1
t
, t ∈ Z, the X t defined above is an (inhomoge-

neous) Markov chain driven by the noise sequence ǫ2
t
, t ∈ Z. Hence X t is a Markov

chain in a random environment (the latter is driven by ǫ1
t
, t ∈ Z).
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Example 4.18. Let ǫ2
i
, i ∈ Z be i.i.d. with E|ǫ2

0 |r <∞ for some r > 2. Let Eǫ1
0 = 0,

E(ǫ1
0)

2 <∞. Let Yt :=
∑∞

j=0 a jǫ
1
t− j

, t ∈ Z for some a j , j ∈ N with
∑∞

j=0 a2
j
<∞.

The series converges almost surely. Let h1,h2 : R→ R be bounded measurable and
fix −1 < κ,ρ < 1. The construction sketched above provides the existence of a
process X t satisfying

X t+1 = κX t +ρeh1(Yt+1)h2(ǫ
1
t+1) +

Æ
1−ρ2eh1(Yt+1)ǫ2

t+1.

This is an instance of stochastic volatility models where h1(Y ) corresponds to
the log-volatility of an asset and X is the increment of the log-price of the same
asset. Note that Y may have a slow autocorrelation decay (e.g. a j ∼ j−β with
any β > 1/2 is possible). This model resembles the “fractional stochastic volatility
model” of [4, 10]. Choose x := 0 and

F(w, s, z) := κz +ρeh1(
∑∞

j=0 a j wt+1− j )h2(wt+1) +
Æ

1−ρ2eh1(
∑∞

j=0 a j wt+1− j )s.

As easily seen, Assumption 4.17 holds for this model and thus Theorem 4.19 below
applies.

The functions h1,h2 serve as truncations only, in order to satisfy Assumption
4.17. One could probably relax Assumption 4.17 to accomodate the case h1(x) =

h2(x) = x as well. We refrain from the related complications in the present paper.

The result below permits to estimate the tracking error for another large class
of non-Markovian processes. For simplicity, we consider only smooth functions H

here.

Theorem 4.19. Let D ⊂ RN be bounded and open. Let Assumption 4.17 hold. Let

H : D ×Rm → RN be bounded, twice continuously differentiable, with bounded first

and second derivatives. Then the conclusion of Theorem 3.6 is true for H(θ , X t ), t ∈ N,

θ ∈ D, provided that Assumption 3.3 holds.

The proof is given in Section 6. Most results in the literature are about homo-
geneous (controlled) Markov chains hence they do not apply to the present, inho-
mogeneous case and we exploit the L-mixing property in an essential way in our
arguments. See, however, also Subsection 5.3 of [28] for alternative conditions in
the inhomogeneous Markovian case.

5 Numerical implementation

Numerical results are presented here verifying the convergence properties of stochas-
tic approximation procedures with a fixed gain in the case of discontinuous H, for
Markovian and non-Markovian models. The purpose here is illustrative.

5.1 Quantile estimation for AR(1) processes

We first consider a Markovian example in the simplest possible case where H(θ , ·)
is an indicator function. Let X t , t ∈ Z be an AR(1) process defined by

X t+1 = αX t + ǫt+1
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where α is a constant satisfying |α| < 1 and ǫt , t ∈ Z are i.i.d standard normal
variates. As a consequence of the above equation, one observes that

X t =

∞∑

j=0

α jǫt− j

for every t ∈ N. Moreover, X t has stationary distribution which is ν := N(0, (1 −
α2)−1) and the pair (X t , X t+1) has bivariate normal distribution with correlation α.
We are interested in finding the quantile of the stationary distribution ν using the
stochastic approximation method (1) with fixed gain.

The algorithm for the fixed gain λ > 0 is given by the following equation,

θt+1 = θt +λH(θt , X t+1), (29)

for every t ∈ N. For the purpose of the q-th quantile estimation of the stationary
distribution ν, one takes

H(θ , x) = q− 1{x≤θ}. (30)

With this choice of H, the solution of (13) is the quantile in question. The function
H is just the gradient of the so-called “pinball” loss function introduced in Sec-
tion 3 of [26] for quantile estimation. The true value of the q-th quantile of ν is
Φ(q)/

p
1−α2, where Φ is the cumulative distribution function of the standard nor-

mal variate. For our numerical experiments, we take α = 0.5 and q = 0.975 and
hence the true value of the q-th quantile is θ ∗ ≈ 2.26.

Figure 1 illustrates that the rate of convergence of the fixed gain algorithm is
consistent with our theoretical findings in the paradigm of the quantile estimation
of the stationary distribution of an AR(1) process. As noted above, the true value
of the quantile in this particular example is 2.26 which is then compared with the
estimate obtained by using the fixed gain approximation algorithm. The Monte
Carlo estimate is based on 12000 samples and the number of iterations is taken to
be I = 106 with initial value θ0 = 2.0.
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Figure 1: Rate of Convergence of Fixed Gain Algorithm for AR(1) Process
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5.2 Quantile estimation for MA(∞) processes

Let us now consider the case when X t , t ∈ N is an MA(∞) process which is non-
Markovian. It is given by

X t =

∞∑

j=0

1

( j + 1)β
ǫt− j (31)

where β > 1/2 and ǫt , t ∈ Z are i.i.d sequence of standard normal variates. One
can notice that the stationary distribution of MA(∞) process is given by

X t ∼ N
�
0,
∞∑

j=0

1

( j + 1)2β

�

for any t ∈ N. As before, we are interested in the estimation of the quantile of the
stationary distribution. In our numerical calculations, β = 3 and the exact variance
is π6/945. For generating the path of the MA(∞) process, we write X t as

X t =

t∑

j=0

1

( j + 1)β
ǫt− j +

∞∑

j=0

1

(t + 2+ j)β
ǫ− j−1

and notice that

Yt :=
∞∑

j=0

1

(t + 2+ j)β
ǫ− j−1 ∼ N

�
0,
∞∑

j=0

1

(t + 2+ j)2β

�

for any t ∈ N. Also, a reasonable approximation of the variance of Yt can be

var(Yt) ≈
12∑

j=0

1

(t + 2+ j)2β

which is within an interval of length 10−7 around the true value. With this set-up,
the stochastic approximation method (29) with updating function (30) is imple-
mented for the quantile estimation of the stationary distribution of MA(∞) process
with θ0 = 2.0 and θ ∗ = 1.976950 (0.975-th quantile). Figure 2 indicates that the
rate of convergence of the fixed gain algorithm is 0.5, which is consistent with the
theoretical findings. The Monte Carlo estimate is based on 105 samples. Figure 2
is based on I = 105 iterations.
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Figure 2: Rate of Convergence of Fixed Gain Algorithm for MA(∞) Process

5.3 Kohonen algorithm

In this section, we demonstrate the rate of convergence of the Kohonen algorithm
for optimally quantizing a one-dimensional random variable X . We refer to [1, 9] for
discussions. We fix the number of cells N ≥ 1 in advance. Let θ := (θ 1, . . . ,θN ) ∈
R

N and define Voronoi cells as

Vi(θ) := {x ∈ R : |x − θ i |= min
j∈{1,...,N}

|x − θ j |}

for i = 1, . . . , N . Values of X in a cell i will be quantized to θ i . The zero-neighbourhood
fixed gain Kohonen algorithm is aimed at minimizing, in θ , the quantity

N∑

i+1

E
�
|X − θ i |21Vi (θ )(X )

�
.

Differentiating (formally) this formula suggests the recursive procedure

θ i
t+1 = θ

i
t
+λ1Vi (θ )(Yt)(Yt − θ i

t
) (32)

for every i = 1, . . . , N where t ∈ N and the process Y has a stationary distribution
equal to the law of X . The algorithm approximates the R-valued random variable
X by θ i if its values lie in the cell Vi(θ), for every i = 1, . . . , N .

In Figure 3, we demonstrate the rate of convergence of the zero-neighbourhood
Kohonen algorithm with zero-neighbours when the signal Yt s are i.i.d. observations
from uniform distribution on [0,1], which is a well-understood case, see e.g. [1].
We take N = 2, θ := (θ1,θ2), V

1(θ) = (0, (θ 1+θ 2)/2] and V2(θ) = [(θ1+θ2)/2,1).
Hence, the optimal value of θ is θ 1∗ = 1/4 and θ 2∗ = 3/4. The number of iterations
is 108 and the number of sample paths is 103. Furthermore, the initial values of θs
are θ 1

0 = 0.01 and θ 2
0 = 0.02. As illustrated, the rate of convergence is close to 0.5

which is consistent with the theoretical findings.
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Figure 3: Rate of Convergence of Kohonen Algorithm for i.i.d. U(0,1).

Now, to have a non-Markovian example, consider a moving average process with
lag 10, i.e.

X t =

10∑

j=0

1

( j + 1)β
ǫt− j, t ∈ N,

where ǫt , t ∈ Z are independent standard Gaussian random variables, denote it by
MA(10). Clearly,

X t ∼ N
�
0,

10∑

j=0

1

( j + 1)2β

�

for any t ≥ 0. Take β := 3 and notice that MA(10) is a good approximation of
MA(∞) process (31) because the contributions from other terms are negligible due
to low variance. We take N = 2 and implement the Kohonen algorithm (32) to sam-
ple two elements θ := (θ 1,θ 2) from the stationary distribution of the process Y de-
fined by Yt := tan−1(X t ) for any t ≥ 0. As the support of the stationary distribution
of the process Y is (−π/2,π/2), the Voronoi cells are V1(θ) := (−π/2, (θ 1+θ 2)/2]
and V2(θ) := [(θ 1 + θ2)/2,π/2). The true values θ ∗ := (θ 1∗,θ 2∗) are the solution
of the following system of two non-linear equations:

θ 1∗
Φ

� 1

σ
tan

�θ 1∗ + θ 2∗

2

��
= E

�
tan−1(σZ)1

(−∞, 1
σ tan( θ

1∗+θ2∗
2 )]

(Z)
�

θ 2∗
�
1−Φ

� 1

σ
tan

�θ 1∗ + θ 2∗

2

���
= E

�
tan−1(σZ)1

[ 1
σ tan( θ

1∗+θ2∗
2 ),∞)(Z)

�

where σ2 := var(X t ), Z denotes the standard normal variate and Φ its distribution
function.

Figure 4 is based on 108 iterations and 3000 paths (for Monte Carlo simula-
tions). The initial values are θ 1

0 = −π/4 and θ 2
0 = π/4. Since θ ∗ is not known the

output of the Kohonen algorithm (32) with λ = 2−9 is taken as θ ∗. Again, our nu-
merical experiments are consistent with the theoretical rate λ1/2 found in Theorem
3.6 above.
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Figure 4: Rate of Convergence of Kohonen Algorithm for MA(10).

6 Appendix

Here we gather the proofs for Sections 2 and 3 as well as for Theorem 4.19. First
we present a slight extension of Lemma 2.1 of [12] which is used multiple times.

Lemma 6.1. Let G,H ⊂ F be sigma-algebras. Let X , Y be random variables in Lp

such that Y is measurable with respect to H∨ G. Then for any p ≥ 1,

E1/p
�
|X − E[X |H∨ G]|p

��G
�
≤ 2E1/p

�
|X − Y |p

��G
�

.

If Y is H-measurable then

‖X − E[X |H]‖p ≤ 2‖X − Y ‖p. (33)

Proof. Since Y is H∨ G-measurable,

E
�
|X − E [X |H ∨ G] |p

��G
�
≤

2p−1E
�
|X − Y |p

��G
�
+ 2p−1E

�
|Y − E [X |H ∨ G] |p

��G
�
≤

2p−1E
�
|X − Y |p

��G
�
+ 2p−1E

�
E
�
|Y − X |

��H∨ G
�p ��G

�
≤

2p−1E
�
|X − Y |p

��G
�
+ 2p−1E

�
E
�
|Y − X |p

��H∨ G
� ��G

�
≤

2pE
�
|Y − X |p

��G
�

,

by Jensen’s inequality. Now (33) follows by taking G to be the trivial sigma-algebra.

We now note what happens to products of two random fields.

Lemma 6.2. Let X t(θ) be ULM-rp and Yt (θ) ULM-rq where r ≥ 1, p > 1, 1/p +
1/q = 1. Then X t(θ)Yt (θ) is ULM-r.

Proof. We drop θ in the notation. It is clear from Hölder’s inequality that

Mr(X Y ) ≤ Mrp(X )Mrq(Y ),
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so X t Yt is bounded in L r . Using Lemma 6.1, let us estimate, for t, m≥ 1,

‖X t Yt − E[X t Yt |F+t−m
]‖r ≤

2‖X t Yt − E[X t |F+t−m
]E[Yt |F+t−m

]‖r ≤
2‖X t Yt − X t E[Yt |F+t−m

]‖r + 2‖X t E[Yt |F+t−m
]− E[X t |F+t−m

]E[X t |F+t−m
]‖r ≤

2‖X t‖rp‖Yt − E[Yt |F+t−m
]‖rq + 2‖X t − E[X t |F+t−m

]‖rp‖E[Yt |F+t−m
]‖rq ≤

2‖X t‖rp‖Yt − E[Yt |F+t−m
]‖rq + 2‖X t − E[X t |F+t−m

]‖rp‖Yt‖rq,

by Hölder’s and Jensen’s inequalities. This shows the L-mixing property of order r,
noting the assumptions on X t , Yt .

Lemma 6.3. Let D be bounded. Fix n ∈ N and letψt , t ≥ n be a sequence of D-valued,

Fn-measurable random variables. Let X t (θ), θ ∈ D, t ∈ N be UCLM-(p, 1) for some

p > 1, satisfying the CLC property and define the process Yt := X t (ψt ), t ≥ n. Then

Mn
p
(Y ) ≤ Mn

p
(X ), Γ

n
p
(Y ) ≤ Γ n

p
(X ) a.s.

Proof. If the ψt are Fn-measurable step functions then this follows easily from
the definitions. For general ψt , one can take Fn-measurable step function ap-
proximations ψk

t
, k ∈ N of the ψt (in the almost sure sense). The CLC prop-

erty implies that X t (ψ
k
t
) tends to X t (ψt ) in probability as k → ∞. By Fatou’s

lemma, Mn
p
(Y (ψk

· )) ≤ Mn
p
(X ), k ∈ N now implies Mn

p
(Y (ψ·)) ≤ Mn

p
(X ). The se-

quence X t (ψ
k
t
) is bounded in Lp. It follows that E[Xn+t(ψ

k
n+t
)|F+

n+t−τ ∨ Fn] tends
to E[Xn+t (ψn+t )|F+n+t−τ∨Fn] in L1, a fortiori, in probability. Hence, for each τ ≥ 1,
γn

p
(Y (ψk

· ),τ) ≤ γn
p
(X ,τ), k ∈ N implies γn

p
(Y (ψ·)) ≤ γn

p
(X ,τ), by Fatou’s lemma.

Consequently, Γ n
p
(Y (ψ·)) ≤ Γ n

p
(X ) a.s.

Remark 6.4. Fix n ∈ N. Let Yt be a conditionally L-mixing process of order (p, 1)
for some p ≥ 1 and define Wt := Yt − E[Yt |Fn], t ≥ n. Then it is easy to check that
Mn

p
(W ) ≤ 2Mn

p
(Y ) and Γ n

p
(W ) = Γ n

p
(Y ).

Let us now enter the setting where for all t ∈ N, Ft = σ(ǫ j , j ∈ N, j ≤ t),
F+

t
:= σ(ǫ j , j > t) for some i.i.d. sequence ǫ j, j ∈ Z with values in some Polish

space X. Let µ be the law of (ǫ0,ǫ−1, . . .) on X−N. For given e = (e0, e−1, . . .) ∈ X−N
and n ∈ N, we define the measure

Pe,n := (⊗i>nν)
⊗�
⊗i≤nδei−n

�
,

where δx is the probability concentrated on the point x ∈ X. The corresponding
expectation will be denoted by Ee,n[·].

In this setting the concept of conditional L-mixing is easily related to “ordinary”
L-mixing and we will be able to use results of [12] directly, see the proof of Theorem
2.5. For each n ∈ Z, we denote by Zn the random variable (ǫn,ǫn−1, . . .) and by µ̃
their law on X−N (which does not depend on n). Let X t , t ∈ N be a stochastic process

bounded in L r for some r ≥ 1. We introduce the quantities

Me,n
r
(X ) := sup

t∈N
Ee,n[|Xn+t |r]1/r ,

γe,n
r
(τ, X ) := sup

t≥τ
Ee,n[|Xn+t − Ee,n[Xn+t |F+n+t−τ]|r ]1/r , τ≥ 1,

Γ
e,n
r
(X ) :=

∞∑

τ=1

γe,n
r
(τ, X ),
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which are well-defined for µ̃-almost every e.

Proof of Theorem 2.5. For any non-negative random variable Y on (Ω,F, P),

Ee,n[Y ]

���
e=Zn

= E[Y |Fn] a.s. (34)

This can easily be proved for indicators of the form Y = 1{ǫn+ j∈A j , −k≤ j≤k} with some
k ∈ N and with Borel sets A j ⊂ X and then it extends to all non-negative measurable
Y . It follows that

Mn
r
(W ) = Me,n

r
(W )|e=Zn

. (35)

A similar argument also establishes

Ee,n[Y |F+
n+t−τ]

���
e=Zn

= E[Y |F+
n+t−τ ∨Fn] a.s., (36)

for all t ≥ 1 and 1≤ τ≤ t hence also

γe,n
r
(τ, X )|e=Zn

= γn
r
(τ, X ) a.s. (37)

From the conditional L-mixing property of Wt , t ∈ N under P (of order (r, 1)) it
follows that, for µ̃-almost every e, the process Wt+n, t ∈ N is L-mixing under Pe,n.
Theorems 1.1 and 5.1 of [12] (applied under Pe,n) imply

Ee,n



 max
n<t≤m

�����

t∑

s=n+1

bsWs

�����

r



1/r

≤ Cr

�
m∑

s=n+1

b2
s

�1/2Æ
M

e,n
r (W )Γ

e,n
r (W ),

for µ̃-almost every e. Now (34), (35) and (37) imply (9).

Now we turn to the proofs of Section 3. We first recall Lemma 2.2 of [17], which
states that the discrete flow defined by (38) below inherits the exponential stability
property (12). LetM := {(m, n) ∈ N : m ≤ n}.

Lemma 6.5. Let Assumptions 3.2 and 3.3 be in force. For each 0≤ m ≤ n and ξ ∈ Dξ,

define z :M× D→ D by the recursion

z(m, m,ξ) := ξ, z(n+ 1, m,ξ) := z(n, m,ξ) +λG(z(n, m,ξ)). (38)

If d is large enough and λ is small enough then this makes sense and z(n, m,ξ) ∈ Dθ
for all n ≥ m. Furthermore, for each α′ < α (see Assumption 3.3) there is C(α′) > 0
such that ����

∂

∂ ξ
z(n, m,ξ)

���� ≤ C(α′)e−λα
′(n−m). (39)

�

Remark 6.6. Actually, the same arguments also imply that the recursion (38) is
well-defined for all ξ ∈ Dθ , stays in D and satisfies (39), provided that d ′ is large
enough and λ is sufficiently small.

For convenience’s sake, we recall a result from [11], which is also given as
Lemma 4.2 of [17].
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Lemma 6.7. Let Assumptions 3.2 and 3.3 be satisfied. Let yt := y(t, 0,ξ), t ≥ 0.

Let x t , t ≥ 0 be a continuous, piecewise continuously differentiable curve such that

x0 = ξ. Then for t ≥ 0,

x t − yt =

∫ t

0

∂

∂ ξ
y(t, w, xw)( ẋw − G(xw))dw. (40)

Proof. For 0≤ w≤ t, let zw = y(t, w, xw). The LHS of (40) can be written as

zt − z0 =

∫ t

0

żwdw=

∫ t

0

�
∂

∂ w
y(t, w, xw) +

∂

∂ ξ
y(t, w, xw) ẋw

�
dw.

From Theorem 3.1 on page 96 of [23] we obtain that, for all x ∈ R,

∂

∂ w
y(t, w, x) +

∂

∂ ξ
y(t, w, x)G(x) = 0,

and hence the proof is complete.

Let ξ ∈ Dθ and define z̃n := z(n, 0,ξ), n ∈ N. The next lemma summarizes some
arguments of [17] in the present setting, for the sake of a self-contained presenta-
tion.

Lemma 6.8. Let Assumptions 3.2 and 3.3 be satisfied. Let yt := y(t, 0,ξ) for some

ξ ∈ Dξ and let θn be defined by (15). If d, d ′ are large enough then, for all n ∈ N, we

have θn ∈ Dθ and also z̃n ∈ D.

Proof. We denote by θt the piecewise linear extension of θn, i.e. for t ∈ (n, n+ 1),
we set θt = (1 − (t − n))θn + (t − n)θn+1. For w ∈ (n, n + 1), it is easy to see that
θ̇w = θn+1 − θn = λH(θ[w], X[w]+1) where [w] denotes the integer part of w. Thus,
Lemma 6.7 implies that as long as θw ∈ Dθ for all 0≤ w ≤ t,

θt − yt =

∫ t

0

∂

∂ ξ
y(t, w,θw)λ

�
H(θ[w], X[w]+1)− G(θw)

�
dw.

Since |H| and |G| are bounded by a constant, say, C†, (12) implies that

|θt − yt | ≤
∫ t

0

C∗e−λα(t−w)λ2C†dw≤ 2C∗C†α−1.

It is known that yt ∈ Dy whenever y0 ∈ Dξ. Now, if d > 2C∗C†α−1 then |θt− yt |will
be smaller than the distance between Dy and Dc

θ
, where Dc

θ
denotes the complement

of Dθ , hence θt will stay in Dθ for ever.
The proof for z̃n ∈ D is similar. The piecewise linear extension of z̃n is denoted

by z̃t , t ≥ 0. By computations as before,

z̃t − yt =

∫ t

0

∂

∂ ξ
y(t, w, z̃w)λ

�
G(z̃[w])− G(z̃w)

�
dw.

Denoting by K∗ (resp. L∗) a bound for |G| (resp. a Lipschitz-constant for G), we
obtain

|G(z̃[w])− G(z̃w)| ≤ L∗|z̃[w] − z̃w| ≤ L∗λG(z̃[w]) ≤ λL∗K∗,
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hence

|z̃t − yt | ≤
∫ t

0

C∗e−λα(t−w)λ2 L∗K∗dw≤ C∗α−1λL∗K∗.

It follows that if d ′ > C∗α−1λL∗K∗ then z̃t ∈ D, for all t.

Remark 6.9. Note that our estimates for d, d ′ in the above proof are somewhat
different: by choosing λ small enough we can make d ′ as small as we wish whereas
we do not have this option for d. This is in contrast with [17], where d can also
be made arbitrarily small by choosing λ small. This difference comes from the fact
that in [17] Lipschitz-continuity of θ → H(θ , ·) is assumed, unlike in the present
setting.

Proof of Theorem 3.6. We follow the main lines of the arguments in [14, 17]. How-
ever, details deviate significantly as our present assumptions are different from those
of the cited papers.

Lemma 6.8 above will guarantee that θt and zt , z t (see below) are well-defined.
Clearly, zt = z(t, 0,θ0). Set T = [1/(λα′)], where 0 < α′ < α is as in Lemma 6.5
and [x] denotes the integer part of x ∈ R. For each n ∈ N, we set znT := θnT and
define recursively

z t := z t−1 +λG(z t−1), nT < t < (n+ 1)T.

In other words, z t = z(t, nT,θnT ). By the triangle inequality, we obtain, for any
t ∈ N,

|θt − zt | ≤ |θt − z t |+ |z t − zt |. (41)

Estimation for |θt − z t |. Fix n and let nT < t < (n+ 1)T .

|θt − z t |= λ
�����

t−1∑

k=nT

[H(θk, Xk+1)− G(zk)]

����� ≤

λ

t−1∑

k=nT

|H(θk, Xk+1)−H(zk, Xk+1)| +

λ

�����

t−1∑

k=nT

(H(zk, Xk+1)− E[H(zk, Xk+1)|FnT ])

����� +

λ

t−1∑

k=nT

|E[H(zk, Xk+1)|FnT ]− G(zk)| =: λ(S1 + S2 + S3).

It is clear that

ES3 ≤ E

�
sup
ϑ∈D

∞∑

k=nT

|E[H(ϑ, Xk+1)|FnT ]− G(ϑ)|
�
< C ′,

for some C ′ <∞, by Assumption 3.4.
Turning our attention to S1, the CLC property implies

ES1 = E[E[S1|FnT ]]≤
t−1∑

k=nT

K E|θk − zk|.
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On each interval nT ≤ t < (n+ 1)T , we now estimate S2 as follows,

S2 ≤ sup
nT<t≤(n+1)T

�����

t−1∑

k=nT

(H(zk, Xk+1)− E[H(zk, Xk+1)|FnT ])

����� .

Note the UCLM-(r, 1) property of H(·, ·) as well as Lemma 6.3 and Remark 6.4.
Apply Theorem 2.5 for nT instead of n and with the choice bt ≡ 1 and

Wt := H(z t , X t+1)− E[H(z t , X t+1)|FnT ], nT < t ≤ (n+ 1)T, Wt := 0, 0≤ t ≤ nT,

note that E[Wt |FnT ] = 0 for all t. We get

ES2 = E[E[S2|FnT ]]≤ E[E1/r[S r
2|FnT ]] ≤

Cr T 1/2E
�q

MnT
r
(W )Γ nT

r
(W )

�
≤ Cr T 1/2

q
EMnT

r
(W )EΓ nT

r
(W ) ≤

C ′′T 1/2

with some C ′′ <∞, independent of n, by the UCLM-(r, 1) property of W .
Putting together our estimates so far, we obtain for nT ≤ t < (n+ 1)T ,

E|θt − z t | ≤ λ
�

t−1∑

k=nT

K E|θk − zk|+ C ′′T 1/2 + C ′
�

.

Recall that E|θt − z t | is finite by boundedness of D. The discrete Gronwall lemma
yields the following estimate, independent of n:

E|θt − z t | ≤ λ(C ′′T 1/2 + C ′)(1+λK)T . (42)

Note that
(1+λK)T ≤ eλK T ≤ eK/α′ .

Estimation for |z t − zt |. Noting z0 = θ0 and using the fundamental theorem of
calculus, we estimate for nT ≤ t < (n+ 1)T , using telescoping sums,

|z̄t − zt |

≤
n∑

k=1

|z(t, kT,θkT )− z(t, (k− 1)T,θ(k−1)T )|

=

n∑

k=1

|z(t, kT,θkT )− z(t, kT, z(kT, (k − 1)T,θ(k−1)T ))|

=

n∑

k=1

∫ 1

0

����
∂

∂ ξ
z(t, kT, sθkT + (1− s)z(kT, (k − 1)T,θ(k−1)T ))

���� ds

× |θkT − z(kT, (k − 1)T,θ(k−1)T )|

≤ C(α′)
n∑

k=1

e−λα
′(t−kT ) (|θkT−1 − z̄kT−1|+λ|H(θkT−1, XkT )− G(zkT−1)|) .

Notice that there is C̃ > 0, independent of n, t such that

n∑

k=1

e−λα
′(t−kT ) ≤ C̃ .
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Therefore, the fact that H, G, D are bounded, imply

E|z t − zt | ≤ c

n∑

k=1

e−λα
′(t−kT )E|θkT−1− z̄kT−1|+ c

n∑

k=1

e−λα
′(t−kT )λ

≤ c′λ1/2, (43)

with some c, c′ > 0, by (42) and by the choice of T . Finally, putting together our
estimations (42), (43) and using (41), for λ small enough, we obtain

E|θt − zt | ≤ Cλ1/2,

with some C > 0, which completes the proof.

Proof of Corollary 3.7. Recall α′ from Lemma 6.5. The fundamental theorem of
calculus yields

|zt − θ ∗| ≤ |z0 − θ ∗|
∫ 1

0

����
∂

∂ ξ
z(t, 0, sz0 + (1− s)θ ∗)

���� ds

≤ C(α′)e−λα
′ t |z0 − θ ∗|,

and this is ≤ λ1/2 for t ≥ t0(λ) if t0(λ) = C◦ ln(1/λ)/λ for some C◦. Since

|θt − θ ∗| ≤ |θt − zt |+ |zt − θ ∗|,

the statement follows.

Proof of Theorem 4.19. Let us work conditionally on the event E0 = η ∈ RZ where

El = (ǫ
1
i+l
)i∈Z,

until further notice.
The CLC property and Assumption 3.2 are trivial. Define Fn := σ(ǫ2

j
; j ≤ n) and

F+
n

:= σ(ǫ2
j
; j > n).

We now prove that H(θ , X t ) is UCLM-(r, 1) with respect to the given (Fn,F+
n
).

Boundedness of H implies that Mn
r
(X ), n ∈ N is uniformly bounded.

Fix 1≤ m ≤ t. Define recursively

ξt−m := x , ξl+1 := F(El+1,ǫ2
l+1,ξl), l ≥ t −m.

Set X+
t ,m := ξt . By construction, X+

t ,m is F+
t−m

-measurable and

|H(θ , X+
t ,m)− H(θ , X t )| ≤ Lρm|x − X t−m|,
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where L is a Lipschitz-constant for x → H(θ , x). So we can further estimate

E
�
|x − X t−m|r

��F0

�1/r ≤
∞∑

j=1

E
�
|X̃ t−m

j
− X̃ t−m

j−1 |r
��F0

�1/r
≤

∞∑

j=1

ρ j−1E
�
|x − F(ft−m− j+1,ǫ2

t−m− j+1, x)|r
��F0

�1/r
≤

C

t−m∑

j=1

ρ j−1‖|ǫ2
t−m− j+1|+ 1‖r + C

∞∑

j=t−m+1

ρ j−1[|ǫ2
t−m− j+1|+ 1] ≤

C‖|ǫ2
0 |+ 1‖r

∞∑

j=1

ρ j−1 + C

∞∑

k=0

ρ t−m+k[|ǫ2
−k
|+ 1] ≤

C‖|ǫ2
0 |+ 1‖r

∞∑

j=1

ρ j−1 + C

∞∑

k=0

ρk[|ǫ2
−k
|+ 1],

using Assumption 4.17, the independence of ǫ2
j
, j ≥ 1 fromF0 and theF0-measurability

of ǫ2
j
, j ≤ 0. Note that this last estimate is independent of t. We can carry out anal-

ogous estimates with Fn instead of F0 and these imply, via Lemma 6.1,

γn
r
(m, X ) ≤ 2LCρm



(‖ǫ2
0‖r + 1)

∞∑

j=1

ρ j−1 +

∞∑

k=0

ρk[|ǫ2
n−k
|+ 1]



 ,

for each n ∈ N, which implies that the sequence Γ n
r
(X ) is bounded in L1, showing

the UCLM-(r, 1) property for H(θ , X t ).
Since X+

t−m
is F+

t−m
-measurable, the above estimates also show that H(θ , X t ) is

(unconditionally) L-mixing of order (r, 1), hence Remark 3.5 implies Assumption
3.4. As the estimates are uniform in η ∈ RZ, the argument of Theorem 3.6 can be
applied.

7 Conclusion

There is a large number of natural ramifications of our results that could be pursued:
the estimation of higher order moments of the tracking error using the property
UCLM-(r, p) for p > 1; accommodating multiple roots for equation (13); proving
the convergence of the decreasing gain version of (1); considering the convergence
of concrete procedures. We leave these for later work in order to convey a clear
message, highlighting the novel techniques we have introduced.
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