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Abstract We consider a continuous-time market with proportional transaction costs.
Under appropriate assumptions, we prove the existence of optimal strategies for in-
vestors who maximise their worst-case utility over a class of possible models. We
consider utility functions defined on either the positive axis or the whole real line.
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1 Introduction

In this paper, the existence of solutions to the utility maximisation problem from ter-
minal utility is studied in the presence of model ambiguity. We assume that investors
prepare for the worst-case scenario in the sense that they take the infimum of util-
ity functionals over the class of possible models before maximising over admissible
investment strategies.

The literature on robust optimisation typically assumes that uncertainty is mod-
elled by a family of prior measures P on some canonical space in which trajectories
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of the processes lie. Starting with Quenez [29] and Schied [34], the case in which P is
dominated by a reference measure P∗ has received ample treatment. In diffusion set-
tings, this corresponds to uncertainty in the drift. Such an approach is not completely
convincing since market participants may also be uncertain about the volatilities.

More recently, the non-dominated problem has also been studied in various con-
texts. For instance, Tevzadze et al. [35] investigated a compact set of possible drift
and volatility coefficients and tackled the robust problem by solving an associated
Hamilton–Jacobi–Bellman equation. In Matoussi et al. [24], where volatility coeffi-
cients are uncertain over a compact set and the drift is known, the theory of BSDEs is
applied. Existence results in a fairly general class of models are available only in dis-
crete time; see Nutz [27], Blanchard and Carassus [8], Neufeld and Šikić [26], Bartl
[2], Bartl et al. [3] and Rásonyi and Meireles-Rodrigues [31]. A minimax result was
established for bounded utilities in frictionless continuous-time markets in Denis and
Kervarec [14].

As far as we know, our existence results below are the first to apply in a broad
class of continuous-time models. We now summarise the principal ideas underlying
our arguments. First, we work under proportional transaction costs. In this setting,
strategies can be identified with finite-variation processes which we endow with a
suitable convergence structure. Second, instead of a family of measures, we consider
a parametrised family of stochastic processes on a fixed filtered probability space.
Necessarily, instead of one portfolio value, we need to consider a family of possible
values corresponding to the respective parameters. Third, the latter fact forces us to
take the family of strategies as our domain of optimisation (unlike most of the opti-
mal investment literature since Kramkov and Schachermayer [21], which prefers to
optimise over a set of random variables, the terminal values of possible portfolios).
Fourth, we exploit that the boundedness of terminal portfolio values in an appropri-
ate sense implies boundedness of the strategies themselves (again, in an appropriate
sense); this is false in continuous-time frictionless markets, but true in our setting.
Fifth, we profit from a method first developed in Rásonyi [30] that verifies the super-
martingale property of a putative optimiser, based on a lemma of Delbaen and Owari
[13]. Because of the fourth point above, our techniques do not seem to be applica-
ble in the continuous-time frictionless setting. See, however, the companion paper by
Rásonyi and Meireles-Rodrigues [31] which treats discrete-time frictionless markets.

The robust model in this paper, similarly to those introduced in Biagini and Pınar
[6], Neufeld and Nutz [25], Lin and Riedel [22], assumes that there is a parametrisa-
tion for the uncertain dynamics of risky assets. However, as we shall see below, no
specific assumption is made about the parametrisation and an arbitrary index set is
permitted. From a practical point of view, this approach is particularly tractable and
easily implemented when it comes to calibration. For example, when estimating drift
and volatility parameters for diffusion price processes, the results only give guesses
(hopefully with some confidence sets) about the true values. Thus it is reasonable to
parametrise ambiguity by considering suitable ranges which contain possible values
for the coefficients being estimated.

From a mathematical point of view, the treatment of robust models in the present
paper simplifies technical issues, as will become apparent from the proofs. Working
on the same (filtered) probability space, instead of considering a family of measures,
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gives us more flexibility by avoiding the canonical setting with problems concerning
null events, filtration completion, etc. Measurable selection arguments, see Bouchard
and Nutz [9], Biagini et al. [4] or Nutz [27], are not needed any more. Our approach
can still incorporate most of the relevant model classes, and their laws on the path
space do not need to be equivalent; see Sect. 2.

Compactness plays an important role in proving the existence of optimisers. Usu-
ally, the utility maximisation problem is transformed into an “abstract” version with
random variables (the terminal wealth of admissible portfolios), and then convex
compactness results in L0, in particular, Komlós-type arguments, are applied suc-
cessfully; see Kramkov and Schachermayer [21]. Unfortunately, the robust setting is
unlikely to be lifted to “abstract” versions, since the uncertainty produces a whole
collection of wealth processes. As a result, Komlós-type arguments on the space L0

cannot be employed. Furthermore, the candidate dual problem in this setting does not,
in general, admit a solution (see Bartl [2, Remark 2.3]) so that the usual approach of
getting optimisers from solutions of dual problems seems inapplicable. Therefore, we
are forced to work on the primal problem directly.

We are using two Komlós-type arguments. The first one is performed on the space
of finite-variation processes (strategies), which gives a candidate for the optimiser,
and the second is used in an Orlicz space context, to handle possible losses of trading
when establishing the supermartingale property of the optimal wealth process, relying
on Delbaen and Owari [13]. A crucial observation is that the utility of a portfolio
is a sequentially upper semicontinuous function of the strategies (when the latter
are equipped with a convenient convergence structure); see Guasoni [15] where the
optimisation problem was viewed in a similar manner.

The paper is organised as follows. Section 2 introduces the robust market model
and technical assumptions. Sections 3 and 4 study the existence of solutions for the
robust utility maximisation problem when the utility functions are defined on R+
and R, respectively. Ramifications are discussed in Sect. 5. Some preliminaries on
finite-variation processes and on Orlicz space theory are presented in Sect. 5.

2 The market model

Let (Ω,F , (Ft )t∈[0,T ],P ) be a filtered probability space, where the filtration is as-
sumed to be right-continuous and F0 coincides with the P -completion of the trivial
sigma-algebra. We define by L0 the set of all a.s.-equivalence classes of random vari-
ables and its positive cone by L0+.

Let Θ be a (non-empty) set, which is interpreted as the parametrisation of uncer-
tainty. We consider a financial market consisting of a riskless asset S0

t = 1 for all
t ∈ [0, T ] and a risky asset, whose dynamics is unknown. To describe the latter, we
consider a family (Sθ

t )t∈[0,T ], θ ∈ Θ , of adapted, positive processes with continuous
trajectories which represent the possible price evolutions. No condition is imposed
on Θ nor, for the moment, on the dynamics of the risky asset.

Remark 2.1 We now comment on the difference between our concept of model am-
biguity and that of most previous papers, where a family of priors is considered on a
canonical space.
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Working on a given probability space and filtration amounts to fixing the infor-
mation structure of the problem; the information flow is normally generated by a
particular driving process (such as a multidimensional Brownian motion). Possible
prices are then functionals of a parameter (finite- or infinite-dimensional, see Exam-
ples 2.2 and 2.4 below) and the driving noise. Strategies are functionals adapted to
the given information flow.

Considering a family of probabilities, one has greater liberty in the sense that no
common driving noise is required, but the choice of strategies is limited; they must
be adapted functionals on the canonical space, i.e., they are functions of the price
process. In our modelling, the controls are adapted to an information flow that may
be strictly bigger than the natural filtration of any possible price process.

In a strictly formal sense, none of two the approaches is more general than the
other; see also examples in [31]. Intuitively, the standard setting is the more general
one, while ours seems more easily tractable and fits better with a practical calibration
and/or statistical inference framework.

We illustrate by the following examples that the present setting is useful and con-
tains interesting models from previous studies.

Example 2.2 In the robust Black–Scholes market model, the risky asset satisfies the
SDE

dS
(μ,σ )
t = S

(μ,σ )
t (μdt + σ dWt), S

(μ,σ )
0 = s0 > 0,

where μ, σ are constants and W is a standard Brownian motion. The uncertainty is
modelled by

Θ = {θ = (μ,σ ) ∈R
2 : μ ≤ μ ≤ μ, σ ≤ σ ≤ σ },

where μ ≤ μ, 0 < σ ≤ σ are given constants. The classical Black–Scholes model
corresponds to the case μ = μ and σ = σ . It is observed that the laws of Sμ1,σ1 ,
Sμ2,σ2 are singular when σ1 �= σ2. If only volatility uncertainty is considered, the
family of laws is mutually singular. See [22, 6] about treatments for similar models.

Remark 2.3 In the domain of robust finance, measurable selection techniques are of-
ten used; see e.g. [27]. This requires a certain measurability of the family of laws
corresponding to various models. In our present approach, however, this is not a
necessity. Let e.g. Θ ′ be a non-Borelian (or even non-analytic) subset of Θ in Ex-
ample 2.2 above. Theorems 3.6 and 4.7 apply to the family of models Sθ , θ ∈ Θ ′,
too.

Example 2.4 In the above example, Θ was a subset of a finite-dimensional Euclidean
space. One may easily fabricate similar examples where Θ is infinite-dimensional.
For instance, let Θ consist of all pairs of predictable processes (μt , σt ) such that for
all t ∈ [0, T ], μt ∈ [μ,μ] a.s. and σt ∈ [σ ,σ ] a.s., and consider the SDEs

dS
(μ,σ )
t = S

(μ,σ )
t (μt dt + σt dWt), S

(μ,σ )
0 = s0 > 0,

for each (μ,σ ) ∈ Θ .
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The following example extends the robust Black–Scholes model and allows an
external economic factor.

Example 2.5 This is a factor model which is inspired by [20], but much simplified.
Let Θ ⊆ R

2×2 be a set. The risky asset is governed by the SDE

dSθ
t = Sθ

t

((
m(Y θ

t ) + σ(θ11Y θ
t + θ21)

)
dt + σ dW 1

t

)
, Sθ

0 = s0 > 0,

and the factor process evolves according to

dY θ
t = (

g(Y θ
t ) + 〈ρ, θ1·Y θ

t + θ2·〉)dt + ρ1 dW 1
t + ρ2 dW 2

t , Y θ
0 = y0,

where m, g are suitable functions, W = (W 1,W 2) is a two-dimensional Brownian
motion and ρ = (ρ1, ρ2) ∈ R

2 a fixed parameter. The bracket 〈·, ·〉 denotes the scalar
product in R

2. Note that the original setting of [20] cannot be directly transferred
to the present one as it involves a family of weak solutions of SDEs which are not
necessarily realisable on our given stochastic basis.

The risky asset is traded under proportional transaction costs λ ∈ (0,1). More pre-
cisely, investors have to pay a higher (ask) price Sθ when buying the risky asset, but
receive a lower (bid) price (1 − λ)Sθ when selling it.

Let V denote the family of nondecreasing, right-continuous functions on [0, T ]
which are 0 at time 0. Let V denote the set of triplets H = (H↑,H↓,H0), where
H

↑
t , H

↓
t , t ∈ [0, T ], are optional processes such that H↑(ω),H↓(ω) ∈ V for each

ω ∈ Ω and H0 ∈R (deterministic). The space V can be equipped with a convergence
structure; see Sect. A.1 below for details.

Each trading strategy corresponds to an element H ∈ V. In this formulation, H↑
denotes the cumulative amount of transfers from the riskless asset to the risky one
and H↓ represents the transfers in the opposite direction; H0 encodes the amount of
initial transfer from the riskless asset to the risky one. Therefore the portfolio position
in the risky asset at time t equals φt := H0 + H

↑
t − H

↓
t , t ∈ [0, T ], φ0− := 0.

For any x ∈ R, we denote x+ := max{0, x}, x− := max{0,−x}. For an initial
capital x ∈ R, the dynamics of the cash account of an investor following the strategy
H evolves according to

Wx
t (θ,H) := x − H+

0 Sθ
0 + H−

0 Sθ
0 (1 − λ) −

∫ t

0
Sθ

u dH↑
u +

∫ t

0
(1 − λ)Sθ

u dH↓
u ,

for t ∈ [0, T ]. The liquidation value is defined by

W
x,liq
t (θ,H) := Wx

t (θ,H) + φ+
t (1 − λ)Sθ

t − φ−
t Sθ

t . (2.1)

We introduce the definition of consistent price systems, which play a similar role to
martingale measures in frictionless markets; see [19, 17, 16].

Definition 2.6 For each θ ∈ Θ , a λ-consistent price system (λ-CPS) for the model θ

is a pair (S̃θ ,Qθ ) of a probability measure Qθ ≈ P and a (càdlàg) Qθ -local martin-
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gale S̃θ such that

(1 − λ)Sθ
t ≤ S̃θ

t ≤ Sθ
t a.s., for each t ∈ [0, T ]. (2.2)

A λ-strictly consistent price system (λ-SCPS) is a CPS such that the inequalities in
(2.2) are strict.

We impose the existence of consistent price systems for every model Sθ . In Sect. 3,
we need the following assumption in order to be able to use the results of [12].

Assumption 2.7 For each θ ∈ Θ and for all 0 < μ < λ, the price process Sθ admits
a μ-CPS.

This assumption is fulfilled if for every θ ∈ Θ , the process Sθ satisfies the no-
arbitrage condition for μ-transaction cost for all μ > 0; see [17]. See Example 4.6
for a risky asset violating Assumption 2.7.

Clearly, if 0 < μ < λ, then a μ-CPS is also a λ-SCPS.

Lemma 2.8 If (S̃θ ,Qθ ) is a λ-strictly consistent price system, the random variable

δ(θ) := inf
t∈[0,T ] min{S̃θ

t − (1 − λ)Sθ
t , Sθ

t − S̃θ
t } (2.3)

is almost surely strictly positive and EQθ [δ(θ)] < ∞.

Proof The argument follows that of [19, Lemma 3.6.4]. �

Let

Mθ := {dQθ/dP : (S̃θ ,Qθ ) is a λ-CPS}.
For a consistent price system (S̃θ ,Qθ ), we define the process

V x
t (θ,H) := Wx

t (θ,H) + φt S̃
θ
t ,

without emphasising the dependence of V on the specific consistent price system. It
is easy to check that W

x,liq
t (H) ≤ V x

t (θ,H) a.s., for each t ∈ [0, T ].

3 Utility function on R+

Assumption 3.1 The utility function U : (0,∞) → R is nondecreasing and concave.

Define the convex conjugate of U by

V (y) := sup
x>0

(
U(x) − xy

)
, y > 0.

Admissible strategies are defined in a natural way, thanks to the domain of the utility
function.
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Definition 3.2 A strategy H = (H↑,H↓,H0) ∈ V is admissible for initial capital
x > 0 and for the model θ ∈ Θ if for each t ∈ [0, T ],

W
x,liq
t (θ,H) ≥ 0 a.s.

Denote by Aθ (x) the set of all admissible strategies for θ . Set

Aθ
0(x) := {H ∈Aθ (x) : φT = H0 + H

↑
T − H

↓
T = 0}

and A(x) = ⋂
θ∈Θ Aθ

0(x).

Remark 3.3 For each H ∈ A(x) and θ ∈ Θ ,

W
x,liq
T (θ,H) = Wx

T (θ,H) = V x
T (θ,H)

due to φT = 0. We also see from (2.1) that at time 0 < t < T , the liquidation value
is neither concave nor convex in H . However, the condition φT = 0 recovers concav-
ity of the liquidation value with respect to H at time T . This is crucial for finding
maximisers in the subsequent analysis.

Let x > 0. Note that A(x) �= ∅ since it contains the identically zero strategy. Our
investors want to find the optimiser for

u(x) := sup
H∈A(x)

inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,H)

)]
. (3.1)

It is worth noting that maximising in H is a concave problem; however, minimising
over Θ is not a convex problem.

For each θ ∈ Θ and x > 0, we denote

Cθ (x) := {X ∈ L0+ : X ≤ W
x,liq
T (θ,H) for some H ∈ Aθ (x)}.

For each y > 0, the set of supermartingale deflators Bθ (y) consists of the strictly
positive processes Y = (Y 0

t , Y 1
t )t∈[0,T ], Y 0

0 = y, such that Y 1/Y 0 ∈ [(1 − λ)Sθ , Sθ ]
and Wx(θ,H)Y 0 + φY 1 is a (càdlàg) supermartingale for all H ∈ Aθ (x). Also, we
define

Dθ (y) := {Y 0
T : (Y 0, Y 1) ∈ Bθ (y)}.

The primal and dual value functions for the θ -model are

uθ (x) := sup
f ∈Cθ (x)

E[U(f )], vθ (y) := inf
h∈Dθ (y)

E[V (h)].

The next lemma states that the sets Cθ (x) and Dθ (y) are polar to each other. It follows
directly from [12, Proposition 2.9].

Lemma 3.4 Fix x, y > 0. Let Assumption 2.7 be in force. A random variable X ∈ L0+
satisfies X ∈ Cθ (x) if and only if E[XY ] ≤ xy for all Y ∈ Dθ (y). A random variable
Y ∈ L0+ satisfies Y ∈ D(y) if and only if E[XY ] ≤ xy for all X ∈ Cθ (x).
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We impose a technical assumption.

Assumption 3.5 The dual value function vθ (y), y > 0, is finite for all θ ∈ Θ .

Theorem 3.6 Let x > 0. Under Assumptions 2.7, 3.1, 3.5, the robust utility maximi-
sation problem (3.1) admits a solution, i.e., there is H ∗ ∈ A(x) satisfying

u(x) = inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,H ∗)

)]
.

When U is bounded from above, the same conclusion holds assuming only that there
exists (at least) one θ̃ ∈ Θ for which there exists a λ-SCPS.

Proof If U is constant, there is nothing to prove. Otherwise, by adding a constant to
U , we may assume that U(∞) > 0 > limx→0 U(x).

Notice that U(∞) > 0 and

uθ (x) ≥ U(x) (3.2)

imply lim infx→∞ uθ (x)/x ≥ 0. From Lemma 3.4, trivially,

uθ (x) ≤ vθ (y) + xy (3.3)

for all y > 0. Fixing y, we obtain lim supx→∞ uθ (x)/x ≤ y, and sending y to zero
gives

lim
x→∞

uθ (x)

x
= 0. (3.4)

After these preparations, we turn to the main arguments. Assumption 3.5, (3.3)
and (3.2) imply that uθ (x) is finite for each θ and so is u(x). Let Hn ∈ A(x), n ∈ N,
be a maximising sequence, i.e.,

inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,Hn)

)] ↑ u(x) as n → ∞.

Let us fix for the moment θ ∈ Θ and a μ-CPS (S̃θ ,Qθ ) with 0 < μ < λ. First, we
prove that the process

V x
t (θ,Hn) = Wx

t (θ,Hn) + φn
t S̃θ

t

is a Qθ -supermartingale for all n. Indeed, Itô’s formula gives

dV x
t (θ,Hn) = −Sθ

t dH
n,↑
t + (1 − λ)Sθ

t dH
n,↓
t + S̃θ

t dφn
t + φn

t− dS̃θ
t

= (S̃θ
t − Sθ

t ) dH
n,↑
t + (

(1 − λ)Sθ
t − S̃θ

t

)
dH

n,↓
t + φn

t− dS̃θ
t .

Admissibility of Hn implies
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(Hn
0 )+(Sθ

0 − S̃θ
0 ) +

∫ t

0
(Sθ

u − S̃θ
u) dHn,↑

u +
∫ t

0

(
S̃θ

u − (1 − λ)Sθ
u

)
dHn,↓

u

+
(∫ t

0
φn

u− dS̃θ
u

)−

≤ x + (Hn
0 )−

(
Sθ

0 (1 − λ) − S̃θ
0

) +
(∫ t

0
φn

u− dS̃θ
u

)+
. (3.5)

In particular, we obtain

(∫ t

0
φn

u−dS̃θ
u

)−
≤ x + (Hn

0 )−Sθ
0 (1 − λ) (3.6)

for every t ∈ [0, T ], and therefore
∫ t

0 φn
u−dS̃θ

u , t ∈ [0, T ], is a Qθ -supermar-
tingale; see [1, Corollary 3.5]. It follows that V x

t (θ,Hn), t ∈ [0, T ], is also a
Qθ -supermartingale.

We claim that supn(H
n
0 )− is finite. If this were not the case, then along a subse-

quence nk , k ∈ N, we should have (H
nk

0 )− → ∞, k → ∞, and (H
nk

0 )+ = 0, k ∈ N.
Taking Qθ -expectations in (3.5), we should get

0 ≤ x + lim
k→∞(H

nk

0 )−
(
Sθ

0 (1 − λ) − S̃θ
0

) = −∞,

a contradiction. Hence the supremum is indeed finite.
Furthermore, from the supermartingale property of

∫ t

0 φn
u−dS̃θ

u , t ∈ [0, T ], and
from (3.6),

sup
n

EQθ

[(∫ T

0
φn

u−dS̃θ
u

)+]
≤ x + sup

n
(Hn

0 )−Sθ
0 (1 − λ)

follows. Using (2.3), we deduce from (3.5) that

sup
n

EQθ

[
(Hn

0 )+δ(θ) +
∫ T

0
δ(θ)

(
dHn,↑

u + dHn,↓
u

)]

≤ sup
n

EQθ

[
(Hn

0 )+(Sθ
0 − S̃θ

0 ) +
∫ T

0
(Sθ

u − S̃θ
u) dHn,↑

u + (
S̃θ

u − (1 − λ)Sθ
u

)
dHn,↓

u

]

< ∞.

Apply Lemma A.1 with the choice dQ/dQθ := δ(θ)/EQθ [δ(θ)]. It implies that
there exist convex weights αn

j ≥ 0, j = n, . . . ,M(n), with
∑M(n)

j=n αn
j = 1 such that

H̃ n := ∑M(n)
j=n Hn → H ∗ in V. Since the utility function is concave, we obtain that

H̃ n, n ∈N, is also a maximising sequence as

inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ, H̃ n)

)] ≥ inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,Hn)

)] −→ u(x) as n → ∞.
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We now prove that the sequence U+(W
x,liq
T (θ, H̃ n)), n ∈ N, is uniformly inte-

grable for each θ ∈ Θ . Suppose by contradiction that the sequence is not uniformly
integrable for some θ . Then one can find disjoint sets An ∈ F , n ∈ N, and a constant
α > 0 such that

E
[
U+(

W
x,liq
T (θ, H̃ n)

)
1An

] ≥ α for n ≥ 1.

Set wn = ∑n
i=1 W

x,liq
T (θ, H̃ i)1{Wx,liq

T (θ,H̃ i )≥u0}1Ai
, where u0 is chosen such that it

satisfies U(u0) = 0. It is immediate that

E[U(wn)] =
n∑

i=1

E
[
U+(

W
x,liq
T (θ, H̃ i)

)
1Ai

] ≥ nα.

In addition, for any h ∈ Dθ (1), the supermartingale property shows that
E[hwn] ≤ nx. Consequently, we obtain wn ∈ Cθ(nx) by Lemma 3.4. We compute

uθ (nx)

nx
≥ E[U(wn)]

nx
≥ α

x
> 0,

and passing to the limit when n → ∞ contradicts (3.4). Thus U+(W
x,liq
T (θ, H̃ n)),

n ∈N, is indeed uniformly integrable.
Since H̃ n → H ∗ in V, W

x,liq
T (θ, H̃ n) → W

x,liq
T (θ,H ∗) almost surely by Re-

mark A.2. So Fatou’s lemma and uniform integrability imply

lim sup
n→∞

(
inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ, H̃ n)

)]) ≤ inf
θ∈Θ

lim sup
n→∞

E
[
U

(
W

x,liq
T (θ, H̃ n)

)]

≤ inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,H ∗)

)]
,

which proves that H ∗ is an optimiser. It remains to check that H ∗ ∈ A(x). For each
θ , W

x,liq
t (θ,H ∗) ≥ 0 a.s., for Lebesgue-almost every t , by Remark A.2; so we get

admissibility of H ∗ since t → W
x,liq
t is a.s. right-continuous.

In the case where U is bounded from above, it is enough to perform the first part
of the above argument for θ̃ , obtain H ∗ and then simply invoke Fatou’s lemma to
complete the proof. �

Remark 3.7 In the classical theory where there is no uncertainty, i.e., when Θ con-
tains only one element, the existence result holds assuming the finiteness of u(x) only.
This condition, however, does not suffice to find optimisers in the robust problem. In-
deed, the finiteness of u(x) makes the robust problem well posed, compactness gives
a candidate for the optimiser, but this is still not enough to prove that the candidate is
indeed an optimiser. To complete the proof, it is necessary to have upper semiconti-
nuity of the expected utility when considered as a function of the strategy variable. In
[27], a counterexample (in which u(x) is finite, but one could not find an optimiser)
is given in the nondominated case. The author’s argument exploits precisely the lack
of upper semicontinuity property in one model. Furthermore, [27] gives a sufficient
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condition to have upper semicontinuity, namely the integrability of the positive part
of the utility function under every possible model; see [27, Theorem 2.2] and also
[8] for further developments. In our approach, upper semicontinuity follows from the
finiteness of the dual value function for every model.

4 Utility functions on R

Assumption 4.1 The utility function U : R → R is bounded from above, nonde-
creasing, concave and U(0) = 0. Define the convex conjugate of U by

V (y) := sup
x∈R

(
U(x) − xy

)
, y > 0.

We also assume that

lim
x→−∞

U(x)

x
= ∞, (4.1)

lim sup
y→∞

V (2y)

V (y)
< ∞. (4.2)

Remark 4.2 Under (4.1), the function V takes finite values and V (y) > 0 for y large
enough; hence (4.2) makes sense. The condition U(0) = 0 is used only to simplify
calculations. Condition (4.1) is mild and so is (4.2); indeed, as shown in [32, Corol-
lary 4.2(i)], for every utility function U with reasonable asymptotic elasticity, its con-
jugate V satisfies (4.2). The studies [11, 23] assumed a smooth U which is strictly
concave on its entire domain; we need neither smoothness nor strict concavity of U .

As discussed in [7, 33], the choice of admissible trading strategies is a delicate issue
in the context of utility maximisation with utility functions defined on the real line.
A common approach is to consider strategies whose wealth processes are bounded
uniformly from below by a constant. This choice, however, turns out to be restrictive
and fails to contain optimisers. In frictionless markets, [33] proved that for a utility
function having reasonable asymptotic elasticity, the optimal investment process is a
supermartingale under each martingale measure Q such that E[V (dQ/dP )] is finite.
We thus use the supermartingale property to define admissibility, just like in [28, 10].

To begin with, we define

Mθ
V = {Qθ : (S̃θ ,Qθ ) is a λ-consistent price system, E[V (dQθ/dP )] < ∞},

the set of local martingale measures in consistent price systems for the θ -model with
finite generalised relative entropy.

Definition 4.3 We define

Aθ (x) := {H ∈ V : φT = 0, V x(θ,H) is a Qθ -supermartingale

for each λ-consistent price system (S̃θ ,Qθ ) with Qθ ∈Mθ
V }

and set A(x) := ⋂
θ∈Θ Aθ (x).
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The optimisation problem becomes

u(x) = sup
H∈A(x)

inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,H)

)]
.

Assumption 4.4 For each θ ∈ Θ , the price process Sθ admits a λ-SCPS (Qθ , S̃θ )

such that Qθ ∈Mθ
V .

Remark 4.5 Unlike in [11, 12, 23] and in Sect. 3, we do not impose in the present
section the existence of consistent price systems for every transaction cost coefficient
0 < μ < λ; we only stipulate Assumption 4.4. The following example shows that it is
quite possible to have CPSs for relatively large λ without having them for arbitrarily
small μ. In this example, there is an obvious arbitrage, in the language of [17], which
persists (ceases) with sufficiently small (large) transaction costs.

Example 4.6 Let us consider

St = 1 + t + 1

2π
arctanWt, t ∈ [0,1].

If λ < 3/7, then (1−λ)S1 > 1 = S0 a.s.; therefore, there is no consistent price system.
If λ ≥ 2/3, then

St (1 − λ) ≤ 3/4 ≤ St , t ∈ [0, T ].
In other words, (P, S̃ ≡ 3/4) is a consistent price system.

Theorem 4.7 Under Assumptions 4.1 and 4.4, there exists a strategy H ∗ ∈ A(x)

such that

u(x) = inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,H ∗)

)]
.

Proof We adapt certain techniques of [30]. Our arguments bring novelties even
in the case where Θ is a singleton (i.e., without model uncertainty). Define
Φ∗(x)= −U(−x) for x ≥ 0. Its conjugate (in the sense of Sect. A.2 below) is

Φ(y) :=
{

0, if 0 ≤ y ≤ β,

V (y) − V (β), if y > β,

where β is the left derivative of U at 0; see [5]. Note that Φ , Φ∗ are Young functions
and Φ is of class �2 by (4.2).

Let Hn ∈ A(x), n ∈ N, be a maximising sequence, i.e.,

inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,Hn)

)] ↑ u(x) ≥ U(x). (4.3)

First, for all θ ∈ Θ , it holds that

sup
n

E
[
U−(

W
x,liq
T (θ,Hn)

)]
< ∞. (4.4)
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Indeed, let us assume that there exists θ ∈ Θ such that (4.4) does not hold, or equiv-
alently, there exists a subsequence nk = nθ

k , k ∈N, such that

E
[
U−(

W
x,liq
T (θ,Hnk )

)]
> k.

Let us denote by C an upper bound of U ; then

E
[
U

(
W

x,liq
T (θ,Hnk )

)] ≤ C − E
[
U−(

W
x,liq
T (θ,Hnk )

)] −→ −∞ as k → ∞
which contradicts (4.3). Hence (4.4) indeed holds.

Consider a λ-strictly consistent price system (S̃θ ,Qθ ). Fenchel’s inequality gives

U
(
V x

T (θ,Hn)
) − V (dQθ/dP ) ≤ (dQθ/dP )V x

T (θ,Hn)

and therefore

(dQθ/dP )
(
V x

T (θ,Hn)
)− ≤

(
U

(
V x

T (θ,Hn)
) − V (dQθ/dP )

)−
. (4.5)

From (4.4) and (4.5), we deduce that

sup
n

EQθ [(
V x

T (θ,Hn)
)−]

< ∞. (4.6)

Itô’s formula gives

dV x
t (θ,Hn) = −Sθ

t dH
n,↑
t + (1 − λ)Sθ

t dH
n,↓
t + S̃θ

t dφn
t + φn

t− dS̃θ
t

= (S̃θ
t − Sθ

t ) dH
n,↑
t + (

(1 − λ)Sθ
t − S̃θ

t

)
dH

n,↓
t + φn

t− dS̃θ
t .

This implies that

(Hn
0 )+(Sθ

0 − S̃θ
0 ) +

∫ t

0
(Sθ

u − S̃θ
u) dHn,↑

u +
∫ t

0

(
S̃θ

u − (1 − λ)Sθ
u

)
dHn,↓

u

+
(∫ t

0
φn

u−dS̃θ
u

)−

≤ x + (Hn
0 )−

(
Sθ

0 (1 − λ) − S̃θ
0

) + (
V x

t (θ,Hn)
)− +

(∫ t

0
φn

u− dS̃θ
u

)+
.

In particular,

(∫ t

0
φn

u−dS̃θ
u

)−
≤ x + (Hn

0 )−Sθ
0 (1 − λ) + (

V x
t (θ,Hn)

)−
. (4.7)

For each n, the process V x(θ,Hn) is a Qθ -supermartingale; so there exists a
Qθ -martingale which dominates the right-hand side of (4.7) and also the left-hand
side of the same expression. [1, Corollary 3.5] implies that

∫ t

0 φn
u−dS̃θ

u , t ∈ [0, T ], is
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a Qθ -supermartingale. We get supn(H
n
0 )− < ∞ in the same way as in the proof of

Theorem 3.6. Consequently, (4.6), (4.7) and the boundedness of (Hn
0 )−, n ∈ N, give

sup
n

EQθ

[(∫ T

0
φn

t−dS̃θ
t

)+]
< ∞.

Noting that (S̃θ ,Qθ ) is a λ-strictly consistent price system, we obtain from the above
arguments that

sup
n

EQθ

[
(Hn

0 )+δ(θ) + δ(θ)

∫ T

0
(dH

n,↑
t + dH

n,↓
t )

]

≤ sup
n

EQθ

[
(Hn

0 )+(Sθ
0 − S̃θ

0 ) +
∫ T

0
(Sθ

t − S̃θ
t ) dH

n,↑
t + (

S̃θ
t − (1 − λ)Sθ

t

)
dH

n,↓
t

]

< ∞.

Lemma A.1 implies the existence of convex weights αn
j ≥ 0, j = n, . . . ,M(n), with∑M(n)

j=n αn
j = 1 such that H̃ n := ∑M(n)

j=n αn
j Hn → H ∗ in V. Since the utility function

is concave, H̃ n, n ∈ N, is also a maximising sequence.
We now prove that H ∗ ∈ A(x); in other words, the process V x(θ,H ∗) is a

Qθ -supermartingale, for each Qθ ∈Mθ
V and each θ ∈ Θ . To do so, it suffices to con-

trol the negative part of V x(θ,H ∗). It should be emphasised that (4.6) is not enough
for our purposes and a stronger statement using Orlicz space theory is needed (see
Sect. A.2). Using concavity of U and linearity of V x(θ, ·), we get from (4.4) that

sup
n

E
[
U−(

V x
T (θ, H̃ n)

)]
< ∞. (4.8)

Applying Lemma A.3 to the sequence of random variables in (4.8), we obtain
convex weights α′n

j ≥ 0, n ≤ j ≤ M(n), with
∑M(n)

j=n α′n
j = 1 such that

Zn :=
M(n)∑
j=n

α′n
j

(
V x

T (θ, H̃ n)
)−

satisfy

L :=
∥∥∥ sup

n
Zn

∥∥∥
Φ∗ < ∞. (4.9)

By the Fenchel inequality and (4.9),

EQθ
[

sup
n

Zn
]

= LEQθ

[
supn Zn

L

]

≤ LE

[
Φ

(
dQθ

dP

)]
+ LE

[
Φ∗

(
supn Zn

L

)]
< ∞ (4.10)
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for each Qθ ∈ Mθ
V . When L = 0, we have that EQθ [supn Zn] = 0 trivially. Now we

define

H
n :=

M(n)∑
j=n

α′n
j H̃ n,

which is also a maximising sequence. Using the fact that the negative part of a su-
permartingale is a submartingale, we get V x

t (θ,H
n
)− ≤ EQθ [V x

T (θ,H
n
)−|Ft ] and

thus

sup
n

V x
t (θ,H

n
)− ≤ sup

n
EQθ [V x

T (θ,H
n
)−|Ft ].

Taking expectations on both sides of the above inequality, we obtain

EQθ
[

sup
n

V x
t (θ,H

n
)−

]
≤ EQθ

[
sup
n

EQθ [V x
T (θ,H

n
)−|Ft ]

]

≤ EQθ
[
EQθ [

sup
n

V x
T (θ,H

n
)−

∣∣Ft

]]

= EQθ
[

sup
n

V x
T (θ,H

n
)−

]

≤ EQθ
[

sup
n

Zn
]

< ∞,

using (4.10). Since the random variable supn(V
x
t (θ,H

n
))− is an upper bound of the

sequence V x
t (θ,H

n
)−, n ∈ N, this proves uniform integrability of that sequence un-

der Qθ at any time t ∈ [0, T ].
Clearly, H

n → H ∗ in V and therefore V x
t (θ,H

n
) → V x

t (θ,H ∗) a.s., for every
t ∈ [0, T ] \ Z where Z has Lebesgue measure 0; see Remark A.2. Also,

(
V x

t (θ,H ∗)
)− ≤ EQθ

[
sup
n

V x
T (θ,H

n
)−

∣∣∣Ft

]
, t ∈ [0, T ], (4.11)

where the latter process is a martingale, and hence (V x
t (θ,H ∗))t∈[0,T ] is uniformly

integrable. Let 0 ≤ s ≤ t < T be both in [0, T ] \Z. Noting the supermartingale prop-
erty, Fatou’s lemma yields

EQθ [V x
t (θ,H ∗)|Fs] = EQθ

[
lim inf
n→∞ V x

t (θ,H
n
)

∣∣∣Fs

]

≤ lim inf
n→∞ EQθ [V x

t (θ,H
n
)|Fs]

≤ lim inf
n→∞ V x

s (θ,H
n
) = V x

s (θ,H ∗).

The same argument works for t = T , too. Now it extends to arbitrary t ∈ [0, T ] by
using Fatou’s lemma and (4.11). Finally, it extends to arbitrary s ∈ [0, T ] by the back-
ward martingale convergence theorem and by right-continuity of s → V x

s (θ,H ∗).
This means that V x(θ,H ∗) is a Qθ -supermartingale and therefore H ∗ ∈A(x).
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Since U is bounded from above, by Fatou’s lemma,

lim sup
n→∞

(
inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,H

n
)
)]) ≤ inf

θ∈Θ
lim sup
n→∞

E
[
U

(
W

x,liq
T (θ,H

n
)
)]

≤ inf
θ∈Θ

E
[
U

(
W

x,liq
T (θ,H ∗)

)]
,

which proves the optimality of H ∗. �

Remark 4.8 We can compare our approach to that of [30] where in a general set-
ting, supermartingale portfolio processes and their terminal values are considered,
relying on [13]. In order to get optimal strategies, a certain Fatou-closure prop-
erty of such terminal values is used. It is known that the proof of such a prop-
erty (see e.g. [30, Lemma 4.1]) is rather subtle and does not construct the op-
timal strategy simply as a convex combination of an approximating sequence of
strategies. In other words, only an optimal terminal value is obtained there, with-
out obtaining an optimal strategy. When model ambiguity is present, this approach
is doomed to fail since there does not seem to exist a method that provides Fatou-
closedness “uniformly in the family of possible models”. For this reason, the tech-
niques of [30] cannot cope with model uncertainty in markets with or without fric-
tion.

5 Conclusions

It is possible to extend our results in Sect. 4. One could treat the multi-asset “conic”
framework of [19]; unbounded utilities could also be incorporated along the lines of
[30, Theorem 3.12]; random endowments (or random utilities) can be added at little
cost since we do not consider the dual problem at all. These extensions, however,
require no essential new ideas while they would considerably complicate the presen-
tation. Our emphasis here is on introducing a new approach, and not on striving for
the utmost generality.

Admitting jumps in the price process leads to a more involved class of strate-
gies. The treatment of that setting is a direction of research worth pursuing in the
future.
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Appendix

A.1 Finite-variation processes

Let V denote the family of nondecreasing, right-continuous functions on [0, T ] which
are 0 at 0. Let rk , k ∈ N, be an enumeration of D := (Q∩ [0, T ]) ∪ {T } with r0 = T .
For f,g ∈ V , define

ρ(f,g) :=
∞∑

k=0

2−k|f (rk) − g(rk)|.

The series converges since |f (rk) − g(rk)| ≤ f (T ) + g(T ), and it defines a metric.
The corresponding Borel σ -field is denoted by G.

Let V denote the set of triplets H = (H↑,H↓,H0) where H
↑
t , H

↓
t , t ∈ [0, T ], are

optional processes such that H↑(ω),H↓(ω) ∈ V for each ω ∈ Ω and H0 ∈ R (deter-
ministic). Considered as mappings H↑,H↓ : (Ω,F) → (V,G), they are measurable,
by the definition of the metric ρ. We identify elements of V when they coincide (as
functions in t) outside a P -null set. We say that a sequence (Hn) in V is convergent to
some H ∈ V if Hn,↑ → H↑ and Hn,↓ → H↓ a.s. in V as n → ∞ and also Hn

0 → H0
(in the topology of R).

Convex-compactness-type results for finite-variation processes have been intro-
duced in various forms in the literature. The following result is very similar to [18,
Lemma 3.5].

Lemma A.1 Let Hn ∈ V, n ∈N, be such that

sup
n∈N

(EQ[Hn,↑
T + H

n,↓
T ] + |Hn

0 |) < ∞

for some Q ≈ P . Then there are H ∈ V and convex weights αn
j ≥ 0, j = n, . . . ,M(n),

with
∑M(n)

j=n αn
j = 1, n ∈N, such that

H̃ n :=
M(n)∑
j=n

αn
j Hj −→ H in V.

It follows that for P -almost every ω ∈ Ω ,

H̃
n,↑
t (ω) −→ H

↑
t (ω) and H̃

n,↓
t (ω) −→ H

↓
t (ω)

at t = T and at each t which is a continuity point of both H↑(ω) and H↓(ω).

Proof Recall that D = ([0, T ]∩Q)∪{T }. By assumption, the sequence H
n,↑
T , n ∈N,

is bounded in L1(Q) for some Q ≈ P ; so we use the Komlós theorem together with
a diagonalisation procedure to obtain sequences of convex weights αn

j such that

H̃
n,↑
t −→ H

↑
t , t ∈ D, (A.1)
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for some Ft -measurable random variables H
↑
t , on an event Ω̃ with P [Ω̃] = 1. Since

the limiting process, if it exists, is nondecreasing and right-continuous, we set

H
↑
t = lim

q↓t,q∈QH↑
q , t ∈ [0, T ).

We prove that for ω ∈ Ω̃ ,

H̃
n,↑
t (ω) −→ H

↑
t (ω) (A.2)

for each t ∈ [0, T ) that is a continuity point of the function s → H
↑
s (ω). Fix ε > 0.

Using continuity at t of H↑, we find two rational numbers q1, q2 such that q1 < t < q2

and H
↑
q2(ω) − H

↑
q1(ω) < ε. From (A.1), there exists N = N(ω) such that

|H̃ n,↑
q2

(ω) − H↑
q2

(ω)| < ε, |H̃ n,↑
q1

(ω) − H↑
q1

(ω)| < ε, ∀n ≥ N.

We estimate, for all n ≥ N ,

|H̃ n,↑
q2

(ω) − H̃ n,↑
q1

(ω)| ≤ |H̃ n,↑
q2

(ω) − H↑
q2

(ω)| + |H↑
q2

(ω) − H↑
q1

(ω)|
+ |H↑

q1
(ω) − H̃ n,↑

q1
(ω)|

≤ 3ε.

Therefore, using monotonicity of H̃ n,↑, we obtain for all n ≥ N(ω) that

|H̃ n,↑
t (ω) − H

↑
t (ω)| ≤ |H̃ n,↑

t (ω) − H̃ n,↑
q2

(ω)| + |H̃ n,↑
q2

(ω) − H↑
q2

(ω)|
+ |H↑

q2
(ω) − H

↑
t (ω)|

≤ |H̃ n,↑
q1

(ω) − H̃ n,↑
q2

(ω)| + |H̃ n,↑
q2

(ω) − H↑
q2

(ω)|
+ |H↑

q2
(ω) − H↑

q1
(ω)|

≤ 5ε.

Notice that (A.2) also holds for t = T . The same argument can be repeated for the
sequence H̃ n,↓, n ∈ N, and also Hn

0 → H0 can be guaranteed with some H0 ∈ R by
extracting a further subsequence. �

Remark A.2 The above proof shows that if fn → f in V as n → ∞, then fn(x)

tends to f (x) in every continuity point x of f . Consequently, for any continuous
g : [0, T ] → R, we have

∫ T

0 g(t) dfn(t) → ∫ T

0 g(t) df (t) as n → ∞, where the inte-
gration is meant with respect to the measures induced by fn, f .

As a consequence, for the sequence (H̃ n) constructed in Lemma A.1 above, we
have

W
x,liq
t (θ, H̃ n)(ω) −→ W

x,liq
t (θ,H)(ω)

and V x
t (θ, H̃ n)(ω) → V x

t (θ,H)(ω) as n → ∞, almost surely, in t = T and in every
t which is a continuity point of both H↑(ω), H↓(ω), and in particular for Lebesgue-
a.e. t . Fubini’s theorem thus implies that there is a set Z of zero Lebesgue measure
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(excluding T ) such that for all t ∈ [0, T ] \ Z, W
x,liq
t (θ, H̃ n) → W

x,liq
t (θ,H) and

V x
t (θ, H̃ n) → V x

t (θ,H) hold P -almost surely.

A.2 Orlicz spaces

We call Φ : R+ → R+ a Young function if it is convex with Φ(0) = 0 and
limx→∞ Φ(x)/x = ∞. The set

LΦ := {X ∈ L0 : E[Φ(γ |X|)] < ∞ for some γ > 0}
is a Banach space with the norm

‖X‖Φ := inf{γ > 0 : X ∈ γBΦ},
where BΦ := {X ∈ L0 : E[Φ(|X|)] ≤ 1} is the unit ball of LΦ . Define the conjugate
function Φ∗(y) := supx≥0(xy − Φ(x)), y ∈ R+. This is also a Young function and
(Φ∗)∗ = Φ . We say that Φ is of class �2 if

lim sup
x→∞

Φ(2x)

Φ(x)
< ∞.

We recall [13, Corollary 3.10], a compactness result which is used to handle the losses
of trading strategies in this paper.

Lemma A.3 Let Φ be a Young function of class �2 and let ξn, n ≥ 1, be a norm-
bounded sequence in LΦ∗

. Then there are convex weights αn
j ≥ 0, n ≤ j ≤ M(n),

with
∑M(n)

j=n αn
j = 1 such that

ξ ′
n :=

M(n)∑
j=n

αn
j ξj

converges almost surely to some ξ ∈ LΦ∗
as n → ∞, and supn |ξ ′

n| is in LΦ∗
.
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