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Abstract

For a graph G = (V,E), a hypergraph H is called Berge-G if there is
a bijection φ : E(G) → E(H) such that for each e ∈ E(G), e ⊆ φ(e). The
set of all Berge-G hypergraphs is denoted B(G).

For integers k ≥ 2, r ≥ 2, and a graph G, let the Ramsey number
Rr(B(G), k) be the smallest integer n such that no matter how the edges of
a complete r-uniform n-vertex hypergraph are colored with k colors, there
is a copy of a monochromatic Berge-G subhypergraph. Furthermore, let
R(B(G), k) be the smallest integer n such that no matter how all subsets
an n-element set are colored with k colors, there is a monochromatic copy
of a Berge-G hypergraph.

We give an upper bound for Rr(B(G), k) in terms of graph Ramsey
numbers. In particular, we prove that when G becomes acyclic after
removing some vertex, Rr(B(G), k) ≤ 4k|V (G)|+ r − 2, in contrast with
classical multicolor Ramsey numbers.

When G is a triangle (or a K4), we find sharper bounds and some
exact results and determine some “small” Ramsey numbers:

• k/2− o(k) ≤ R3(B(K3)), k) ≤ 3k/4 + o(k),

• For any odd integer t 6= 3, R(B(K3), 2
t − 1) = t+ 2,

• 2ck ≤ R3(B(K4), k) ≤ e(1 + o(1))(k − 1)k!,

• R3(B(K3), 2) = R3(B(K3), 3) = 5, R3(B(K3), 4) = 6, R3(B(K3), 5) =
7, R3(B(K3), 6) = 8, R3(B(K3, 8) = 9, R3(B(K4), 2) = 6.

1 Introduction

For a graph G, a family B(G) consists of hypergraphs H each with |E(G)|
distinct hyperedges so that for each xy ∈ E(G), there is a hyperedge exy of H
such that φ(x), φ(y) ∈ exy and exy 6= ex′y′ if xy 6= x′y′, for an injective map
φ : V (G) → V (H). Here, we shall always denote the vertex set of F as V (F )
and the edge set of F as E(F ), for a graph or a hypergraph F . A copy of a
graph F in a graph G is a subgraph of G isomorphic to F . When clear from
context, we shall drop the word “copy” and just say that there is F in G.
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The members of B(G) are called Berge-G hypergraphs. We call a copy G′ of
G, where G′ = (φ(V (G)), {φ(x)φ(y) : xy ∈ E(G)}), the underlying graph of the
Berge-G hypergraph.

The Ramsey number Rr(F , k) is the smallest integer n such that no matter
how the edges of a complete r-uniform n-vertex hypergraph, that we denote
Kr

n, are colored with k colors, there is a monochromatic subhypergraph from
F . We always assume that k ≥ 2, r ≥ 2, and simply write Kn for K2

n. The clas-
sical k-color Ramsey number for a graph G (uniformity 2) is denoted R(G, k),
i.e., R(G, k) = R2({G}, k). When we do not restrict our attention to uniform
hypergraphs, we define the Ramsey number R(B(G), k) to be the smallest in-
teger n such that no matter how all subsets an n-element set are colored with
k colors, there is a monochromatic copy of a Berge-G hypergraph. It is conve-
nient to define dual functions: f(n,B(G)), the smallest number of colors in a
coloring of 2[n] such that there is no monochromatic Berge-G hypergraph and
fr(n,B(G)), the smallest number of colors in a coloring of

(

[n]
r

)

such that there
is no monochromatic Berge-G hypergraph.

For G = Ct, the cycle on t vertices, and r = 3, this problem has been al-
ready investigated. It was proved by Gyárfás, Lehel, Sárközy, and Schelp [8]
that R3(B(Ct), 2) = t for t ≥ 5. The fact that R3(B(Ct), 3) ∼

5t
4 was the main

result of the paper by Gyárfás and Sárközy, [9].

The Ramsey problem is closely related to Turán problems. For a family F
of hypergraphs, the Turán number exr(n,F) is the largest number of edges in
an r-uniform hypergraph on n vertices that does not contain any member from
the family F as a subhypergraph. Indeed, let N = Rr(F , k) − 1. Since in a
coloring of Kr

N in k colors with no monochromatic member of F each color class
has at most exr(N,F) edges, we have

(

N

r

)

≤ k · exr(N,F). (1)

Note that this inequality gives easy upper bounds on N if exr(N,F) =
o(N r). Győri [10] proved that ex3(n,B(K3)) ≤ n2/8 and the bound is tight.
The non-uniform and multi-hypergraph case was addressed in that paper too.
Other results on extremal numbers for Berge hypergraphs were provided by
Gerbner and Palmer [5], Gerbner, Methuku, and Vizer, [3], Gerbner, Methuku,
and Palmer, [4], as well as by Palmer, Tait, Timmons, and Wagner [12], and by
Grósz, Methuku, and Tompkins [7].

We provide bounds on uniform and non-uniform Ramsey numbers for Berge-
K3 hypergraphs, including several exact results. We also give results for Ramsey
numbers of Berge hypergraphs for general graphs.

Theorem 1. Let F = B(K3). Then for n ≥ 3

1. k/2− o(k) ≤ R3(F), k) ≤ 3k/4 + o(k),

2. R3(F , 2) = R3(F , 3) = 5, R3(F , 4) = 6, R3(F , 5) = 7, R3(F , 6) =
8, R3(F , 8) = 9,

3. 2n−2(1 − o(1)) ≤ f(n,F) ≤ 2n−2,
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4. f(n,F) = 2n−2, for odd n ≥ 3, except for n = 5.

We make a connection between r-uniform Ramsey numbers of Berge-G hy-
pergraphs, r ≥ 3, and multicolor Ramsey numbers for auxiliary families of
graphs. For a graph G = (V,E) and v ∈ V , G∗(v) is defined as the class of all
graphs obtained from G by the following procedure. Let N(v) = {q1, . . . , qt}
denote the set of vertices adjacent to v in G. Let G′ = G − v be the graph
obtained from G by deleting v and the edges of G incident to v. Then, for
every qi ∈ N(v) add a new edge qiri (not in G′) where ri can be any vertex of
G′ or any new vertex (not in G′). These |N(v)| new edges could be pendant,
forming a matching, or could share endpoints. Thus G∗(v) includes G and many
other graphs. The graph obtained this way is denoted by G′′(v; q1r1, . . . , qtrt)
and is called an extension of G − v. For example, if G = K4 − e, the graph
obtained from K4 by deleting an edge, and v is a vertex of degree three in it,
G∗(v) consists of G and four other graphs. When G = K4, G

∗(v) consists of G,
K4 − e with a pendant edge incident to a vertex of degree 2 of K4 − e, and a
triangle with three pendant edges. See Figure 1.

Figure 1: A family G∗(v) for G = K4 − e and for G = K4

Theorem 2. For any graph G, v ∈ V (G), and any integer r ≥ 3, we have

Rr(B(G), k) ≤ R(G∗(v), k) + r − 2.

Proof. Consider a k-coloring c of K = Kr
n on a vertex set V , |V | = n ≥

R(G∗(v), k) + r − 2. Fix an arbitrary (r − 2)-element subset X ⊂ V and k-
color the edges of the complete graph K ′ with vertex set V \ X by the rule
c(xy) = c(X ∪{x, y}). From the choice of n, we have a monochromatic, say red
copy G′′ = G′′(v; q1r1, . . . , qtrt) of a member of G∗(v) in K ′. We claim that K
contains a red member of B(G).

To prove the claim, let x ∈ X and define the graph F as follows. Let

V (F ) = V (G′′) ∪ {x}, E(F ) = (E(G′′) ∪t
i=1 xqi) \ (∪

t
i=1qiri).

We show that the edges of F can be covered by distinct red edges of K. Indeed,
xqi ∈ (E(F ) \ E(G′′)) is covered by {qi, ri} ∪ X and any edge vw ∈ (E(F ) ∩
E(G′′)) is covered by {v, w} ∪ X and these sets are red edges of K. Thus the
graph obtained from F upon removing those ri-s that are not in V (G′) (they are
isolated vertices of F ) is isomorphic to G and its edges are covered by distinct
red edges of K. This proves the claim and Theorem 2.

Since G ∈ G∗(v) for every v, Theorem 2 implies

Corollary 3. Rr(B(G), k) ≤ R(G, k) + r − 2.

However, a much stronger bound follows from Theorem 2.

Corollary 4. Set G = ∪v∈V (G)G
∗(v). Then Rr(B(G), k) ≤ R(G, k) + r − 2.

Corollary 5. If a graph G can be made acyclic by the removal of a vertex, then

Rr(B(G), k) ≤ 4k|V (G)|+ r − 2 for every r ≥ 3.
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Proof. If G− v is acyclic, G′ = G− v has an acyclic extension G′′ obtained by
adding a matching qiri from N(v) to new vertices. Clearly |V (G′′)| < 2|V (G)|
and since G′′ is acyclic and R(G′′, k) ≤ 2k|V (G′′)| (see e.g. [11]), Corollary 5
follows from Theorem 2.

For the non-uniform case we have the following bounds.

Theorem 6. Let G be a graph with at least two edges. If G 6= 2K2, then

1.
2n−|V (G)|

|E(G)| − 1
≤ f(n,B(G)) ≤ 2n−1.

2. In addition, if G has maximum degree at most 2, then

2n−1

|E(G)| − 1
(1− o(1)) ≤ f(n,B(G)).

3.

f(n,B(2K2)) = 2n −

(

n

2

)

− n− 1.

Moreover, we have some results for Ramsey numbers of B(K4). SetK
∗
4 = K∗

4 (v),
for a vertex v in K4.

Theorem 7. We have that for a positive constant c

1. 2ck ≤ R3(B(K4), k) ≤ R(K∗
4 , k) + 1 ≤ e(1 + o(1))(k − 1)k!,

2. R3(B(K4), 2) = 6.

Note that part 1 in Theorem 7 shows that the upper bound of the multicolor
Ramsey number for the family K∗

4 (v) differs from the best known upper bound
of R(K3, k) only by a factor linear in k. It is also worth mentioning that part
2. in Theorem 7 shows that R3(B(K4), 2) is much smaller than its classical
counterpart, R3(K

3
4 , 2) = 13, [13].

The rest of the paper is structured as follows. In Section 2 we treat the non-
uniform case proving parts 3 and 4 of Theorem 1 and Theorem 6. In Section 3
we prove the remaining parts 1 and 2 of Theorem 1. Finally, in Section 4 we
prove Theorem 7.

2 The non-uniform case

Proof of Theorem 6/1 - upper bound. If G is not a 2K2, make each color
class consisting of a set and its complement. This gives a general upper bound.

Proof of Theorem 1/3 - upper bound. For the upper bound on f(n,B(K3)),
consider the coloring of 2[n] such that each color class consists of four sets: A,
[n − 1] − A, [n] − A, and A ∪ {n} for A ⊆ [n − 1]. Then the total number of
colors is 2n−2. The four sets of each color class do not contain Berge-K3.

Proof of Theorem 6/1 - lower bound. To prove the bound f(n,B(G)) ≥
2n−|V (G)|

|E(G)|−1 , consider a set S of |V (G)| vertices and the set S of all subsets con-

taining S. Note that any |E(G)| sets from S form a Berge-G hypergraph. Thus
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there are at most |E(G)| − 1 members of S of each color. Therefore the total
number of colors is at least the number of colors used on S, that in turn is at
least

|S|

|E(G)| − 1
=

2n−|S|

|E(G)| − 1
=

2n−|V (G)|

|E(G)| − 1
.

Proof of Theorem 6/2. Let G be a graph with maximum degree at most

2. Consider X , the set of all subsets of [n] of size at least n+|V (G)|
2 . Then

any two sets from X intersect in at least |V (G)| elements. We claim that
any |E(G)| sets from X form a Berge-G graph. Assume that G is a cycle on
k vertices, for other graphs of maximum degree at most 2, the argument is
similar. Consider an arbitrary family X1, . . . , Xk of sets from X . Pick vertices
x1 ∈ X1∩X2, x2 ∈ (X2∩X3)\{x1}, and so on, xi ∈ (Xi∩Xi+1)\{x1, . . . , xi−1},
i = 2, . . . , k − 1. Finally pick xk ∈ (Xk ∩ X1) \ {x1, . . . , xk−1}. Since pairwise
intersections have size at least k, it is always possible to make such a choice of
x1, . . . , xk. Then {x1, . . . , xk} forms an underlying vertex set of a Berge-Ck.

Thus in a coloring of X with no monochromatic Berge-G, there are at most
|E(G)| − 1 sets of the same color. This implies that the number of colors is at
least

|X |

|E(G)| − 1
≥

2n−1 − c|V (G)| 2
n

√
n

|E(G)| − 1
≥

2n−1

|E(G)| − 1
− o(2n).

Proof of Theorem 1/3 - lower bound. The lower bound for Berge-K3

follows from the previous proof.

Proof of Theorem 1/4. When n is odd, consider all sets of size at least
(n + 1)/2. We claim that any three of those, say A1, A2, A3, form a Berge-K3

hypergraph. Indeed, the three sets Ai ∩ Aj (1 ≤ i < j ≤ 3) have distinct
representatives by checking Hall’s condition. It is obvious that none of them is
empty and the union of any two of them has at least two elements. Moreover,
their union has at least three elements except for n = 5 (when three sets of size
three can intersect in two elements).

Thus in any coloring of 2[n] with no monochromatic copy of Berge-K3 hy-
pergraph, there are at most two subsets of size at least (n + 1)/2 that have
the same color. Thus the total number of colors in such a coloring is at least
|{A : |A| ≥ (n + 1)/2, A ⊆ [n]}|/2 = 2n−2. The upper bound follows from
Theorem 6/1.

Proof of Theorem 6/3. To prove that f(n,B(2K2)) = 2n −
(

n
2

)

− n− 1, note
that in any coloring of subsets of size at least three in [n] without monochromatic
B(2K2), all subsets must have distinct colors. Thus

f(n,B(2K2)) ≥ |{X : X ⊆ [n], |X | ≥ 3}| = 2n −

(

n

2

)

− n− 1.

On the other hand, the following coloring has no monochromatic B(2K2): color
all sets of size at least 3 with distinct colors, color each set of at most two
elements with the color of some 3-element set containing it. Then each color
class of size at least two consists of subsets of some three element set, so it does
not contain a copy of B(2K2) and the number of colors is 2n −

(

n
2

)

− n− 1.
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3 Ramsey number of the Berge triangle

In this subsection we set F = B(K3).

Proof of Theorem 1/1,2 - upper bounds. Consider a coloring of Kr
n,

an r-uniform n-clique with k colors without monochromatic member of F ,
n = Rr(F , k)− 1. Then each color class has at most exr(n,F) edges. A result

of Győri [10] implies that exr(n,F) ≤ n2

8(r−2) . Thus
(

n
r

)

, the total number of

hyperedges, is at most kn2/(8(r − 2)). This provides the general upper bounds
and all upper bounds for the Ramsey numbers for i colors, i = 2, 3, 4, 5, 6, 7, 8.

Proof of Theorem 1/1 - lower bound. We shall instead provide an upper
bound on the number of colors needed to color the triples on n vertices so that
no monochromatic Berge-K3 is created. We split the vertex set in two almost
equal parts, A and B. Let A1, A2, . . . and B1, B2 . . . be color classes of optimal
proper edge-colorings of complete graphs (uniformity 2) on a vertex set A and
on a vertex set B, respectively. Let Ai = {{x, y, z} : {x, y} ∈ Ai, z ∈ B}, let
Bi = {{x, y, z} : {x, y} ∈ Bi, z ∈ A}. Then we see that each of Ai’s and Bi’s
does not contain a member or F . Moreover these classes of triples contain all
hyperedges of K3

n with vertices in both A and B. Color all triples in Ai with
color ai, all tripes in Bi with color bi, for distinct ai’s and bi’s. Further, color
the triples with all elements in A or with all elements in B recursively using
new colors such that the set of colors used on triples from A is the same as the
set of colors used on triples from B. Let f(n) be the number of colors given by
this construction and χ′(G) denote the chromatic index of a graph G. Then

f(n) ≤ χ′(K⌊n/2⌋) + χ′(K⌈n/2⌉) + f(⌈n/2⌉)

≤ ⌊n/2⌋+ ⌈n/2⌉+ f(⌈n/2⌉)

= n+ f(⌈n/2⌉)

≤ 2n+ logn.

So, we have that the number of colors k is bounded as k ≤ 2n+ logn, thus
n ≥ k/2− o(k).

Proof of Theorem 1/2 - lower bounds. The lower bound for 2 and 3 colors
is obvious since two edges of K3

4 can be colored red and the other two blue. An
F -free 4-coloring of K3

5 on [5] can be given by splitting the edge set into color
classes as follows:

123, 124, 125; 134, 234, 345; 135, 145; 235, 245.

Note that for each color class there is a pair of vertices that belongs to each
hyperedge of this class, thus there is no monochromatic Berge-K3 hypergraph.
An F -free 5-coloring of K3

6 on [5] ∪∞ can be given so that the first color class
is

∞12,∞13, 345, 245

and each other color class is obtained from the first one by cyclically shifting the
vertex labels that are not ∞ and keeping ∞ fixed. Finally, an F -free 6-coloring
of K3

7 on [5]∪∞1∪∞2 can given so that the first color class consists of 5 edges:
∞1∞21, ∞1∞22, ∞1∞23, ∞1∞24, ∞1∞25. The second color class is

125, 134,∞125,∞225,∞134,∞234,
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and third through sixth color classes are obtained from the second by keeping
∞1,∞2 fixed and cyclically shifting other vertex labels. The lower bound for 8
colors comes from the general construction.

4 Ramsey results for Berge-K4

In this section, set F = B(K4).

Proof of Theorem 7/1 - lower bound. A natural lower bound on R3(F , k)
comes from covering the edges of K3

n with the smallest possible number of 3-
partite subhypergraphs. Indeed, a 3-partite 3-uniform hypergraph cannot con-
tain any member of F , thus f(n), the minimum number of 3-partite hypergraphs
needed to cover all edges of K3

n provides a coloring with f(n) colors containing
no monochromatic member from F . This is a well studied problem in coding
theory, a special perfect hash family. Apart from very small n, exact values of
f(n) are not known, only upper bound tables are available [1]. The order of
magnitude of f(n) is known, c1 log(n) ≤ f(n) ≤ c2 log(n) [2]. The upper bound
implies that 2ck ≤ R3(F , k) for a positive constant c.

Interestingly, the upper bound of f(n) is easy from probabilistic construc-
tions, however, simple explicit constructions are not known (for general n). It
seems worthwhile to give a very simple construction leading to a 2 log22(n) up-
per bound. Split the vertex set of K3

n into two almost equal parts A and B,
consider colorings cA, cB on the pairs of A,B with no monochromatic K3 and
with disjoint color sets. Extend this coloring to edges of K3

n intersecting both A
and B as follows: edges xyz with x, y ∈ A, z ∈ B are colored with cA(xy), edges
xyz with x ∈ A, y, z ∈ B are colored with cB(yz). This can be easily done by
using no more than 2 log2(n) colors. The uncolored edges, i.e. edges inside A
and inside B can be colored recursively, using the same set of new colors. This
leads to the recursive bound f(n) ≤ 2 log2(n) + f(⌈n/2⌉).

Proof of Theorem 7/1 - upper bound. The inequality R3(F , k) ≤
R(K∗

4 (v), k) follows from Theorem 2. Thus Theorem 7 follows from the fol-
lowing lemma.

Lemma 8. For any ǫ, 0 < ǫ < 1/4, and any k ≥ 1, R(K∗
4 (v), k) ≤ (1+ǫ)kǫ−1k!.

In particular, R(K∗
4 (v), k) ≤ (k − 1)e(1 + o(1))k!.

Proof. We shall prove the statement by induction on k with a trivial basis for
k = 1. Consider a coloring of E(Kn), with k colors and no monochromatic copy
of a member from K∗

4 (v). Note that from each monochromatic triangle T of a
fixed color class i we can select one vertex vi(T ) of degree two in color class i.
Let Xi = ∪vi(T ), where the union is taken over all monochromatic triangles of
color i. Then Xi is an independent set in color i, i.e. cannot contain any edge
of color i. By induction |Xi| ≤ (1 + ǫ)k−1ǫ−1(k − 1)!.

Case 1. |Xi| > n/((1 + ǫ)k) for some i.
Then n ≤ (1+ǫ)k|Xi| ≤ (1+ǫ)k(1+ǫ)k−1ǫ−1(k−1)! = (1+ǫ)kǫ−1k! by induction.

Case 2. |Xi| ≤ n/((1+ǫ)k) for each i. Note that deleting all Xi’s leaves ver-
tex set X ′ of size at least n−n/(1+ǫ) = nǫ/(1+ǫ) such that X ′ does not contain

7



any monochromatic triangles. Then n ≤ (1 + ǫ)|X ′|/ǫ ≤ (1 + ǫ)R(K3, k)/ǫ ≤
k!(1 + ǫ)/ǫ ≤ (1 + ǫ)kǫ−1k!.

Optimizing over ǫ, for large k we see that for ǫ = 1/(k− 1), n ≤ (k− 1)e(1+
o(1))k!.

Proof of Theorem 7/2. Note that Theorem 2 gives

R3(F , 2) ≤ R(K∗
4 (v), 2) + 1 (2)

and the Ramsey number on the right can be determined easily.

Lemma 9. R(K∗
4 (v), 2) = 7.

Proof. Set F = B(K∗
4 (v)). For the lower bound R(F , 2) ≥ 7, consider K3,3 and

its complement as a 2-coloring on K6.
For the upper bound, suppose K = K7 is colored with red and blue. A well-

known result of Goodman [6] implies that any 2-colored K7 contains at least
four monochromatic triangles, among them two of the same color, say T1, T2 are
vertex sets of red triangles.

Suppose for contradiction that we have no monochromatic member of F .
This implies that there exist v1 ∈ T1, v2 ∈ T2 with red degree two in K. Con-
sequently the edge v1v2 and all edges incident to v1, v2 and not on T1, T2 are
blue. Set

T = (T1 ∪ T2) \ {v1, v2}, S = V (K) \ (T1 ∪ T2).

Easy inspection shows that either there is a blue member of F with base triangle
v1, v2, s with s ∈ S or all edges of [S, T ] are red. In the latter case any red triangle
with a red edge in T ∗ and with any s ∈ S is a base triangle of a red member of
F , apart from one case: when |S| = 3, |T | = 2. In this exceptional case a red
edge s1s2 gives a red member of F (with base triangle s1 ∪ T ) and a blue edge
s1s2 gives a blue member of F (with base triangle s1s2v1).

Unfortunately, Lemma 9 implies through (2) only R3(F , 2) ≤ 8, to decrease
it by two seems to require more difficult argument. First we need the Turán
number of F for n = 5.

Lemma 10. ex3(5,F) = 5.

Proof. Five edges clearly do not form F thus we have to show ex3(5,F) < 6.
Assume H is a 3-uniform hypergraph with six edges on a vertex set [5] without
any member of F . Observe that the maximum vertex degree of H is at least
⌈ 6×3

5 ⌉ = 4.

• Suppose that for some 1 ≤ i < j ≤ 5, ij is not covered by any edge of
H . By symmetry, let i = 1, j = 2. Then H either contains the six edges
meeting {1, 2} in one vertex or one of them, say 234 is missing. In the
first case the assignment

e13 = 134, e14 = 145, e15 = 135, e34 = 234, e35 = 235, e45 = 245

defines a F , otherwise the assignment e34 = 234 is replaced by the assign-
ment e34 = 345 to get a F . In both cases we have a contradiction. Thus
all pairs of vertices are covered by some edge of H . Assume that vertex 1
has maximum degree in H .
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• If d(1) = 6 then the edges containing 1 can be obviously assigned to pairs
of {2, 3, 4, 5} to form a member of F . Similarly, if d(1) = 5 then the five
edges containing 1 with the edge covering the yet uncovered pair of the link
of 1 form a member of F on {2, 3, 4, 5}. Both cases yield contradiction.

• If d(1) = 4 then the link of 1 is either the four cycle 2, 3, 4, 5, 2 or the
graph with edges 23, 34, 24, 45. In the first case we have a member of F
on {2, 3, 4, 5} with the assignment

e23 = 123, e34 = 134, e45 = 145, e25 = 125

extended by the edges covering the uncovered pairs 24, 35. In the second
case we make the assignments

e23 = 123, e24 = 124, e34 = 134, e45 = 145.

If there exist two distinct edges of H to cover the yet uncovered pairs
25, 35 we get a member of F on vertex set {2, 3, 4, 5}. Otherwise 234, 235
are both edges of H and we have a member of F on {1, 2, 3, 4} by the
assignments

e12 = 123, e13 = 134, e14 = 145, e23 = 235, e24 = 124, e34 = 234,

a contradiction, finishing the proof.

We are ready to prove that R3(F , 2) = 6. It is easy to see that R3(F , 2) ≥ 6
since in any 2-coloring of K3

5 with five edges in each color class there is no
monochromatic member of F .

For the upper bound consider a 2-coloring c of the edges of K = K3
6 with no

monochromatic member of F . Let H be the hypergraph defined by the edges
of the majority color, containing at least 10 hyperedges. By Lemma 10, any 5
vertices ofH induce at most 5 hyperedges, thus the remaining at least |E(H)|−5
hyperedges contain the sixth vertex, i.e., d(v) ≥ |E(H)| − 5 for every v ∈ V (H)
implying

6(|E(H)| − 5) ≤
∑

v∈v(H)

d(v) = 3|E(H)|, (3)

that in turn implies that |E(H)| ≤ 10. On the other hand |E(H)| ≥ 10, thus
|E(H)| = 10 and so the inequality in (3) hold as equality. In particular, H is
5-regular, implying the same for the other color. Thus we may assume that K
is partitioned into a red and a blue hypergraph Hr, Hb both 5-regular.

Let v be an arbitrary vertex of H and consider the hypergraphs induced by
Hr, Hb on V −v = [5]. By Lemma 10 both contain B(K4−e), we show that some
of them can be extended to F by adding a suitable edge of K containing v. It
is convenient to represent Hr, Hb with the graphs Gr, Gb of their complements
(with their inherited colorings). Apart from color changes we have four possible
cases.
Case 1. Gr, Gb are complementary five cycles. Assume the edges of Gr are
i, i + 1, thus edges i, i+ 1, i + 2 belong to Hr. Every four element subset form
a B(K4 − e) in Hr, for example the edges

e12 = 123, e45 = 145, e25 = 125, e24 = 234, e35 = 345
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cover all pairs of {2, 3, 4, 5} except {3, 4}. Thus we have a red F unless {v, i, i+1}
are all forming blue edges in K. The same argument gives that {v, i, i+2}must
be red edges of K. But then there are many monochromatic Fs, for example
the assignment

e12 = 123, e45 = 145, e25 = 125, e24 = v24, e35 = v35, e45 = 345

gives one on {2, 3, 4, 5}.
Case 2. Gr, Gb are complementary bulls. Assume that the edges of Gr are
12, 23, 34, 24, 45, implying that the edges 345, 123, 145, 125, 135 belong to of Hr

and the edges 234, 235, 134, 245, 124 belong to Hb. Then we have two B(K4−e)s
in Hr on {1, 2, 3, 5}. One of them with

e12 = 123, e13 = 135, e15 = 145, e25 = 125, e35 = 135

implying that v23 must be blue. The other is

e13 = 135, e15 = 145, e23 = 123, e25 = 125, e35 = 135

implying that v12 must be blue. However, then vertex 2 has degree at least six
in Hb, contradiction.
Case 3. Gr = K4 − e, Gb is its complement. Assume that the edges of Gr

are 12, 23, 34, 14, 24, then edges 125, 135, 145, 235, 345 belong to Hr and edges
123, 124, 134, 234, 245 belong to Hb. We have three B(K4−e)s in Hb on vertices
{1, 2, 3, 4}. All use assignments

e23 = 234, e24 = 245, e34 = 134

and they can be extended to B(K4 − e) with e13 = 123, e14 = 124, or e12 =
123, e14 = 124 or e12 = 124, e13 = 123, respectively. Since we have no B(K4)
in Hb, the edges 12v, 13v, 14v are all red and vertex 1 has degree at least six in
Hr, contradiction.
Case 4. Gr is a four-cycle with a pendant edge, Gb is its complement. As-
sume that the edges of Gr are 12, 23, 34, 45, 25, then edges 123, 125, 145, 134, 345
belong to Hr and edges 124, 135, 234, 235, 245 belong to Hb. Then we have two
B(K4 − e)s in Hb on {1, 3, 4, 5}. We can assign in both

e14 = 124, e34 = 234, e35 = 235, e45 = 245

and complete it with either e13 = 135 or e15 = 135. Since we have no B(K4) in
Hb, 13v, 15v are both red edges, consequently vertex 1 has degree at least six in
Hr, contradiction.
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