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Abstract

We consider two or more simple symmetric walks on Z
d and the 2-dimensional comb lattice, and

investigate the properties of the distance among the walkers.
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1 Introduction

Almost a hundred years ago, Pólya [11] in 1921 proved that on Z
1 and Z

2 simple random walks are
recurrent and two independent walkers meet infinitely often with probability one, but on Z

d, for
d ≥ 3, simple random walks are transient and two independent walkers meet only finitely often with
probability one. Nowadays meeting at the same place at the same time is called a collision, so we
will use this term, to avoid any confusion. On Z two walkers not only collide infinitely many times,
but they collide even in the origin infinitely many times with probability one. In their landmark
paper Dvoretzky and Erdős [8] in 1950 recall the celebrated Pólya result and, among their final
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remarks, they mention without proof that on Z three independent random walkers collide (all three
together) infinitely often with probability one. A short elegant proof was given for this statement
in Barlow, Peres and Sousi [1] in 2012. However four walkers in Z, three walkers in Z

2 and two
walkers in Z

d, with d ≥ 3 will only collide finitely many times with probability 1. Khrishnapur and
Peres [10] in 2004 studied this problem on the comb lattice. They proved that even though the
comb is recurrent, two independent random walkers on the comb lattice collide only finitely often
with probability 1.

Our question is that in case the walkers collide only finitely often, then how does their distance
grow as a function of time. We want to establish upper class results for the distance of two or more
walkers and lower class results for the distance of four or more walkers on Z. Similarly, for the
distance in Z

2, we give upper class results for the distance of two or more walkers and lower class
results for the distance of three or more walkers. For Z

d, if d ≥ 3, we get upper and lower class
results for the distance of two or more walkers. Finally, we will investigate the distance of two or
more walkers on the comb lattice.

We start with some definitions. Let G be a connected graph with vertex set V(G). Two
neighboring connected vertices v and w form an edge of G. A random walk S(n) on G is defined
with the following one step transition probabilities

p(u, v) := P (S(n + 1) = v|S(n) = u) =
1

deg(u)
(1.1)

for neighboring vertices u and v in V(G), where deg(u) is the number of neighbours of u, otherwise
p(u, v) = 0. We define the graph distance, which we will simply call distance, of u and v in V(G)
as the minimal number of steps the walker needs to arrive from u to v. Formally,

d(u, v) := min{k > 0 : P (S(n + k) = v|S(n) = u) > 0}. (1.2)

Or, equivalently, the distance d(u, v) is the length of the shortest path from vertex u to vertex v in
V(G). In Z

d we will use Euclidean distance. In Z however these two distances are the same.

2 Preliminary results

In this section we list some known important results which we will need later on. Put W(t) =
(W1(t),W2(t), ...,Wd(t)), where W1(t),W2(t), ...,Wd(t) are independent standard Wiener processes.
Then the R

d valued process W(t) is called the standard d-dimensional Wiener process. Let S(n)
be the location of a walker in Z

d after n-steps, where the simple symmetric walk S(n) = X(1) +
X(2) + ...+X(n), n = 1, 2, ... and X(1),X(2), ...,X(n) are i.i.d. random vectors with S(0) = 0,

P (X(1) = ei) = P (X(1) = −ei) =
1

2d
, i = 1, 2, ..., d, (2.1)

where e1, e2, ..., ed are the orthogonal unit-vectors in Z
d.
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In Section 3 we investigate the distance on Z
d, and show that the upper bound is a consequence

of the law of the iterated logarithm (LIL), and that the lower bound can be established using a result
of Dvoretzky and Erdős [8]. For the multidimensional LIL we refer, e.g., to Révész [12], Theorem
19.1.
Theorem A For the d-dimensional standard Wiener process and the simple symmetric random
walk we have for any d ≥ 1

lim sup
t→∞

‖W(t)‖√
t log log t

=
√
2 a.s. (2.2)

and

lim sup
n→∞

‖S(n)‖√
n log log n

=

√

2

d
a.s. (2.3)

We use the following definition (cf. Révész [12], page 36): The function g(t) belongs to the
lower-lower class (LLC) of the random process {Y (t), t ≥ 0} if for almost all ω ∈ Ω there exists a
t0 = t0(ω) such that Y (t) > g(t) if t > t0.

Theorem B Dvoretzky-Erdős [8] Let a(t) be a nonincreasing nonnegative function. Then, for the
d-dimensional random walk S(n) and the standard Wiener process W(t)

t1/2a(t) ∈ LLC(‖W(t)‖) (d ≥ 3) (2.4)

n1/2a(n) ∈ LLC(‖S(n)‖) (d ≥ 3) (2.5)

if and only if
∞
∑

n=1

(a(2n))d−2 < ∞.

Here and throughout ‖ · ‖ denotes the Euclidean distance in d dimensions.

Remark 2.1 Note that the same results hold when a(n) is replaced by c a(n) with any positive
constant c.

We will need a special case of the multidimensional invariance principle, explicitly stated in
Révész [12], Theorem 18.2. (There are more precise results in the literature, but we don’t need
them here.)

Theorem C On a rich enough probability space one can define a standard d-dimensional Wiener
process {W(t), t > 0} and a simple random walk {S(n), n = 0, 1, 2...} on Z

d such that for d ≥ 1

‖S(n)−W(n/d)‖ = O(n1/4(log log n)3/4) a.s. as n → ∞.

We will use the following result from linear algebra.
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Lemma D Let S be a vector space with basis {wi, i = 1, 2, ..., n}. Define two subspaces U and V

in S by

U = Span{w1 − wi, i = 2, 3, ..., n}

V = Span{
i
∑

j=1

(wj − wi+1), i = 1, 2, ..., n − 1}. (2.6)

Then the two subspaces defined above are the same.
The results presented so far are needed for proving our theorems about the d-dimensional random

walk in Section 3. In Section 4 we consider the case of simple random walk on the 2-dimensional
comb.

The 2-dimensional comb lattice C
2 is obtained from Z

2 by removing all horizontal edges off the
x-axis. In this context the x-axis is usually called the backbone of the comb and the vertical lines
are called teeth. A formal way of describing a simple random walk C(n) on the above 2-dimensional
comb lattice C

2 can be formulated via its transition probabilities as follows: for any integers x and
y define

P (C(n+ 1) = (x, y ± 1) | C(n) = (x, y)) =
1

2
, if y 6= 0, (2.7)

P (C(n+ 1) = (x± 1, 0) | C(n) = (x, 0)) = P (C(n+ 1) = (x,±1) | C(n) = (x, 0)) =
1

4
. (2.8)

A compact way of describing the just introduced transition probabilities for this simple random
walk C(n) on C

2 is via (1.1).
As far as we know, the first discussion of random walk on the comb was given by Weiss and

Havlin [14]. Bertacchi and Zucca [3] obtained the following space-time asymptotic estimates for the
n-step transition probabilities pC

2

(u, v, n), where u = (x1, y1) and v = (x2, y2) are two vertices on
the comb. For any u and v fixed vertices on C

2, with deg(·) as in (1.1),

pC
2

(u, v, n) ∼ 2
1

4
−1deg(v)

Γ(14)n
3

4

, as n → ∞ (2.9)

whenever n+ d(u, v) is even, and pC
2

(u, v, n) = 0 if n+ d(u, v) is odd, and ∼ stands for asymptotic
equality.

Here we recall our construction of two dimensional comb walk from [5], which we used there
to prove Theorem K below, as we will need some parts of this construction later on. Consider a
sample space large enough to contain two independent simple symmetric random walks S1(n) and
S2(n), n = 1, 2, . . . , on the integer lattice on the line, and an i.i.d. sequence of geometric random
variables Gi, i = 1, 2, . . . , with

P (G1 = k) =
1

2k+1
, k = 0, 1, 2, . . .
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which is independent from the two random walks as well. We may then construct a simple random
walk on the 2-dimensional comb lattice C

2 as follows. Let ρ2(N) be the time of the N -th return to
zero of the second random walk S2(·), i.e., ρ(0) = 0, and

ρ2(N) := min{j > ρ2(N − 1) : S2(j) = 0}.
Put TN = G1+G2+ . . . GN , N = 1, 2, . . . . For n = 0, . . . , T1, let C1(n) = S1(n) and C2(n) = 0. For
n = T1 + 1, . . . , T1 + ρ2(1), let C1(n) = C1(T1), C2(n) = S2(n− T1). In general, for TN + ρ2(N) <
n ≤ TN+1 + ρ2(N), let

C1(n) = S1(n− ρ2(N)),

C2(n) = 0,

and, for TN+1 + ρ2(N) < n ≤ TN+1 + ρ2(N + 1), let

C1(n) = C1(TN+1 + ρ2(N)) = S1(TN+1),

C2(n) = S2(n− TN+1).

Then it can be seen in terms of these definitions for C1(n) and C2(n) that C(n) = (C1(n), C2(n)) is
a simple random walk on the 2-dimensional comb lattice C

2. Define the local time of Si(n), i = 1, 2,
at zero by

ξi(0, n) :=
n
∑

j=1

I{Si(j) = 0}

and denote the number of horizontal and vertical steps of C(n) by Hn and Vn respectively, with Hn+
Vn = n. Clearly Hn is the sum of ξ2(0, Vn) i.i.d. geometric random variables Gi as described above,
where the last geometric random variable may be truncated. Moreover C(n) = (C1(n), C2(n)) =
(S1(Hn), S2(Vn)).

We will also need the following increment result of Csörgő and Révész ([7], page 115) for a
random walk.

Theorem E Let X1,X2, · · · be a sequence of i.i.d. random variables with mean zero and variance
one, satisfying the following condition: there exists a t0 such that E(etX1) is finite for |t| < t0.
Let 0 < aN be a non-decreasing sequence of integers such that N/aN is also non-decreasing and
N/aN → ∞. Then, for S(n) = X1 +X2 + · · · +Xn, as N → ∞, we have almost surely that

max
0≤N−aN

max
k≤aN

|S(n+ k)− S(n)| = O(a
1/2
N (log(N/aN ) + log logN)1/2).

The following theorem is a version of Hoeffding’s inequality, which is stated explicitly in [13].

Theorem F Let Gi be i.i.d. random variables with the common geometric distribution P (Gi =
k) = 2−k−1, k = 0, 1, 2, ... . Then
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P

(

max
1≤j≤n

∣

∣

∣

∣

∣

j
∑

i=1

(Gi − 1)

∣

∣

∣

∣

∣

> λ

)

≤ 2 exp(−λ2/8n)

for 0 < λ < na, with some a > 0.

Consequence 2.1 For any small 0 < δ < a and n big enough

P

(

n
∑

i=1

Gi ≥ (1 + δ)n

)

≤ 1

n2
.

Let S(n) be a simple symmetric random walk on the line with local time ξ(0, n) at zero. We
recall from Csáki and Földes [6] the following result.

Theorem G Suppose that xn → ∞,
xn

n1/2
→ 0 as n → ∞. Then, for any 0 < ǫ ≤ 1,

P (ξ(0, n) ≥ xnn
1/2) ≤ c exp

(

−(1− ǫ)x2n
2

)

for some constant c if n is large enough.

Remark 2.2 In what follows, we will disregard parity issues. Namely we will use results for the
n−step transition probability for arbitrary n, u and v, when these results are only proved for even
n, u and v. When these values are not even, and the corresponding probability is not zero, then their
asymptotic behavior is the same as for even values (see Bertacchi and Zucca [4], Sections 3, 4 and
10).

For completeness, we present the following trivial lemma, which is likely well-known.

Lemma H Let u and v be two distinct vertices on C
2. For any n such that n+ d(u, v) is even

deg(u)pC
2

(u, v, n) = deg(v)pC
2

(v, u, n), (2.10)

where deg(·) is as in (1.1).
Proof. Denote the set of all n-steps paths connecting vertex u to vertex v through the vertices
z1, z2, ..., zn−1 by λi := (u, zi1, z

i
2, ...z

i
n−1, v), and the set of all paths of length n from u to v by

Λ(u, v, n) and, for any vertex z, let q(z) = 1
deg(z) . Then

pC
2

(u, v, n) =
∑

λi∈Λ(u,v,n)
q(u)q(zi1)q(z

i
2)...q(z

i
n−1),

pC
2

(v, u, n) =
∑

λ∗

i
∈Λ(v,u,n)

q(v)q(zin−1)q(z
i
n−2)...q(z

i
1),
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where λ∗
i is the reversed path of λi. Hence, the above two probabilities are equal if q(u) = q(v), and

differ in a factor 2 if u and v are having different degrees. ✷

In (2.9) the two vertices are fixed. We will need a more general estimate for the n-step transition
probabilities pC

2

((0, 0), (0, k), n) . Define

κ = k/n and φ(κ) = log((1− κ)κ−1(1 + κ)−κ−1).

We recall the second statement from Theorem 5.5 of Bertacchi and Zucca [4].

Theorem I If κ ∈ [0, n−1/2−ǫ] for some ǫ > 0, then as n → ∞

pC
2

((0, 2k), (0, 0), 2n) ∼
√
2enφ(κ)

Γ(1/4)n3/4
,

uniformly with respect to κ ∈ [0, n−1/2−ǫ].
A simple calculation shows that φ(κ) is decreasing for κ ≥ 0, hence φ(κ) ≤ φ(0) = 0. Conse-

quently enφ(κ) ≤ 1. Combining this with Lemma H, the following obtains.

Consequence 2.2 For k ≤ n1/2−ǫ and some c>0,

pC
2

((0, 0), (0, k), n) ≤ c

n3/4
.

For any two vertices u and v on C
2, we define the Green function associated with the random

walk on the comb as

G(u, v|z) :=
∞
∑

n=0

pC
2

(u, v, n)zn.

Bertacchi and Zucca in [4] show that for u = (0, 0), G((0, 0), (k, ℓ)|z) can be given explicitly as
follows:

G((0, 0), (k, ℓ)|z) =
{

1
2G(z)(F1(z))

|k|(F2(z))
|ℓ| if ℓ 6= 0

G(z)(F1(z))
|k| if ℓ = 0,

where

G(z) =

√
2

√

1− z2 +
√
1− z2

,

F1(z) =
1 +

√
1− z2 −

√
2
√

1− z2 +
√
1− z2

z
,

F2(z) =
1−

√
1− z2

z
.
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We will use this elegant result to get the asymptotic behavior of the probability P (C2(n) = 0).
Selecting ℓ = 0 and summing for all k = 0,±1,±2, ..., we easily obtain the generating function of
P (C2(n) = 0). Namely, with the notation

H(z) :=

∞
∑

n=0

P (C2(n) = 0)zn,

we have

H(z) =

∞
∑

k=−∞
G((0, 0)(k, 0)|z) = G(z) + 2

∞
∑

k=1

G(z)(F1(z))
k = G(z)

1 + F1(z)

1 − F1(z)
.

Now, just like as it is used in [2], we may apply the Hardy-Littlewood-Karamata theorem in the
following form: If

F (z) =
∑

anz
n ∼ C

(1− z)α
as z → 1− with α /∈ {0,−1,−2, ...},

and if F (z) is analytic in some domain with the exception of z = 1, then

an ∼ C

Γ(α)
nα−1 as n → ∞.

An easy calculation yields the asymptotic behavior of H(z). We only give a short indication of this
calculation:

G(z)
(1 + F1(z))

1− F1(z)
=

√
2

√

1− z2 +
√
1− z2

z + 1 +
√
1− z2 −

√
2
√

1− z2 +
√
1− z2

z − 1−
√
1− z2 +

√
2
√

1− z2 +
√
1− z2

∼
√
2

(1− z2)1/4
2√

2(1− z2)1/4

=
2

√

(1− z)(1 + z)

∼
√
2√

1− z
, as z → 1−.

Thus, we have α = 1/2, implying the following result.

Consequence 2.3 For the second coordinate C2(n) of the comb walk we have

P (C2(n) = 0) ∼
√
2√
πn

, as n → ∞.

8



A further insight to the nature of the random walk on a comb was provided by Bertacchi [2], who
established the following remarkable weak convergence result for the walk C(n) = (C1(n), C2(n))
on the comb C

2.

Theorem J For the random walk {C(n) = (C1(n), C2(n));n = 0, 1, 2, . . .} on C
2,we have

(

C1(nt)

n1/4
,
C2(nt)

n1/2
; t ≥ 0

)

Law−→ (W1(η2(0, t)),W2(t); t ≥ 0), n → ∞, (2.11)

where W1, W2 are two independent standard Wiener processes (Brownian motions) and η2(0, t) is

the local time process of W2 at zero, and
Law−→ denotes weak convergence on C([0,∞),R2) endowed

with the topology of uniform convergence on compact intervals.
For the definition of η2(0, t) see e.g. Révész [12], page 107.
In our paper [5] we gave a joint strong approximation result for the two coordinates of this walk.

Theorem K On an appropriate probability space for the random walk {C(n) = (C1(n), C2(n));
n = 0, 1, 2, . . .} on C

2, one can construct two independent standard Wiener processes {W1(t); t ≥ 0},
{W2(t); t ≥ 0} so that, as n → ∞, we have with any ε > 0

n−1/4|C1(n)−W1(η2(0, n))| + n−1/2|C2(n)−W2(n)| = O(n−1/8+ε) a.s.,

where η2(0, ·) is the local time process at zero of W2(·).
From the many consequences of this result, we will need the following two.

Corollary 2.1 For the horizontal and vertical coordinates of C(n) = (C1(n), C2(n)) we have

lim sup
n→∞

|C1(n)|
n1/4(log log n)3/4

=
25/4

33/4
a.s., (2.12)

lim sup
n→∞

|C2(n)|
(2n log log n)1/2

= 1 a.s. (2.13)

For the distribution of the hitting time of a simple random walk, we need the following result
(cf., e.g., Feller [9], Ch. 3.7, Theorem 2 and Theorem 3).

Theorem L Let {S(i), i = 0, 1, 2, . . .} be a simple symmetric random walk on the line with S(0) = 0,
and define the hitting time

β(r) = min{i > 0 : S(i) = r}, (2.14)

where r is a positive integer. Then

P (β(r) = N) =
r

N

(

N
N+r
2

)

2−N , N = r, r + 1, . . . (2.15)

whith N + r even, and

lim
r→∞

P (β(r) < ur2) =

√

2

π

∫ ∞

1/
√
u
e−s2/2 ds, u > 0. (2.16)

9



3 Distance on Z
d

Let {Si(·), i = 1, 2, ...,K}, be K independent random walks on Z
d, the paths of the K walkers.

We consider the maximal distance between K walkers as follows.

DZd

K (n) := max
i 6=j, i,j≤K

‖Si(n)− Sj(n)‖,

where ‖ · ‖ denotes Euclidean distance.
Similarly, for {Wi(·), i = 1, 2, ...,K}, K independent standard d-dimensional Wiener pro-

cesses, all starting from 0, let

DRd

K (t) = max
i 6=j, i,j≤K

‖Wi(t)−Wj(t)‖.

Concerning upper class results, we prove our next result from the law of the iterated logarithm
(LIL).

Theorem 3.1 For K ≥ 2 and d = 1, 2, . . . , we have

lim sup
t→∞

DRd

K (t)√
t log log t

= 2 a.s. (3.1)

and

lim sup
n→∞

DZd

K (n)√
n log log n

=
2√
d

a.s. (3.2)

For the lower classes, we prove the following results.

Theorem 3.2 For d = 1, 2, . . . and K ≥ 1 + 3
d we have

√
ta(t) ∈ LLC(DRd

K (t)) (3.3)

and √
na(n) ∈ LLC(DZd

K (n)) (3.4)

if and only if
∞
∑

n=1

(a(2n))Kd−d−2 < ∞. (3.5)

The above theorems show that the behavior of distance of random walks and that of the distance
of Wiener processes are very similar. This is not the case in two dimensions with two walkers. As it
was mentioned in the Introduction, on Z

2 two independent walkers will collide infinitely often almost
surely. On the other hand, two independent standard Wiener processes won’t collide infinitely often,

10



their distance for t > 0 big enough, will be at least t−(log t)ǫ for any ǫ > 0, (see Révész [12], page
208, Remark 3).

Proof of Theorem 3.1. It suffices to prove (3.1) for Wiener processes. The random walk case
(3.2) follows from the strong approximation in Theorem C.

Consider the case K = 2 first. Then

DRd

2 (t) = ‖W1(t)−W2(t)‖ =
√
2‖W∗(t)‖,

where W
∗ is a standard d-dimensional Wiener process. Hence by Theorem A, (3.1) is true in this

case. DRd

K (t) is the maximum of
(K
2

)

distances for each of which (3.1) holds. This implies the upper
part of the conclusion. The lower part is immediate, namely

DRd

K (t) ≥ DRd

2 (t).

✷

Proof of Theorem 3.2. We first prove the convergent part for d = 1. Define

W ∗
i (t) :=

∑i
j=1(Wj(t)−Wi+1(t))√

i2 + i
, i = 1, 2, ...,K − 1. (3.6)

It is an easy calculation to show that W ∗
i (t) i = 1, 2, ...,K − 1 are independent standard Wiener

processes. Hence for the K − 1 dimensional standard Wiener process defined by

W
∗(t) := (W ∗

1 (t),W
∗
2 (t), ...,W

∗
K−1(t)),

we can apply Theorem B with d = K − 1 to get that, if {a(n), n = 1, 2, ...} satisfy (3.5) then for
t > t0(ω) we have

‖W∗(t)‖ ≥
√
ta(t).

This implies that for some i ≤ K − 1

|W ∗
i (t)| ≥

√
t(a(t))√
K − 1

,

which, in turn, implies that for the absolute value of one of the summands Wj(t) −Wi+1(t), j =
1, 2, ..., i of W ∗

i (t), we have that

∣

∣

∣

∣

Wj(t)−Wi+1(t)√
i2 + i

∣

∣

∣

∣

≥
√
t(a(t))

i
√
K − 1

,

implying that there exists a pair 1 ≤ i < j ≤ K such that

|Wi(t)−Wj(t)| ≥
1√

K − 1

√
ta(t).
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Thus, using Remark 2.1, we proved the convergent part of the theorem for d = 1.

Divergent part: Suppose that
∞
∑

n=1

(a(2n))K−3 = ∞. (3.7)

Then, according to Theorem B again, there is random sequence tk → ∞ such that

‖W∗(tk)‖ ≤
√
tka(tk)

almost surely. Thus, for all i = 1, 2, ...,K − 1,

|W ∗
i (tk)| ≤

√
tka(tk)

almost surely as well. Now, applying Lemma D, we can conclude that each

{Wi(t)−Wj(t), i < j, i = 1, 2, ....,K − 1, j = 2, 3, ...,K}

can be expressed as a linear combination of W ∗
i (t), i = 1, 2, ...,K − 1. This in turn implies that for

all i < j, i = 1, 2, ....,K − 1. j = 2, 3, ...,K, we have almost surely for our random sequence tk → ∞
that, for some appropriate constant cK we have

|Wi(tk)−Wj(tk)| ≤ cK
√
tka(tk),

implying that, almost surely,
DR

K(tk) ≤ cK
√
tka(tk)

as well, proving Theorem 3.3 in case d = 1.
For d > 1, we perform the previous transformation for each coordinate separately. So we get d

times K − 1 independent Wiener processes. For these d(K − 1) independent Wiener processes we
apply Theorem B again. Repeating the arguments in the case d = 1, we can finally obtain (3.3).
Now (3.4) follows from the strong invariance in Theorem C. ✷

Remark 3.1 We can get the limiting distribution of DZ
K(n) via the exact calculation for DR

K(t).
Let Wi(t)/

√
t := Ni for i = 1, 2, 3, ...,K, and, conditioning on the largest of them, say N1, we have

P

(

DR
K(t)√
t

< z

)

= K

∫ ∞

−∞
P

(

DR
K(t)√
t

≤ z, Ni < x, i = 2, 3, ...,K|N1 = x

)

P (N1 = x) dx

= K

∫ ∞

−∞
P (x− z ≤ Ni ≤ x, i = 2, 3, ...,K)P (N1 = x) dx

= K

∫ ∞

−∞
(Φ(x)− Φ(x− z))K−1 φ(x) dx = K

∫ ∞

−∞

(
∫ x

x−z
φ(u) du

)K−1

φ(x) dx.

12



where Φ(·) and φ(·) are the distribution and density functions of the standard normal random vari-
able. Consequently, we conclude the following result:

lim
n→∞

P

(

DZ
K(n)√
n

< z

)

= K

∫ ∞

−∞

(∫ x

x−z
φ(u) du

)K−1

φ(x) dx. (3.8)

It might be of interest to get the d-dimensional analog of this result.

4 Distance on the comb

As it was mentioned in the Introduction, Krishnapur and Peres [10] introduced a fascinating class of
graphs where simple random walks continue to be recurrent, but the respective paths of two indepen-
dent random walks meet only finitely many times with probability 1. In particular, the 2-dimensional
comb lattice has this property. So, for K independent walks {C(i)(n) = (C

(i)
1 (n), C

(i)
2 (n)) i =

1, 2, ...,K}, we want to investigate

DC2

K (n) = max
i 6=j, i,j≤K

d(C(i)(n),C(j)(n)),

the maximal distance between the K walkers at time n, where d(x, y) was defined in (1.2).
The upper class result is an easy consequence of our strong approximation in Theorem K.

Theorem 4.1 For the distance of K walkers on the comb we have

lim sup
n→∞

DC2

K (n)

2
√
n log log n

= 1 a.s. (4.1)

Proof. First we prove the theorem for two walkers. Observe that for the second coordinates of our
two walkers we have from Theorem K that

|C(1)
2 (n)−C

(2)
2 (n)| = |W ∗(n)−W ∗∗(n)|+O(n3/8+ǫ) a.s.,

|C(1)
2 (n) +C

(2)
2 (n)| = |W ∗(n) +W ∗∗(n)|+O(n3/8+ǫ) a.s., (4.2)

where W ∗(n) and W ∗∗(n) are two independent standard Wiener processes. Then both
W ∗(n)−W ∗∗(n)√

2
and

W ∗(n) +W ∗∗(n)√
2

are standard Wiener processes again, for which the

LIL holds. Combining this with (4.2), we get that

lim sup
n→∞

|C(1)
2 (n)− C

(2)
2 (n)|

2
√
n log log n

= lim sup
n→∞

|C(1)
2 (n) + C

(2)
2 (n)|

2
√
n log log n

= 1 a.s. . (4.3)

Applying now Corollary 2.1, (2.12) implies that |C(1)
1 (n)−C

(2)
1 (n)| can’t have a significant contribu-

tion to lim supn d(C
(1)(n),C(2)(n)). Thus the distance of the two walkers is essentially the difference

13



or the sum of their second coordinates, depending on whether they are on the same tooth or not.
Consequently, we get

lim sup
n→∞

DC2

2 (n)

2
√
n log log n

= 1 a.s. , (4.4)

so we have Theorem 4.1 for K = 2. From here on the proof for K > 2 is exactly the same as in
Theorem 3.1; by definition, DC2

K (n) is the maximum of
(K
2

)

distances for each of which (4.4) holds.
This implies the upper part of the theorem. The lower part is immediate, namely

DC2

K (n) ≥ DC2

2 (n).

✷

We now turn to the lower class results.

Theorem 4.2 For K = 2 and any ǫ > 0

P

(

DC2

2 (n) ≤ (1 + ǫ)
29/4

33/4
n1/4(log log n)3/4 i.o.

)

= 1. (4.5)

Proof. The main idea of the proof is the following. Consider the second coordinates of the two
walkers. They behave like simple symmetric walks, except that sometimes, when horizontal steps
occur, they don’t move. But we know that in n steps the number of vertical steps is n(1− o(1)). If
they actually would move like simple symmetric walks, then, as it was mentioned in the Introduction,
they would meet infinitely often at the origin. This means that with probability one there would be
infinitely many nk when the second coordinates of the two walkers would be zero, and hence they
both would be on the x-axis. At these occasions their distance can’t be more than what Corollary
2.1 implies, i.e., thus we arrive to our conclusion as well.

Turning to the actual proof that the two walkers are on the x-axis at the same time infinitely
often with probability 1, according to Consequence 2.3, for n big enough, we have

P (C2(n) = 0) ≥ 1

2
√
n
. (4.6)

Consider now two independent walkers C
(i)(n) = (C

(i)
1 (n), C

(i)
2 (n)), i = 1, 2 on the comb. Let U

denote the number of collisions at zero of their second coordinates C
(1)
2 (n) and C

(2)
2 (n). Then by

(4.6)

E(U) = E

( ∞
∑

n=1

I{C(1)
2 (n) = C

(2)
2 (n) = 0}

)

≥
∞
∑

n=1

(

1

2
√
n

)2

= +∞.

As the number of collisions at zero of the second coordinates follows a geometric distribution, having
infinite expectation implies that there is an infinite number of such collisions at zero. Thus, almost
surely, there is a random sequence nk → ∞ such that C

(1)
2 (nk) and C

(2)
2 (nk) are simultaneously on

14



the backbone (x-axis) of the comb. This, in turn, implies our theorem by (2.12) in Corollary 2.1.
✷

As to the lower lower class (LLC) result, first we prove the following result for K = 2.

Theorem 4.3 For every ǫ > 0 for n big enough

DC2

2 (n) > n1/4−ǫ a.s.

Proof. Define the events

An = {DC2

2 (n) ≤ n1/4−ǫ, C
(1)
1 (n) 6= C

(2)
1 (n)},

Bn = {DC2

2 (n) ≤ n1/4−ǫ, C
(1)
1 (n) = C

(2)
1 (n)}. (4.7)

Then
P (DC2

2 (n) ≤ n1/4−ǫ) = P (An) + P (Bn).

We show that
P (An i.o.) = P (Bn i.o.) = 0.

First we give an upper bound for P (An). To this end, we need a couple of lemmas.
To begin with, consider only one walk C(n). Recall the construction of the comb walk in Section

2, where we defined G1, G2, . . . to be i.i.d. geometric random variables with

P (G1 = k) =
1

2k+1
, k = 0, 1, 2, . . . .,

as the number of horizontal steps after each return to the backbone. Recall also that Hn and Vn

are the number of horizontal and vertical steps, respectively, in the first n steps of C(·). Then it is
easy to see that

Hn ≤
ξ2(0,Vn)
∑

i=1

Gi ≤
ξ2(0,n)
∑

i=1

Gi,

where ξ2(0, ·) is the local time at zero of the simple symmetric walk S2(·) of the vertical steps. Let

M(C1, n) := max
0≤k≤n

|C1(k)|,

the absolute maximum of the horizontal coordinate of C(·) in n steps.

Lemma 4.1 For n big enough

P (M(C1, n) ≥ n1/4 log n) ≤ 3

n
.
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Proof. First we give an estimate for the upper tail of Hn. Observe that, for n big enough, on
account of Theorem G, we have with an appropriate constant c > 0 and arbitrary ε ∈ (0, 1/2) that

P
(

ξ2(0, n) ≥ 2
√

n log n
)

≤ c

n2(1−ε)
≤ 1

n
. (4.8)

By (4.8) and applying Consequence 2.1, we get that

P
(

Hn ≥ 3
√

n log n
)

≤ P





ξ2(0,n)
∑

i=1

Gi ≥ 3
√

n log n





≤ P





ξ2(0,n)
∑

i=1

Gi ≥ 3
√

n log n, ξ2(0, n) < 2
√

n log n



+
1

n

≤ 1

n
+ P





2
√
n logn
∑

i=1

Gi ≥ 3
√

n log n



 ≤ 2

n
(4.9)

if n is big enough.
Let

M(n) := max
0≤k≤n

|S(k)|

be the absolute maximum of a simple symmetric random walk S(·) in n steps. Recall that C1(n) =
S1(Hn). Then the well-known large deviation result for the maximum (see e.g. Révész [12], p. 21)
and (4.9) imply that

P (M(C1, n) ≥ n1/4 log n) = P ( max
0≤i≤n

|C1(i)| ≥ n1/4 log n)

≤ 2

n
+ P (M(3

√

n log n) ≥ n1/4 log n) ≤ 3

n
(4.10)

if n is big enough. ✷

Lemma 4.2 Let C(n) = (C1(n), C2(n)) be a random walk on C
2. There exists a constant c > 0

such that we have

P (C1(n) = x,C2(n) = y) ≤ c

n3/4
for all (x, y) with |y| ≤ n1/2−ǫ.

Proof. In what follows, unimportant constants will be denoted by c, whose value might change
from line to line. For simplicity, we work with even coordinates, and that, as we remarked earlier,
does not restrict generality. Recall that Hn is the number of horizontal steps in the first n steps of
the walk. We have
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P (C1(2n) = 2r, C2(2n) = 2j) =
∑

k

P (C1(2n) = 2r, C2(2n) = 2j|H2n = 2k)P (H2n = 2k)

=
∑

k

P (S1(2k) = 2r)P (C2(2n) = 2j|H2n = 2k)P (H2n = 2k)

≤
∑

k

P (S1(2k) = 0)P (C2(2n) = 2j|H2n = 2k)P (H2n = 2k)

= P (C1(2n) = 0, C2(2n) = 2j). (4.11)

The second equality above follows from the fact that when the number of horizontal steps are
fixed, then C1(·) is a simple symmetric walk, denoted by S1(·), which is independent of the second
coordinate. The above inequality, on the other hand, is true, as

max
−k≤r≤k

P (S1(2k) = 2r) = P (S1(2k) = 0).

To finish the proof, observe that by Lemma H, for j 6= 0,

P (C1(2n) = 0, C2(2n) = 2j) = pC
2

((0, 0), (0, 2j), 2n) =
1

2
pC

2

((0, 2j), (0, 0), 2n).

Now our lemma follows from Consequence 2.2. ✷

Returning now to the proof of Theorem 4.3, we can give the following upper bound for P (An).
Define the event

Un := {M(C
(i)
1 , n) ≤ n1/4 log n, i = 1, 2}.

Then, by Lemma 4.1, we have for U c
n, the complement of Un, that

P (U c
n) ≤

6

n
.

Define now the set of pairs of points on the comb

Q(n, ǫ) = {(x1, y1), (x2, y2) : |xi| ≤ n1/4 log n, i = 1, 2, |x1 − x2| ≤ n1/4−ǫ,

|y1| ≤ n1/4−ǫ, |y2| ≤ n1/4−ǫ}.
By Lemma 4.2

P (An) ≤ P (|C(1)
2 (n)| ≤ n1/4−ǫ, |C(2)

2 (n)| ≤ n1/4−ǫ, |C(1)
1 (n)− C

(2)
1 (n)| ≤ n1/4−ǫ)

≤ P (|C(1)
2 (n)| ≤ n1/4−ǫ, |C(2)

2 (n)| ≤ n1/4−ǫ, |C(1)
1 (n)− C

(2)
1 (n)| ≤ n1/4−ǫ, Un) +

6

n

≤
∑

Q(n,ǫ)

P (C(1)(n) = (x1, y1),C
(2)(n) = (x2, y2)) +

6

n

≤ 16(n1/4 log n)(n1/4−ǫ)3
( c

n3/4

)2
+

6

n
≤ c log n

n1/2+3ǫ
, (4.12)
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implying that for the subsequence nk = kα, with any α > 2,

∞
∑

k=1

P (Ank
) < ∞.

This implies that, almost surely for k ≥ k0(ω), Ank
does not occur, which in turn means that if the

two walkers are on different teeth, then either

A1(k) := {|C(1)
2 (nk)| ≥ n

1/4−ǫ
k }, or A2(k) := {|C(2)

2 (nk)| ≥ n
1/4−ǫ
k },

or A3(k) := {|C1
1 (nk)− C1

2 (nk)| ≥ n
1/4−ǫ
k }

will occur. We want to show that we can select α > 2 such that for any n, with nk ≤ n ≤ nk+1, if
one of the events {Ai(k) i = 1, 2, 3} occurs, then

DC2

2 (n) ≥ n1/4−ǫ

will occur as well, as long as two walkers are on different teeth. Since nk = kα, we have nk+1−nk ∼
αkα−1. So we have to show that in αkα−1 steps the increments of the three processes in the events
{Ai(k) i = 1, 2, 3} are less than n

1/4−ǫ
k . The first two of these three processes are simple symmetric

walks, while the third one is the difference of two simple symmetric walks, but with a much smaller
number of steps (as there are possible vertical excursions when the horizontal move pauses). By
Theorem E the increment of these walks in αkα−1 steps is almost surely less than

k
α−1

2 log k,

while
n
1/4−ǫ
k = k(1/4−ǫ)α.

So we need to have
α− 1

2
< α

(

1

4
− ǫ

)

,

which is equivalent to α < 2
1+4ǫ . On the other hand, for the convergence of

∑

k P (Ank
) we need

that α(1/2 + 3ǫ) ≥ 1 should hold, which is equivalent to α > 2
1+6ǫ . So, for any ǫ > 0, we can find

an appropriate
2

1 + 6ǫ
< α <

2

1 + 4ǫ
,

and conclude by the Borel-Cantelli Lemma that

P (An i.o.) = 0. (4.13)

To show that P (Bn i.o.) = 0, recall the definition of Bn in (4.7). Equivalently,

Bn = {C(1)
1 (n) = C

(2)
1 (n), |C(1)

2 (n)− C
(2)
2 (n)| ≤ n1/4−ε} = B1

n ∪B2
n,
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where

B1
n = {C(1)

1 (n) = C
(2)
1 (n), |C(1)

2 (n)− C
(2)
2 (n)| ≤ n1/4−ε,max(|C(1)

2 (n)|, |C(2)
2 (n)|) ≤ n1/4},

B2
n = {C(1)

1 (n) = C
(2)
1 (n), |C(1)

2 (n)− C
(2)
2 (n)| ≤ n1/4−ε,max(|C(1)

2 (n)|, |C(2)
2 (n)|) > n1/4}.

We first show that P (B1
n i.o.) = 0. P (B1

n) can be estimated similarly to P (An) in (4.12). We obtain

P (B1
n) ≤

c log n

n3/4
.

Choosing nk = kα with
4

3
< α <

2

1 + 4ε
,

we have P (B1
nk

i.o.) = 0, i.e., there exists a k0 such that B1
nk

does not occur almost surely if k ≥ k0.
As we already proved that P (An i.o.) = 0, and we will prove that P (B2

n i.o.) = 0, we may assume
that for k ≥ k0 neither Ank

nor B2
nk

occur. Consequently, it suffices to consider the case when

|C(1)
2 (nk)− C

(2)
2 (nk)| > n

1/4−ε
k ,

since otherwise, either
C

(1)
1 (nk) 6= C

(2)
1 (nk),

in which case Ank
does not occur, or

max(|C(1)
2 (nk)|, |C(2)

2 (nk)|) > n
1/4
k , C

(1)
1 (nk) = C

(2)
1 (nk),

in which case B2
nk

does not occur. Now let nk ≤ n < nk+1. We have to show that if C(1)
1 (n) = C

(2)
1 (n)

and max(|C(1)
2 (n)|, |C(2)

2 (n)|) ≤ n1/4, then

|C(1)
2 (n)− C

(2)
2 (n)| > n1/4−ε, (4.14)

i.e., B1
n does not occur with probability 1 for large n. The increments of C2(·) in (nk, nk+1) are

almost surely less than
k

α−1

2 log k < n
1/4−ε
k ,

so it can be seen that (4.14) holds, i.e., B1
n does not occur, so P (B1

n i.o.) = 0.
To prove P (B2

n i.o.) = 0, we need the following Lemma.

Lemma 4.3 Let En and Bn be two sequences of events on the same probability space. Introduce
the notations

E∗
n :=

∞
⋃

j=n

Ej. and B∗
n,m = Bn ∩Bc

n−1 ∩ . . . ∩Bc
m, m < n, with B∗

n,n = Bn, (4.15)
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where Bc denotes the complement of B. Assume that

P (En i.o.) = 0, (4.16)

and
P (E∗

n|B∗
n,m) ≥ C > 0 (4.17)

for large enough m ≤ n with some constant C. Then we also have

P (Bn i.o.) = 0.

Proof. It is known that P (En i.o.) = 0 is equivalent to limn→∞ P (E∗
n) = 0. B∗

n,m means that n is
the first index, when Bi occurs with i ≥ m. Then by (4.17) we have that

P (E∗
n ∩B∗

n,m) = P (E∗
n|B∗

n,m)P (B∗
n,m) ≥ CP (B∗

n,m).

Since B∗
k,m are disjoint for different k, and Bk ⊃ B∗

k,m, we have

P (
∞
⋃

k=m

E∗
k ∩Bk) ≥ P (

∞
⋃

k=m

E∗
k ∩B∗

k,m) =
∞
∑

k=m

P (E∗
k ∩B∗

k,m)

≥ C
∞
∑

k=m

P (B∗
k,m) = CP (

∞
⋃

k=m

B∗
k,m) = CP (

∞
⋃

k=m

Bk). (4.18)

By (4.16), P (E∗
m ∩Bm i.o.) = 0 as well, or equivalently,

lim
m→∞

P (
∞
⋃

k=m

E∗
k ∩Bk) = 0.

Consequently, by (4.18),

lim
m→∞

P

( ∞
⋃

k=m

Bk

)

= 0,

hence P (Bn i.o.) = 0. ✷
To complete the proof of Theorem 4.3, we have to prove P (B2

n i.o.) = 0. Recall the result of
Krishnapur and Peres [10] that P (C(1)(n) = C

(2)(n) i.o.) = 0. Similarly, it can be shown that for

En = {C(1)
1 (n) = C

(2)
1 (n), |C(1)

2 (n)− C
(2)
2 (n)| ≤ 1}, (4.19)

we have also P (En i.o.) = 0. To apply Lemma 4.3 with En as in (4.19) and Bn replaced by B2
n, we

have to prove that
P (E∗

n|B2∗
n,m) ≥ c (4.20)
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with some constant c > 0, by showing that if C(1)(n) and C
(2)(n) are as in B2

n, then before returning
to the backbone, with positive probability they either meet at some point, or are at distance 1. Now
define

τ1 = min{k ≥ 0 : |C(1)
2 (n+ k)− C

(2)
2 (n + k)| ≤ 1}, (4.21)

τ
(j)
2 = min{k ≥ 0 : C

(j)
2 (n+ k) = 0}, j = 1, 2, τ2 = min(τ

(1)
2 , τ

(2)
2 ). (4.22)

Since, under the condition B2∗
n,m, both C

(1)
2 (n) and C

(2)
2 (n) are either positive or negative, we have

P (E∗
n|B2∗

n,m) ≥ P (τ1 < τ2|B2∗
n,m).

What we have to show is that this last probability can be bounded from below by a positive
constant. This will be achieved by estimating the distributions of τ1 and τ2, and applying Theorem
L in Section 2, since these distributions are equivalent in terms of β(r) as in Theorem L.

Lemma 4.4

lim
m→∞

P (τ1 < n1/2−ε|B2∗
n,m) = 1, lim

m→∞
P (τ2 > n1/2−ε/2|B2∗

n,m) = 1.

Proof.

P (τ1 < n1/2−ε|B2∗
n,m)

=
∑

z1,z2

P (τ1 < n1/2−ε|B2∗
n,m, C

(1)
2 (n) = z1, C

(2)
2 (n) = z2)P (C

(1)
2 (n) = z1, C

(2)
2 (n) = z2|B2∗

n,m),

and

P (τ2 > n1/2−ε/2|B2∗
n,m) =

=
∑

z1,z2

P (τ2 > n1/2−ε/2 |B2∗
n,m, C

(1)
2 (n) = z1, C

(2)
2 (n) = z2)P (C

(1)
2 (n) = z1, C

(2)
2 (n) = z2|B2∗

n,m),

where the summation
∑

z1,z2
stands for all permissible values of z1, z2, under the condition B2∗

n,m.

In fact, under the condition {B2∗
n,m, C

(1)
2 (n) = z1, C

(2)
2 (n) = z2},

C
(1)
2 (n + k), C

(2)
2 (n + k), k = 0, 1, . . . , τ2,

are two independent simple random walks, starting at z1 and z2, respectively, and avoiding 0 before
τ2. Moreover, since under the above condition, both C

(1)
2 (n) and C

(2)
2 (n) are either positive or

negative,
|C(1)

2 (n+ k)− C
(2)
2 (n+ k)|
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for 0 ≤ k ≤ τ1 behaves also as a simple random walk with even number of steps, starting at |z1−z2|,
τ1 being the first hitting time of zero or one, depending on the parity of |z1 − z2|. The distribution
of τ1 is equivalent to that of the first hitting time of |z1 − z2| or |z1 − z2| − 1 of a simple random
walk, starting from 0 and considering even number of steps. Denoting by S(·) a simple random
walk on the line, it can be seen that

P (τ1 < n1/2−ε|B2∗
n,m) ≥ P (τ1 < n1/2−ε|C(1)

1 (n) = C
(2)
1 (n), |C(1)

2 (n)− C
(2)
2 (n)| = 2[n1/4−ε])

= P (min{k ≥ 0 : S(2k) = 0} < n1/2−ε|S(0) = 2[n1/4−ε]) = P (β(2[n1/4−ε]) < 2n1/2−ε),

since 2min{k ≥ 0 : S(2k) = 0} under the condition S(0) = 2[n1/4−ε] has the same distribution as
β(2[n1/4−ε]) in Theorem L.

Concerning τ2, suppose that |C(i)
2 (n)| < |C(j)

2 (n)|. Then it suffices to consider the time when the

random walk C
(i)
2 (n + k), k ≥ 0, reaches 0 , otherwise the two random walks will meet before τ2,

i.e., τ1 < τ2. Under the condition B2∗
n,m, we have

P (τ2 > n1/2−ε/2|B2∗
n,m) ≥ P (min{k ≥ 0 : S(k) = 0} > n1/2−ε/2|S(0) = [n1/4])

= P (β([n1/4]) > n1/2−ε/2),

where β(·) is defined in (2.14) and [·] denotes integral part. Now Lemma 4.4 follows from the
limiting distributions of hitting times in Theorem L of Section 2. ✷

To complete the proof of Theorem 4.3, it follows from Lemma 4.4 that

P (τ1 < τ2|B2∗
n,m) ≥ P (τ1 < n1/2−ε, τ2 > n1/2−ε/2|B2∗

n,m)

≥ P (τ1 < n1/2−ε|B2∗
n,m)− P (τ2 < n1/2−ε/2|B2∗

n,m) ≥ c > 0,

where the first term tends to 1, the second term tends to zero, as n → ∞, so the difference is
greater than a positive constant c. This means that the two random walks will meet after time n
with positive probability, i.e., (4.20) holds. Hence, using Lemma 4.3, we have P (B2

n i.o.) = 0. This
completes the proof of Theorem 4.3. ✷

Concerning the lower classes for more than 2 walkers, we have the following result.

Theorem 4.4 Let a(n) be a nonincreasing nonnegative function. Then, for K ≥ 3

√
na(n) ∈ LLC(DC2

K (n)) (4.23)

if and only if
∞
∑

n=1

(a(2n))K−2 < ∞. (4.24)
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Proof. First assume that ∞
∑

n=1

(a(2n))K−2 = ∞.

Then, by the Dvoretzky-Erdős Theorem (Theorem B in Section 2) and the strong approximation
in Theorem K, we have

max
1≤j≤K

|C(j)
2 (n)| ≤

√

√

√

√

K
∑

j=1

(C
(j)
2 (n))2 ≤ n1/2a(n)/3

infinitely often with probability 1, since we have also

∞
∑

n=1

(a(2n)/3)K−2 = ∞.

By (2.12) of Corollary 2.1 for the horizontal distance, we have

|C(i)
1 (n)− C

(j)
1 (n)| ≤ n1/2a(n)/3

for all 1 ≤ i, j ≤ K and all large enough n, with probability 1. Then

d(C(i)(n), C(j)(n)) ≤ |C(i)
2 (n)|+ |C(j)

2 (n)|+ |C(i)
1 (n)− C

(j)
1 (n)|,

and, consequently, we have

DC2

K (n) ≤ 2 max
1≤j≤K

|C(j)
2 (n)|+ max

1≤i,j≤K
|C(i)

1 (n)− C
(j)
1 (n)| ≤ n1/2a(n)

infinitely often with probability 1. This verifies the first part of Theorem 4.4.
To show the other part, i.e., assuming that

∞
∑

n=1

(a(2n))K−2 < ∞,

we have to prove
DC2

K (n) > n1/2a(n) (4.25)

for all large enough n with probability 1. The idea is similar to the proof of Theorem 4.3 concerning
the event B2

n in the case when the 2 random walks are on the same tooth at time n. In fact, we show
that one of the random walks has to be high on some tooth by the Dvoretzky-Erdős Theorem B,
and no other random walks can be close to this one on the same tooth. We note that the constants
in the following proof are not too important, one could also choose different suitable constants.
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Assume that we have K independent random walks C
(i)(·), i = 1, . . . ,K on the comb. By

Theorem B and Theorem K, we have

max
1≤j≤K

(|C(j)
2 (n)|) > 5n1/2a(n).

If there is no other random walk on the same tooth than the one taking the above maximum of
|C(j)

2 (n)|, then obviously (4.25) holds. So we can consider the case when two random walks are on
the same tooth at time n, and one of them is higher than 5n1/2a(n). For fixed 1 ≤ i, j ≤ K, define
the event

Bi,j
n = {C(i)

1 (n) = C
(j)
1 (n) , |C(i)

2 (n)− C
(j)
2 (n)| ≤ n1/2a(n), max(|C(i)

2 (n)|, |C(j)
2 (n)|) > 5n1/2a(n)}.

We show that for fixed i, j, P (Bi,j
n i.o.) = 0, by applying Lemma 4.3, with En as in (4.19). Note

that Bi,j
n implies that min(|C(i)

2 (n)| , |C(j)
2 (n)|) > 3n1/2a(n).

Define τ1 and τ2 as in (4.21) and (4.22), with the obvious modification that (1), (2) should be

(i), (j). Here again, we can consider τ2 to be the time when the lower one of |C(i)
2 (n)| and |C(j)

2 (n)|
reaches zero. Then, similarly to the proof of Theorem 4.3, using Theorem L,

P (τ1 < τ2|Bi,j∗
n,m) ≥ P (τ1 < 2na2(n)|Bi,j∗

n,m)− P (τ2 < 9na2(n)/2|Bi,j∗
n,m)

≥ P (β([2n1/2a(n)]) < 4na2(n))− P (β([3n1/2a(n)]) < 9na2(n)/2) > c

with some positive constant c. Hence, by Lemma 4.3, P (Bi,j
n i.o.) = 0 for all 1 ≤ i, j ≤ K. This

means that there is at least one distance |C(i)
2 (n) − C

(j)
2 (n)| larger than n1/2a(n), for all large n

with probability 1, so (4.25) follows. This completes the proof of Theorem 4.4. ✷
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