Egy mintaterület talajának variabilitása a sófelhalmozódás tényezői szerint

TÓTH TIBOR és VÁRALLYAY GYÖRGY

MTA Talajtani és Agrokémiai Kutatóintézet, Budapest

A jelen korszerű talajtani tudományának egyik megkülönböztetett jelentőségű célkitűzése a *talajfolyamatok* bizonyos célú, irányú és mértékű *szabályozása*. Ennek előfeltétele, hogy minél teljesebb és természethűbb képünk legyen a talajtulajdonságok térbeli (horizontális és vertikális) variabilitásáról és időbeni dinamizmusáról, valamint ismerjük a végbemenő folyamatok mechanizmusát, befolyásolási lehetőségeit.

Bevezetés

Az utóbbi években a világ számos országában folynak kutatások a *talajok tér- és időbeni variabilitásának* minél részletesebb, pontosabb és egzaktabb jellemzésére, kvantifikálására, térbeli megjelenítésére, modellezésére és előrejelzésére, felhasználva a technikai fejlődés nyújtotta korszerű, új lehetőségeket. Nagyon jó összefoglalást nyújt erről a Geoderma című folyóirat "Új eredmények a kvantitatív talajkészlet felmérésben" című legutóbbi különszáma (COL-LINS et al., 2000), amelyben több mint tíz dolgozat számol be ilyen irányú új tudományos eredményekről, kiindulásként feltéve e koncepció alapkérdéseit:

– Véletlenszerű-e a talajvariabilitás? (WEBSTER, 2000);

 Becsülhetők-e a talajtulajdonságok, előrejelezhetőek-e azok változásai szimulációs modellekkel? (GOOVAERTS, 2000; LAGACHERIE & VOLTZ, 2000; ODEH & MCBRATNEY, 2000; BOURENNANE et al., 2000)

A második kérdésre adott igenlő válaszokban a számításba vehető új technikák szinte mindegyikének talajtani alkalmazása megjelent. A geostatisztikai módszerektől kezdve (GROENIGEN, 2000; BOURENNANE et al., 2000), a digitális domborzati és GIS-technika felhasználásán keresztül (LAGACHERIE & VOLTZ, 2000; MENDONCA SANTOS et al., 2000; DOBOS et al., 2000) a különböző távérzékelési módszerekig (ODEH & MCBRATNEY, 2000; DOBOS et al., 2000; CHAPLOT et al., 2000, MCBRATNEY et al., 2000), s a forradalmi fejlődés változatlanul tart e területen.

Régóta ismert a *szikes talajok, illetve szikes talajú területek* különösen nagy tér- és időbeni variabilitása, heterogenitása, viszonylag gyorsan változó mozaikos tarkasága. Ezért a talajok szikesedési állapotának egzakt és kvantitatív jellemzésére, a sófelhalmozódási és szikesedési folyamatok – időben történő *megelőzését* lehetővé tevő – előrejelzésére egyre kiterjedtebben használnak numerikus szimulációt (SIMUNEK & SUAREZ, 1994; WAGENET & HUTSON, 1987; ABDEL-DAYEM & SKAGGS, 1990; OOSTERBAAN & ABU SENNA, 1990; VANDERBORGHT et al., 1997; RHOADES et al., 1989b; KARUCZKA, 1999; BAKACSI & KUTI, 1998).

A vizsgálatok célja

Vizsgálataink *célja* az volt, hogy egy kiválasztott szikes talajú mintaterületen felmérjük a sófelhalmozódás folyamatát meghatározó vagy befolyásoló tényezőket és ezek elemzése alapján a numerikus sófelhalmozódási vizsgálatokhoz megfelelő információkhoz jussunk, mégpedig a mintaterület jellegzetes, legjobban elkülönülő részterületekre történő felosztásával.

Egy adott területen végbemenő sófelhalmozódás szabatos jellemzése csupán véges számú szimulációs futtatással lehetséges. Annak eldöntése, hogy a probléma megoldásához – racionálisan – hány szimuláció szükséges vagy elégséges, szükségessé teszi az alábbi két kérdés megválaszolását:

 – a numerikus szimulációhoz hány részre (foltra) osszuk fel a területet, mivel ez szabja meg a numerikusan vizsgált "szelvények" számát;

- területileg hogyan, mi(k)nek alapján határoljuk el e foltokat?

A mintaterület részletes talajtani jellemzését célzó előzetes vizsgálataink szerint az elemzésre kiválasztott 4 talajszelvény a kémiai tulajdonságok, a szemcseösszetétel és a pF-görbék tekintetében igen hasonló volt. Kiugróan kis hidraulikus vezetőképességet (K-érték) a leginkább szikes talajszelvényben tapasztaltunk. A sófelhalmozódás szempontjából legfontosabb tényezők közül az adott területen a talajfelszín térszíni fekvése, a talaj sótartalma, valamint a talajvízszint terep alatti mélysége és sótartalma mutattak legnagyobb változatosságot. Ezért részletes vizsgálatainkat elsősorban e tényezőkre összpontosítottuk.

Vizsgálati anyag és módszer

Vizsgálataink első fázisában az adatgyűjtést és az elemzéseket helyszíni terepi megfigyelések alapján hajtottuk végre, majd ezt az információk számítógépes feldolgozása követte. A vizsgálatot Karcagtól északra, a "Május 1." Szövetkezet területén végeztük egy 2,5 km oldalhosszúságú négyzet alakú területrészen. A vizsgált táblák egy részén évek óta öntöznek és bebizonyosodott, hogy az öntözés következtében időről időre megemelkedő talajvíz a talaj mélyebb rétegeiben e területen is másodlagos sófelhalmozódást okoz (TÓTH & BLASKÓ, 1998).

A terepi munka során az egymástól mintegy 300 m-re kijelölt transzektek és a mintavételi pontok távolságát lépésszámlálással mértük ki. A mintavételi helyek UTM (Universal Transverse Mercator) koordinátáit kézi műholdas helymeghatározó készülékkel (Garmin eTrex GPS – Global Positioning System) határoztuk meg, ami ± 15 méteres pontosságot biztosít. Azért használtunk UTM koordinátákat mert az USA-ban gyártott GPS a magyarországi 1:10 000 méretarányú topográfiai térképlapokon feltüntetett EOV koordinátákat nem ismeri.

A mintavételi pontokhoz tartozó térszíni magasságot a terület 1:10 000 méretarányú topográfiai térképéről olvastuk le lineáris interpolációval. Ehhez előtte a mintavételi pontok UTM koordinátáit át kellett számolni EOV (Egységes Országos Vetületi rendszer) koordinátákká. Ehhez a mintaterület 5, a terepen és a térképen egyaránt jól elkülönülő és azonosítható szélső pontját használtuk, amelyre vonatkozóan a terepen meghatároztuk az UTM koordinátákat.

A helyszíni vizsgálatok során helyszíni elektromos vezetőképességmérő műszerrel (Martek SCT 12) három ismétlésben meghatároztuk a talaj 0-40 cm-es rétegének elektromos vezetőképességét (EC_a_0-40 cm) és feljegyeztük ezek átlagát. Edelman típusú fúróval talajvízszintig fúrtunk. Közben 50 cm-enként gyűjtöttünk mintákat és a helyszínen meghatároztuk azok elektromos vezetőképességét az alábbiak szerint: 6,2 ml térfogatú kanálban vettünk talajmintát és ahhoz 12,5 ml desztillált vizet adtunk. Az 1:2 térfogatarányú szuszpenziót csomómentesre dolgoztuk és azután mértük meg a szuszpenzió vezetőképességét (EC 0–10 cm stb.). A talajvízszint elérése után feljegyeztük annak mélységét. 15 perc múlva újra regisztráltuk az időközben a felszínhez közelebb emelkedő talajvízszintet. A talajvízből is vettünk mintát és megmértük elektromos vezetőképességét (EC tviz). Az elektromos vezetőképességet terepi zsebműszerrel (Horiba) mértük. Bár a nedves talaj vagy a talajpaszta (ill. a talajszuszpenzió) elektromos vezetőképességéből nem lehet közvetlenül egzaktan kiszámítani a talaj sótartalmát (RHOADES et al., 1989a; FILEP, 1999), az EC időbeli és/vagy mélység szerinti változása azonban – adott helyen – arányos a sótartalom változásával. Ezért az általunk vizsgált összefüggések értékeléséhez megfelelőnek tartjuk az egyszerűen és gyorsan mérhető EC értékek használatát.

Az előzetes adatelemzés során az adatok közel normális eloszlást mutattak és a további elemzéshez nem alkalmaztunk adattranszformációt.

A változók közötti összefüggéseket grafikonok készítésével, korrelációs koefficiensek és regressziós egyenletek számításával értékeltük.

1.

	(1) (2) Koordináták (3) (4)							
	Növényzet	(2) K001	umatak v	EC	(J) Talai-	(+) Talai-	EC	
	Ttovenyzet	EOTR	FOTR	0-40	víz.	víz 15'	Tviz	
		Loin	2011	mS/cm	cm	után	mS/c	
							m	
1.	a) vízállásos folt búzában	785591	221114	0.39	138	130	2.40	
2.	b) búzatarló	785586	220840	0.55	160	147	4,10	
4.	a) vízállásos folt búzában	785233	220851	0,44	160	-	-	
5.		785243	221152	0,39	150	-	-	
6.	c) kopár vízállásos folt	784957	221178	0,22	190	174	2,10	
7.		784956	220887	0,43	253	205	3,90	
9.	d) kukorica	784684	220862	0,56	195	190	3,60	
10.	d) kukorica	784719	221120	0,30	150	-	-	
11.	b) búzatarló	784319	221171	0,66	165	150	2,30	
12.	b) búzatarló	784340	220890	0,49	186	165	5,10	
13.	c) kopár vízállásos folt	784350	220581	0,48	205	169	4,10	
14.	c) kopár vízállásos folt	784335	220277	0,48	224	177	3,10	
15.	e) öntözött kukorica	784319	219990	0,62	252	195	3,00	
16.	e) öntözött kukorıca	784320	219715	0,34	200	153	1,58	
17.	e) öntözött kukorica	784322	219461	0,93	> 300	-	-	
18.	e) ontozott kukorica	/84042	219460	0,78	250	230	2,80	
19.	e) ontozott kukorica	/84046	219/31	0,53	250	225	3,20	
20.	e) ontozott kukorica b) býzatarlá	784037	220003	0,45	217	199	1,82	
21.	b) búzatarló	784044	220521	0,40	200	255	7,00	
22.	b) búzatarló	784042	220013	0,35	200	167	4,20	
23.	b) búzatarló	784047	220870	0,30	213	120	1.66	
24.	f) napraforgó	783750	221163	0,20	237	200	1 39	
26	f) napraforgó	783755	220884	0,56	216	171	2,20	
27.	b) búzatarló	783748	220610	0.53	260	233	5.10	
28.	b) búzatarló	783747	220324	0.38	233	205	6.20	
29.	b) búzatarló	783739	220042	1,23	180	157	8,80	
30.	b) búzatarló	783736	219742	0,33	221	197	3,90	
31.	b) búzatarló	783725	219456	0,52	291	208	1,87	
32.	b) búzatarló	783429	219466	1,09	127	96	4,00	
33.	b) búzatarló	783435	219736	0,37	155	118	4,80	
34.	b) búzatarló	783444	220031	0,31	214	168	1,03	
35.	b) búzatarló	783448	220312	0,37	265	232	5,90	
36.	b) búzatarló	783450	220593	0,48	204	188	5,80	
37.	c) kopár vízállásos folt	783460	220875	0,33	230	225	3,30	
38.	c) kopár vízállásos folt	783469	221161	0,38	214	196	3,50	
39.	b) búzatarló	785612	220573	0,44	100	36	2,00	
40.	e) öntözött kukorica	785610	220276	0,48	195	-	7,40	
42.	e) öntözött kukorıca	785316	220291	0,42	159	133	1,29	
43.	b) buzatarló	785312	220565	0,59	117	24	5,60	
44.	d) kukorica	785040	220573	0,33	153	126	7,50	

A terepi megfigyelések, mérések és helyszíni

táblázat

vizsgálatok eredményei és statisztikai alapjellemzői

EC_mS/cm							(6)
0-10	50-60	100-110	150-160	200-210	250-260	Magas-	Cso-
cm	cm	cm	cm	cm	cm	ság,	port
-						m	
0.19	0.19	0.25	0.31			86.5	2
0.15	0.27	0.18	0,51			87.0	2
0.16	0.25	0.33	0.40			86.0	2
0.16	0.23	0.19	0.26	0.31		86.5	2
0,16	0,18	0,32	0,45	,		86,0	3
0,24	0,30	0,26	0,47	0,63	0,65	86,4	4
0,23	0,22	0,74	0,90	-	-	86,5	3
0,27	0,36	0,66	0,91			86,2	2
0,24	0,28	0,36	0,50			86,5	2
0,36	0,26	0,55	0,69	0,78		86,5	3
0,44	0,46	0,60	0,80			85,6	3
0,25	0,23	0,33	0,52	0,71		86,5	3
0,27	0,31	0,32	0,37	0,42		87,5	4
0,29	0,26	0,27	0,37	0,47		87,5	3
0,55	0,33	0,41	0,47			87,7	4
0,24	0,40	0,40	0,50	0,50		88,0	4
0,53	0,36	0,37	0,38	0,53		87,5	4
0,43	0,30	0,32	0,40	0,40		87,8	3
0,26	0,40	0,72	1,18	1,48	1,54	87,0	4
0,47	0,44	0,62	1,00	1,17		86,6	3
0,69	0,87	1,16	1,27	1,18		86,5	3
0,52	0,26	0,43	0,45	0,44		86,0	3
0,28	0,20	0,39	0,36	0,52		86,0	4
0,30	0,37	0,52	0,80	1.02		86,0	3
0,40	0,36	0,39	0,//	1,02		87,0	4
0,21	0,31	0,90	1,04	1 42		87,0	4
0,83	1,20	1,29	1,70	1,43		87,0 87.2	3
0,12	0,10	0,28	0,54	0,02	0.72	87,5	3
0,31	0,27	0,32	0,51	0,57	0,72	86,0 86,5	4
0,35	0,89	0,85	1 30			86,8	2
0,28	0,31	0.23	0.24	0.44		87.5	2
0.15	0.20	1 39	1.97	0,11		87,9	4
0.35	1 17	1,32	1,27			86.5	3
0.44	0.33	0.68	1.02	1.04		86.5	4
0.29	0.29	0.48	1.03	0.97		86.5	3
0.14	0.38	0.62	0.44	0,27		87.0	1
0.31	0,32	0,44	0,58	1,22		87.4	3
0,32	0,35	0,34	0,44	,		86,8	2
0,22	0,73	1,01				87,1	1
0,43	0,76	1,44	1,61			86,8	2

	(1)	(2) Koo r	dináták		(3)	(4)	
	Növényzet	x	У	EC _a _	Talaj-	Talaj-	EC_
		EOTR	EOTR	0-40	víz,	víz 15'	Tviz
				mS/cm	cm	után	mS/c m
45	b) búzatarló	785037	220300	0.33	165	142	7.00
46	g) tökföld	783330	218904	0,55	103	173	2 50
40. 47	g) tökföld	783342	210704	0.46	180	153	3,50
49	b) búzatarló	783675	219191	0,10	280	268	2,50
	b) búzatarló	783674	219190	0,33	280	232	2,70
50.	h) öntözött hibridkukorica	783944	218904	0,51	280	240	3 70
52	h) öntözött hibridkukorica	783941	219172	0,50	280	-	-
54	h) öntözött hibridkukorica	784241	219161	0.35	> 300	-	-
55.	h) öntözött hibridkukorica	784216	218899	0,64	193	170	2,30
56.	h) öntözött hibridkukorica	784567	218875	0,40	234	221	5,20
57.	c) kopár vízállásos folt	784564	219167	0,56	75	54	1,11
59.	h) öntözött hibridkukorica	784867	219158	0,42	196	173	3,30
60.	i) lucerna	785183	218888	0,33	> 300	-	-
61.	i) lucerna	785178	219175	0,40	> 300	-	-
63.	e) öntözött kukorica	785474	219165	0,42	242	231	2,60
64.	e) öntözött kukorica	785483	218883	0,55	176	174	2,70
65.	b) búzatarló	784647	220540	0,38	154	116	11,3
66.	b) búzatarló	784649	220224	0,37	222	168	4,70
67.	h) öntözött hibridkukorica	784652	219924	0,38	197	144	3,30
68.	h) öntözött hibridkukorica	784655	219648	0,47	160	151	2,40
70.	h) öntözött hibridkukorica	784947	219669	0,51	178	165	3,40
71.	c) kopár vízállásos folt	784941	219961	0,29	189	159	5,20
72.	j) öntözött lucerna	785561	219942	0,35	230	200	2,90
73.	j) öntözött lucerna	785548	219634	0,34	244	234	2,30
74.	j) öntözött lucerna	785231	219624	0,28	193	188	1,50
75.	j) öntözött lucerna	785233	219924	0,28	174	141	4,40
k)	Esetszám			67	67	58	59
1)	Minimum			0,22	75	24	1,03
m) Maximum			1,23	300	268	11,3
n)	Átlag			0,468	208	173	3,89
o)	Szórás			0,176	50,6	48,8	2,13

Klaszter-analízis segítségével vizsgáltuk, hogy az adatállományban hány csoport különül el. Mivel négy jól elváló csoport mutatkozott, a következő lépésben az SPSS statisztikai programcsomag "Quick Cluster" algoritmusával (ANDERBERG, 1973) az adatállományt négy maximálisan elváló, viszonylag homogén csoportra osztottuk szét. Az algoritmus először meghatározza az adathalmaz többváltozós centroidjait (csoport központjait), majd az egyes megfigyeléseket a hozzájuk legközelebbi centroid csoportjába sorolja be.

		EC_r	nS/cm			(5)	(6)
0-10	50-60	100-110	150-160	200-210	250-260	Magas-	Cso-
cm	cm	cm	cm	cm	cm	ság,	port
						m	
0.30	0.32	0.94				86.4	2
0,56	0,34	0,35	0,40	0,52		87,0	3
0,42	0,38	0,46	0,69	-		86,8	3
0,25	0,26	0,35	0,68	0,96	1,02	88,0	4
0,22	0,23	0,80	1,18	1,99	2,10	87,6	4
0,57	0,34	0,46	0,79	1,35		87,3	4
0,40	0,37	0,60	0,61	0,65		87,5	4
0,29	0,30	0,43	0,58	0,71		87,5	4
0,36	0,34	0,38	0,51			86,6	3
0,23	0,16	0,27	0,83	0,90		87,5	4
0,75	0,49					87,5	1
0,17	0,32	0,38	0,43			87,5	3
0,25	0,30	0,53	1,34	1,54	1,48	87,5	4
0,32	0,28	0,96	1,18			87,5	4
0,35	0,34	0,46	0,36			87,5	4
0,23	0,38	1,19	1,26			87,5	3
0,21	1,44	2,30				86,5	2
0,32	0,38	0,76	1,28	1,01		86,7	3
0,28	0,25	0,31	0,65	0,72		86,9	3
0,23	0,24	0,23	0,43			87,2	2
0,27	0,26	0,29	0,48			87,2	3
0,25	0,13	0,58	0,92	0,95		86,5	3
0,18	0,20	0,44	0,78			86,9	3
0,20	0,24	0,24	0,52	0,73	0,50	87,4	4
0,14	0,22	0,43	0,38			87,2	3
0,31	0,43	1,24	1,08			86,6	2
67	67	66	62	34	7	67	
0,12	0,13	0,18	0,24	0,31	0,50	85,6	
0,83	1,44	2,30	1,97	1,59	2,10	88,0	
0,315	0,377	0,595	0,753	0,838	1,144	86,95	
0,145	0,248	0.393	0.403	0.364	0.583	0.557	

1. táblázat folytatása

Vizsgálati eredmények és értékelésük

Terepi méréseink, megfigyeléseink és helyszíni vizsgálataink eredményeit az 1. táblázatban foglaltuk össze.

Az 1. táblázatból kitűnik, hogy a vizsgált négyzetben többféle növénykultúra helyezkedett el. A mérési pontok jelentős része 9 vízállásos foltba esett, ami a 2000. év csapadékos tavaszi időjárásának volt a következménye. A mintavételi

pontok magassága maximum 2,4 m-rel különbözött, ami a Nagykunságban – figyelembe véve a vizsgálati terület kis kiterjedését – jelentősnek tekinthető.

A megütött talajvízszint átlagos terep alatti mélysége 2 méter körüli volt, szintén jelentős különbségeket mutatott (min. 75 cm, max. 300 cm). A talajvíz szintje a fúrt lyukban 15 percet követően átlagosan 35 cm-t emelkedett, ami a térség részben nyomás alatt álló talajvizei esetében nem szokatlan jelenség.

A talajvíz átlagos elektromos vezetőképessége nagy volt, mintegy 4 mS/cm, 1–11 mS/cm között váltakozott. A talajban a sófelhalmozódás maximuma a legmélyebb rétegekben mutatkozott, a felszíntől lefelé a talajrétegek átlagos sótartalma fokozatosan növekedett (1. táblázat).

Korrelációs vizsgálatok

A talaj helyszínen meghatározott elektromos vezetőképessége (EC_a_0–40 cm) és az egyes talajrétegekből gyűjtött minták talajszuszpenzióban mért elektromos vezetőképessége közötti korrelációs koefficienseket mutatjuk be a 2. táblázatban.

A bemutatott korrelációs koefficiens értékek kicsik, nem közelítik meg azokat az értékeket, amelyeket ugyanezen műszerrel mért EC_a és laboratóriumban mért EC értékek között korábban számoltunk (TÓTH et al., 1997, 1998). A kevésbé szoros korreláció oka a talajban a vizsgálati időszak (2000. július 17–21.) alatt tapasztalt kis talajnedvesség-tartalom volt. A talaj nedvességtartalma kisebb volt, mint a szabadföldi vízkapacitás, emiatt a talaj sótartalma és az EC_0– 40 cm közötti összefüggést jelentős véletlenszerű ingadozás terheli.

Szoros összefüggést találtunk a térszíni magasság és a talajvíz "megütési mélysége" között: minél magasabban fekvő pontban fúrtuk az észlelőlyukat, annál nagyobb mélységben értük el a talajvíz szintjét.

2. táblázat

Összefüggés a talaj helyszínen, műszeresen meghatározott elektromos vezetőképessége (EC_a) és az egyes talajrétegekből gyűjtött minták talajszuszpenziójában mért elektromos vezetőképesség között

(1) Változók	(2) Pearson-féle korrelációs koefficiens	(3) Esetszám
EC _a – EC_0–10 cm	0,430**	67
$EC_a - EC_50-60 \text{ cm}$	0,389**	67
$EC_a - EC_0 - 60 \text{ cm}$	0,475**	67

**: a korreláció 0,05 szinten szignifikáns

A talajvíz elektromos vezetőképessége (EC) szoros kapcsolatot mutatott a felette elhelyezkedő talajrétegek EC értékével (1. ábra). Az 1. ábra csak azokat az eseteket mutatja, amikor a talajszelvényt 0–250 cm-ig folyamatosan megmintáztuk. Mivel ilyen mélységig csak hét esetben jutottunk, az ábrán csak ezt a 7 esetet tüntettük fel.

1. ábra

Összefüggés a talajvíz és a felette különböző mélységben elhelyezkedő talajrétegek elektromos vezetőképessége (EC) között. Vízszintes tengely: A talajvíz EC értéke, mS/cm. Függőleges tengely: A talajrétegek EC értéke, mS/cm

Az 1. ábrán feltüntetett korrelációs koefficiensek a feltalaj esetén 59, míg a legnagyobb mélység esetén 6 megfigyelés-párhoz tartoznak. Megállapítható, hogy a talajvízszinthez közeli rétegek sótartalmát a talajvíz statisztikailag szignifikáns mértékben befolyásolja. Növekvő sótartalom a talajvízben növekvő altalaj-sótartalommal jár együtt. A hatás a talajvízszinttől felfelé csökkenő mértékű, a talajvízszint felett 2 m-rel elhelyezkedő réteg EC értéke esetén összefüggés már nem mutatható ki. Ebben az esetben 2 m a *"kritikus talajvízszint"*.

Regressziós vizsgálatok

Kétváltozós lineáris lépcsőzetes regressziós egyenlettel vizsgáltuk, hogy melyek a talaj gyökérzónájának elektromos vezetőképességét befolyásoló tényezők.

Egyenletünkben a befolyásoló tényezők a talajvíz felszín alatti mélysége (T) és a talajvíz elektromos vezetőképessége (EC_tvíz) volt:

EC_50–60 cm = 0,418 + 0,07514·EC_tviz – 0,00184·Tvízszint 15' után $R^2 = 0,467$

Minél kisebb tehát a talajvízszint terep alatti mélysége és minél nagyobb a talajvíz elektromos vezetőképessége, annál nagyobb a gyökérzóna elektromos vezetőképessége is. Ez irányú adatainkat mutatjuk be az 1. ábrán. Ez az eredmény teljes összhangban van 'SIGMOND (1923), ARANY (1956), KOVDA és SZABOLCS (1979), SZABOLCS (1979), SZABOLCS és munkatársai (1969) és VÁRALLYAY (1974) korábbi megállapításaival, valamint TÓTH és KUTI (1999a,b) egy hortobágyi mintaterületre vonatkozóan levont következtetéseivel.

Klaszter-analízis

A 3. táblázatban a számított klaszter-központokat foglaltuk össze. A 4 csoport a varianciaanalízis alapján a talajvízszint terep alatti mélysége, a talajfelszín térszíni magassága és az 50–60 cm-es réteg EC-je szerint szignifikánsan eltér egymástól.

Az 1. csoporttól a 4. csoportig a talajvízszint terep alatti mélysége nő, az 50– 60 cm-es réteg sótartalma csökken. A 2. csoporttól a 4. csoportig nő a térszíni magasság.

3. táblázat
A klaszter-analízissel szétválasztott klaszter-központok csoportátlagai

(1)	(2) Csoportok							
Jellemzők	1.	2.	3.	4.				
EC _a _0-40 cm, mS/cm a) Megütött talajvíz, cm b) Talajvízszint 15 perc után EC_tvíz, mS/cm EC_0-10 cm, mS/cm	0,53 97,33 38,00 2,90 0,37 0,52	0,46 155,00 131,82 4,68 0,26 0,47	0,45 202,00 171,59 3,57 0,34 0.27	0,49 264,36 224,65 4,08 0,32 0,20				
EC_50=60 cm, mS/cm EC_100=110 cm, mS/cm	0,33	0,47	0,55	0,50				
c) Magasság, m	87,20	86,59	86,80	87,31				

Az 1. csoport csupán 3 esetet tartalmaz, ezek kiugró viselkedésűek, szélsőségesen magas talajvízszint jellemzi őket és ennek következtében a talaj sótartalma is ebben a csoportban a legnagyobb.

A 2. ábra a talajfelszín térszíni magasságát mutatja a vizsgálati pontokon. Az ábra szerint a magasság egyenletesen változik a mintaterületen, kivéve a legalacsonyabb pont környékét, ami egy vízállásos rész, feltehetően egy valamikori folyómeder.

221500									
001000	86.5	86	86	86.5	86.2	86	86.5	86.5	
221000-	86.5	86	86.5	86.5	86.5	86.4	86	87	
220500-	86.5	87	86.6	85.6	86.5	86.	8 87.1	87	
ľ	87	87	87	86.5	86.7	86.	4 86.8	8 87.4	
220000-	87.5	87	87.8	87.5	86.9	86.5	86.6	86.9	
	86.8	87.3	87.5	87.5	87.2	87.2	87.2	87.4	
219500-	86.5	88	88	87.7					
219000-	86.8	88 8	37.5 8	87.5 8	37.5 8	7.5	87.5	87.5	
213000	87 8	87.6 8	37.3 8	6.6 8	37.5		87.5	87.5	
218500	70050								
783000	78350	υ τ Έ	0TR	784 X kc	bordi	/8500 .nát	יד טג ם	85500	7860

2. ábra A mintavételi pontok talajfelszínének térszíni magassága

A 3. ábra jól mutatja, hogy a területen a klaszterelemzéssel besorolt helyek összefüggő foltokat alkotnak. A változók többdimenziós terében elvégzett csoportosítás eredményét a felszín két, a csoportosítás során figyelembe nem vett dimenziója szerint felrajzolva jól elváló egységeket különíthettünk el. A jelenleg – nemzetközi együttműködésben – folyó kutatásaink során numerikus szimulációval ezekre a foltokra fogjuk előrejelezni a sófelhalmozódás mértékét.

3. ábra A mintaterületen elkülönített csoportok térbeli megoszlása

Összefoglalás

Egy nagykunsági 2,5x2,5 km-es terület 67 pontján helyszíni vizsgálatok alapján jellemeztük és elemeztük a talajok sófelhalmozódásának tényezőit. A vizsgálat célja egymástól különböző, de homogén foltok elkülönítése volt, amelyeken a sófelhalmozódás numerikus szimulációval vizsgálható.

Igazoltuk, hogy minél magasabb volt a talajfelszín térszíni fekvése, annál nagyobb volt a talajvízszint terep alatti mélysége. A talajvízszint felett elhelyezkedő talajrétegek sótartalma egyenes arányban állt a talajvíz sótartalmával (elektromos vezetőképességével).

A "Quick Cluster" algoritmus alkalmazásával a változók többdimenziós terében négy csoportot különítettünk el. A csoportok elválásában a legfontosabb változók, a sófelhalmozódás szempontjából fontos talajvízmélység, térszíni magasság és az 50–60 cm-es réteg sótartalma voltak. A csoportok a terület térképén jól elváltak és a jövőben ezekben végezzük a sófelhalmozódás numerikus szimulációval történő előrejelzését. A munkát az Európai Közösség Környezeti és Éghajlati Kutatási Programja (PL970598 sz. pályázat, szerződésszám ENV4–CT97-0681), a publikálást részben az OTKA T 023271 és T 030739 számú pályázatok támogatták.

Irodalom

- ABDEL-DAYEM, S. & SKAGGS, R. W., 1990. Extension of DRAINMOD for simulating water management in arid regions. In: Symposium on Land Drainage for Salinity Control in Arid and Semi-Arid Regions, Cairo, February 25–March 2. Vol. 2. 201–212.
- ANDERBERG, M. J., 1973. Cluster Analysis for Applications. Academic Press. New York.
- ARANY S., 1956. A szikes talaj és javítása. Mezőgazd. Kiadó. Budapest.
- BAKACSI, Zs. & KUTI, I., 1998. Agrogeological investigation on a salt affected landscape in the Danube Valley, Hungary. Agrokémia és Talajtan. 47. 129–138.
- BOURENNANE, H., KING, D. & COUTURIER, A., 2000. Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. 97. (3–4) 255–272.
- CHAPLOT, V., WALTER, C. & CURMI, P., 2000. Improving soil hydromorphy prediction according to DEM resolution and available pedological data. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. 97. (3–4) 405–422.
- COLLINS, M. et al. (Eds.), 2000. Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). Geoderma. Special Issue. **97.** (3–4) 147–424.
- DOBOS, E. et al., 2000. Use of combined digital elevation model and satellite radiometric data for regional soil mapping. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. 97. (3–4) 367–392.
- FILEP GY., 1999. A szikes talajok kémiai jellemzői közötti összefüggések. Agrokémia és Talajtan. 43. 419–430.
- GOOVAERTS, P., 2000. Estimation or simulation of soil properties? An optimization problem with conflicting criteria. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. 97. (3–4) 165–186.
- GROENIGEN, J. W. VAN, 2000. The influence of variogram parameters on optimal sampling schemes for mapping by kriging. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. 97. (3–4) 223–236.
- KARUCZKA A., 1999. Időjárási viszonyok hatása a szikes talaj sómérlegére. Agrokémia és Talajtan. 48. 459–468.

- KOVDA, V. A. & SZABOLCS, I. (Eds.), 1979. Modelling of Soil Salinization and Alkalization. Agrokémia és Talajtan. 28. (Suppl.) 1–208.
- LAGACHERIE, P. & VOLTZ, M., 2000. Predicting soil properties over a region using sample information from a mapped reference area and digital elevation data: a conditional probability approach. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. **97.** (3–4. 187–208.
- MCBRATNEY, A. B., BISHOP, T. F. A. & TELIATNIKOV, I. S., 2000. Two soil profile reconstruction techniques. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. 97. (3–4) 209–222.
- MENDONCA SANTOS, M. L. et al., 2000. Three-dimensional GIS cartography applied to the study of the spatial variation of soil horizon in a Swiss floodplain. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. **97.** (3–4) 351–366.
- ODEH, I. O. A. & MCBRATNEY, A. B., 2000. Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of Eastern Australia. In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. 97. (3–4) 209–222.
- OOSTERBAAN, R. J. & ABU SENNA, M., 1990. Drainage and salinity predictions in the Nile delta, using SALTMOD. In: Symposium on Land Drainage for Salinity Control in Arid and Semi-Arid Regions, Cairo, February 25–March 2. Vol. 1. 274– 286.
- RHOADES, J. D. et al., 1989a. Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci. Soc. Am. J. 53. 428–433.
- RHOADES, J. D. et al., 1989b. Determining soil salinity for soil and soil-paste electrical conductivities: sensitivity analysis of models. Soil Sci. Soc. Am. J. 53. 1368– 1374.
- SIGMOND E., 1923. A hazai szikesek és megjavítási módjaik. Magyar Tudományos Akadémia. Budapest.
- SIMUNEK, J. & SUAREZ, D. L., 1994. Two-dimensional transport model for variably saturated porous media with major ion chemistry. Water Resources Research. 30. 1115–1133.
- SZABOLCS, I., 1979. Review of Research on Salt Affected Soils. Natural Resources Research. XV. UNESCO. Paris.
- SZABOLCS I., DARAB K. & VÁRALLYAY GY., 1969. A tiszai öntözőrendszerek és a Magyar Alföld talajainak termékenysége a Kiskörei Öntözőrendszer által érintett területen. II. A talajvíz "kritikus" mélysége a kiskörei öntözőrendszer által érintett területen. Agrokémia és Talajtan. 18. 211–220.
- TÓTH, T. & BLASKÓ, L., 1998. Secondary salinization caused by irrigation. In: The Soil As a Strategic Resource: Degradation Processes and Conservation Measures. (Eds.: RODRIGUEZ, RODRIGUEZ A., JIMÉNEZ MENDOZA, C. C. & TEJEDOR SALGUERO, M. I.) 229–253. Geoforma Ediciones, Logrono.
- TÓTH T. & KUTI L., 1999a. Összefüggés a talaj sótartalma és egyes földtani tényezők között a hortobágyi "Nyírőlapos" mintaterületen. 1. Általános földtani jellemzés,

a felszín alatti rétegek kalcittartalma és pH értéke. Agrokémia és Talajtan. **48.** 431–444.

- TÓTH T. & KUTI L., 1999b. Összefüggés a talaj sótartalma és egyes földtani tényezők között a hortobágyi "Nyírőlapos" mintaterületen. 2. Többszörös összefüggések és a felszíni sótartalom becslése. Agrokémia és Talajtan. **48.** 445–457.
- TÓTH, T., KERTÉSZ, M. & PÁSZTOR, L., 1998. New approaches in salinity-sodicity mapping in Hungary. Agrokémia és Talajtan. 47. 76–85.
- TÓTH, T. et al., 1997. Plant composition of a pasture as a predictor of soil salinity. Rev. Biol. Trop. **45.** 1385–1393.
- VANDERBORGHT, J. et al., 1997. Analysis of solute redistribution in heterogeneous soil: II. Numerical simulation of solute transport. In: geoENVI – Geostatistics for Environmental Applications. (Eds.: SOARES, A., GÓMEZ-HERNÁNDEZ, J. & FROIDEVAUX, R.) 283–295. Kluwer Academic Publ. Dordrecht.
- VÁRALLYAY, GY., 1974. Hydrophysical aspects of salinization from the groundwater. Agrokémia és Talajtan. 23. (Suppl.) 29–44.
- WAGENET, R. J. & HUTSON, J. L., 1987. LEACHM, Leaching estimation and chemistry model: A process based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Continuum Vol. 2. Water Resources Institute, Cornell University, Ithaca, NY.
- WEBSTER, R., 2000. Is soil variation random? In: Developments in Quantitative Soil Resource Assessment (PEDOMETRICS '98). (Eds.: COLLINS, M. et al.) Geoderma. Special Issue. 97. (3–4) 149–164.

Érkezett: 2000. október 24.

Variability in the Soil of a Sample Area According to Salt Accumulation Factors

T. TÓTH and G. VÁRALLYAY

Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest

Summary

Soil salt accumulation factors were characterized and analyzed on the basis of onsite examinations at 67 points of a 2.5×2.5 km area in the Nagykunság region of Hungary. The aim of the study was to distinguish homogeneous patches which differed from each other and on which the numerical simulation of salt accumulation could be tested.

It was confirmed that the higher the soil surface lay, the greater was the depth of the groundwater below the area. The salt content of the soil layers above the groundwater level was directly proportional to the salt content (electrical conductivity) of the groundwater. Using the "Quick Cluster" algorithm four groups could be distinguished in the multidimensional space of the variables. The most important variables in distinguishing the groundwater, the height of the relief and the salt content of the 50–60 cm layer. The groups were quite distinct on the area map and will be used in the future to predict salt accumulation by means of numerical simulation.

Table 1. Results of on-site observations, measurements and analyses, and basic statistical parameters. (1) Vegetation. a) patch of standing water in wheat, b) wheat stubble, c) bare patch of standing water, d) maize, e) irrigated maize, f) sunflower, g) marrow field, h) irrigated hybrid maize, i) alfalfa, j) irrigated alfalfa, k) case number, l) minimum, m) maximum, n) mean, o) standard deviation. (2) Coordinates. (3) Groundwater level found. (4) Groundwater after 15 minutes. (5) Height. (4) Group.

Table 2. Correlation between the bulk electrical conductivity (EC_a) of the soil determined instrumentally on site and the electrical conductivity measured in soil suspensions of samples collected from various soil layers. (1) Variables. (2) Pearson's correlation coefficient. (3) Case number. Átlag=Mean. **Correlation significant at 0.05 level.

Table 3. Group means for the cluster centroids separated by means of cluster analysis. (1) Variables. a) Groundwater level found, cm, b) groundwater level after 15 min, c) height, m. (2) Groups.

Fig 1. Correlation between the electrical conductivity (EC) of the groundwater and of the soil layers situated above the groundwater at various depths. Horizontal axis: EC of the groundwater (mS/cm). Vertical axis: EC of the soil layers (mS/cm).

Fig. 2. Relief height of the soil surface at the sampling points. Horizontal axis: EOTR x coordinate. Vertical axis: EOTR y coordinate. EOTR = Uniform National Mapping System.

Fig. 3. Spatial distribution of the groups distinguished on the sampling area. Horizontal and vertical axis: see Fig. 2.