# A sófelhalmozódás tényezőinek változása a hortobágyi "Nyírőlapos" mintaterület talajainál

# <sup>1</sup> TÓTH TIBOR, <sup>2</sup> KUTI LÁSZLÓ, <sup>3</sup> FÓRIZS ISTVÁN és <sup>4</sup> KABOS SÁNDOR

<sup>1</sup>MTA Talajtani és Agrokémiai Kutatóintézet, Budapest, <sup>2</sup>Magyar Állami Földtani Intézet, Budapest, <sup>3</sup>MTA Geokémiai Kutatólaboratórium, Budapest és <sup>4</sup>Eötvös Loránd Tudományegyetem, Budapest

A talajok sótartalma nem állandó érték, hanem rövidebb–hosszabb távú dinamizmussal jellemezhető (ARANY, 1956; SZABOLCS, 1971; VÁRALLYAY, 1989). A hazai szikes területek kialakulását, térbeli elhelyezkedését, javításával kapcsolatos kérdéseket és a sómérlegüket kötetnyi közlemény tárgyalja (pl. az utóbbi évekből BLASKÓ, 1999; SZENDREI, 1999; SZABÓ et al., 1998), és ezek a kérdések továbbra is az érdeklődés középpontjában vannak. Az elmúlt évtizedekben kevés munka értékelte komplexen a talajok sótartalmát befolyásoló tényezők időbeli és térbeli változását (korábbi példa VÁRALLYAY, 1966, a közelmúltból KARUCZKA, 1999), dacára az elmúlt évtizedekben elért módszertani fejlesztéseknek.

Kutatócsoportunk távlati célja egy szikes pusztán belül a sótartalom változásának leírása. Ennek érdekében jelen közleményben a talaj sótartalmát közvetlenül befolyásoló tényezők idő- és térbeli változását értelmezzük. A vizsgált területen a sótartalomra ható tényezőket korábban bemutattuk (TÓTH & KUTI, 1999b 5.ábra), közöttük a dinamikusnak tekinthető tényezőket: a talajvíz mélységét és sótartalmát. Munkánk során ezért először megvizsgáltuk a talajvíz szintjének és sótartalmának időbeli változékonyságát, majd a talaj sótartalmának szelvénybeli és területi változékonyságát. Az eredmények alapján felvázoljuk a terület sófelhalmozódásának koncepcionális modelljét.

# Anyag és módszer

*A mintaterület.* – Jellemzően változatos kb. 800 x 300 m-es mintaterületen végeztünk megfigyeléseket a Hortobágyi Nemzeti Park Nyírőlapos–Nyári járás területének DK-i részén, a Debreceni-határcsatorna és az M 33-as műút (84-es

<sup>\*</sup>A Magyar Talajtani Társaság és a Magyarhoni Földtani Társulat Mérnökgeológiai Szakosztálya 2000. február 9-én, a szikesedés témakörében rendezett előadóülésén elhangzott előadás anyaga

km-kő környéke) közötti szikes laposon. A terület a tiszántúli szolonyec talajok "klasszikus" mintaterülete, a réti szolonyec talaj tipikus bemutató szelvénygödre itt található. Itt hosszú idő óta folynak különböző célú talajtani vizsgálatok (SZABOLCS, 1971; OERTLI & RAJKAI; 1988, RAJKAI et al.; 1988, TÓTH et al., 1991; TÓTH & KERTÉSZ; 1993, TÓTH & RAJKAI, 1994).

A vizsgált talajszelvényeket és talajvízszint észlelő kutakat, valamint a talaj elektromos vezetőképesség mérőpontokat az 1. ábra mutatja be.



A talajszelvények, talajvízszint észlelő kutak és elektromos vezetőképesség mérőhelyek (+) sematikus vázlata a "Nyírőlapos" mintaterületen

*Talajvízszint észlelések.* – A területen hét talajvízkutat figyelünk meg. Ezek közül 4 kút helyének kiválasztásánál (1–4. számú talajvízkutak) a terület talajvízárásának jellemzése volt a célunk, a maradék hármat pedig három részletesen vizsgált talajszelvény mellé telepítettük.

A talajvízkutakban a vízszintet mintegy tíznaponta észleltük, a víz kémiai összetételének vizsgálatához havonkénti gyakorisággal vettünk mintát.

Az egyes talajvízkutak talppontjainak a tengerszint feletti magassága a következő: 1.: 90,0 m, 2.: 89,32 m, 3.: 88,8 m, 4.: 88,68 m. A szelvények mellett telepített kutak néhány jellemzőjéről az 1. táblázat tájékoztat.

Negyedévenkénti elektromos vezetőképesség észlelések. – 1994 novemberétől 420 geodéziailag (x, y, z) bemért és megjelölt mérőhelyen háromhavonként végezzük a talaj elektromos vezetőképességének (EC<sub>a</sub>) mérését. A terepi EC<sub>a</sub>-t

*l. táblázat* A "Nyírőlapos" mintaterület vizsgált szelvényeinek néhány fontosabb jellemzője 1997 decemberében

| Szel-<br>vény | Tenger-<br>szint feletti<br>magasság,<br>m | Növényzet           | Talaj-<br>vízszint*,<br>cm | Talajvíz<br>EC,<br>mS/cm | Ks<br>cm/nap |
|---------------|--------------------------------------------|---------------------|----------------------------|--------------------------|--------------|
| 6.            | 89,35                                      | "füvespuszta"–Ach-F | 40                         | 3                        | 80           |
| 249.          | 89,09                                      | "ürmöspuszta"–Art-F | 20                         | 2                        | 0,001        |
| 419.          | 88,84                                      | "szikes rét"–Ag-Al  | 0                          | 17                       | 8            |

*Megjegyzés:* EC az elektromos vezetőképesség; Talajvízszint: A 419. szelvényhez képest; Ks a talaj bolygatatlan szerkezetű, 5x5 cm-es talajmintán meghatározott telített hidraulikus vezetőképessége az A-szintben; Növényzet: Ach-F: Achilleo-Festucetum pseudovinae; Art-F: Artemisio-Festucetum pseudovinae; Ag-Al: Agrosti-Alopecuretum pratensis

Martek SCT 12 típusú vezetőképesség-mérővel mérjük. A 4 elektród elrendezése rögzített konfiguráció (RHOADES & MIYAMOTO, 1990) szerint történt, 91 cm külső és 72 cm belső elektródtávolsággal. Ezzel az elrendezéssel maximálisan 40 cm mélységig lehet megbízhatóan meghatározni a talaj sótartalmát, és ez határozta meg az ismételt talajmintavételezés mélységét. A területre jellemző EC-értékek kiegyenlített reprezentációja és az egyenletes térbeli előfordulás követelményének megfelelően a 420 mérési pont közül kiválasztottunk 20 mérőhelyet, ahol laboratóriumi (EC méréshez 1:2,5 szuszpenzióban, a továbbiakban EC<sub>2.5</sub>) kalibrációhoz mintát vettünk. A kalibrációs helyek számát a befektetett munka arányában határoztuk meg, mivel a műszeres mérés időigénye mintegy 16 óra, a talajmintavételé pedig 4 óra. Mivel a vezetőképesség-mérő térben átlagolt értéket ad, a műszeres értékek kalibrálásához az elektródok között 2 furatot mélyítettünk és az azonos mélységből származó mintákat 10 cmenként egyesítettük. A kalibrációs összefüggések alapján számítottuk a mérőhelyek EC<sub>2.5</sub>-értékét, amit térképen ábrázoltunk.

Havonkénti talajvizsgálatok. – 1998 júliusától másfél éven keresztül három talajszelvény mellett a talajvízszint eléréséig havonkénti mintavételt végeztünk. A vizsgált szelvények a nemzeti park leggyakoribb szikes élőhelyeit képviselik, a szelvényeket a mikroreliefen elfoglalt helyzetük alapján választottuk ki az 1. táblázat szerint. A 6. és 419. szelvény mély réti szolonyec, a 249. pedig közepes réti szolonyec talaj.

A stabil oxigénizotópos összetétel és a tríciumtartalom mérése. – A talajvíz eredetének és a különböző eredetű talajvizek keveredésének kimutatásához sta-

bil oxigénizotópos és tríciumos méréseket végeztünk. Az oxigénizotópos mérésekhez a talajvízkutakból 1997-1998 folyamán öt, a talajszelvénykutakból egy alkalommal történt vízmintavétel. A tríciumtartalom meghatározáshoz csak a talajszelvénykutakból történt egyszeri mintavételezés (4. táblázat).

A stabil oxigénizotópos összetétel mérést az MTA Geokémiai Kutatólaboratóriumában Fórizs István végezte. A mintaelőkészítést a hagyományos CO<sub>2</sub>– H<sub>2</sub>O izotópegyensúlyi rendszerrel végeztük (5 ml vízminta 20 ml közel 1 atm nyomású szén-dioxiddal állandó hőmérsékleten történő rázás mellett izotópegyensúlyba kerül; eredeti leírás: EPSTEIN & MAYEDA (1953) többször módosítva). Az izotópegyensúlyba került szén-dioxid stabil oxigénizotópos összetételét Finnigan MAT delta S tömegspektrométeren határoztuk meg. A mérésekhez a BTW 20 labor-sztenderdet használtuk. Az eredményeket a nemzetközi VSMOW (Vienna Standard Mean Ocean Water) etalonhoz viszonyítva ezrelékben adjuk meg a szokásos δ jelöléssel:

$$\delta^{18} O = \frac{R_{mina} - R_{sztenderd}}{R_{sztenderd}} \cdot 1000$$

ahol:  $R_{minta}$  és  $R_{sztenderd}$  a minta és a sztenderd <sup>18</sup>O/<sup>16</sup>O aránya. A mérések bizonytalansága (mintaelőkészítés+mérés) ±0,15 [‰]<sub>VSMOW</sub>.

A tríciumtartalom meghatározását a VITUKI, Tricarb Laboratóriumában Süveges Miklós végezte. Az elektrolitikusan dúsított, majd "szcintillációs koktél"-lal kevert mintában folyadékszcintillációs számlálóval meghatározzák a tríciumtartalmat, amit trícium egységben (TE = egy trícium izotóp10<sup>18</sup> hidrogén atom között) adnak meg.

A Cl/Br<sup>-</sup> arány meghatározása. – A csapadékvíz és a talajvizek keveredésének kimutatására meghatároztuk egyes talajvízminták és telítési kivonatok bromid- és kloridkoncentrációját. A bromidkoncentrációt az 1997. november 5-én vett talajminták telítési kivonatából a Vízkutató Vízkémia Kft határozta meg SCHER (1960) módszerével.

Egyéb mintavételi és laboratóriumi módszerek. – A talaj sótartalmának változását az 1:2,5 talaj:víz (hazai szabvány szerinti pH) szuszpenzió elektromos vezetőképességének mérésével követtük nyomon.

A talaj hidraulikus vezetőképességét 5x5 cm-es bolygatatlan szerkezetű talajmintán, az MSz-08 0205-78 szerint "csökkenő víznyomás" módszerével három ismétlés alkalmazásával határoztuk meg.

A telítési kivonatok és vízminták elemzését LUKÁCS és RÉDLYNÉ (1988) szerint végeztük el.

# Eredmények

### A talajvízszint időbeli változása

Annak érdekében, hogy a szikes területen a talajvíz változása előre jelezhető legyen a talajvízszintet a megelőző 10 dekád csapadékösszege alapján kíséreltük meg becsülni. A 2. kútra a legjobb illeszkedést a következő összefüggéssel kaptuk.

Egyensúlyi talajvízszint = 0,73 \* jelen dekád csapadékösszege + 0,23 \* egy dekáddal korábbi csapadékösszeg – 0,022 \* két dekáddal korábbi csapadékösszeg + 0,040 \* három dekáddal korábbi csapadékösszeg – 0,023 \* négy dekáddal korábbi csapadékösszeg

Az összefüggésben szereplő változókat előzetesen a szórással standardizáltuk (PODANI, 1997) annak érdekében, hogy a becslő algoritmusok közül a legjobb illeszkedést mutatót a modell-reziduumok összehasonlítása alapján kiválaszthassuk. A regressziós összefüggés többszörös lineáris korrelációs koefficiens értéke 0,992 volt, azaz a csapadék mennyisége a talajvízszint értékét döntően befolyásolja. Időben visszafelé haladva a lehullott csapadék egyre kisebb jelentőségű a talajvízszint meghatározásában.

A 2. táblázatban a területhez közel eső két észlelőkút jellemző adatait mutatjuk be a VITUKI adattára alapján. A mintaterületen kialakított hét kút felszíni magassága és a táblázatban bemutatott kutak magassága egy értéktartományba esik. Az általunk üzemeltetett 7 talajvízkút és a 2 kívül eső kút esetében is igaz volt, hogy növekvő felszíni magassághoz mélyebb átlagos talajvízszint tartozik. Ennek oka a mélyebb területeken (rétek, mocsarak) megálló csapadékvizek utánpótló hatása. A talajvízszint ingadozása a hosszú időn keresztül észlelt kutakban, 65–70 éves időszak alatt 3,6–3,7 m volt, hasonló nagyságú volt a felszín alatti legnagyobb talajvízmélység, vagyis a legsekélyebb talajvízszint megközelítette vagy meghaladta a felszíni magasságot. A területen a talajvíz nyomás alatt van, vagyis a fúrás közben "megütött" talajvízszinthez képest a később beálló nyugalmi (egyensúlyi) talajvízszint sekélyebb. Ezen a területen 29 geológiai fúrás mélyítése során 1995 augusztusában a megütés után átlagosan 3,3 mről a talajvízszint 1,57 m-t emelkedett egy nap során.

| Kút  | Talppont,<br>tszf. | X_EOTR | Y_EOTR | Mini-<br>mum | Maxi-<br>mum | Átlag | Időszak   |
|------|--------------------|--------|--------|--------------|--------------|-------|-----------|
| 154. | 89,42              | 253191 | 802406 | 85,65        | 89,17        | 87,93 | 1935–1996 |
| 162. | 88,32              | 254621 | 814688 | 84,72        | 88,47        | 87,06 | 1941–1996 |

2. táblázat Két hosszú idő óta észlelt talajvízkút talajvízszintje (m)

A talajvíz felszín alatti mélysége követi a felszíni magasságban meglévő különbségeket. Csapadékos időszakban a legmélyebben lévő kútban a vízszint magasabb mint a közbülső magasságúakban. A 2. ábrán látható, hogy a legalacsonyabb talppontú (4.) kútban a legalacsonyabb rendszerint a talajvízszint, de



nedves időszakokban rendszeresen a 2. és 3. kút vízszintje fölé emelkedik. Ez arra utal, hogy a talajvízáramlás a területen belül az év folyamán nem egyirányú, vagyis nem mindig a magasabb térszín felől az alacsonyabb térszín felé áramlik. Az áramlás iránya a csapadékviszonyoktól függően megfordulhat és az időszakosan kialakuló vízállás következtében a mélyebb területek felől a magasabb területek felé irányulhat. Észak-Dakota állam (USA) szolonyeces területein a talajvíz áramlási irányának hasonló változásáról számolt be SEELIG és RICHARDSON, 1994.

#### A talajvíz elektromos vezetőképességének időbeli változása

A mintaterületen belül a talajvízkutakban havonta mért EC-értékek közötti összefüggést az egyes kutakban mért EC-értékek, és az egyes időpontokban

mért értékek közötti összefüggések szempontjából is vizsgáltuk. Az egyes talajvízkutak EC-je időben korrelációt mutatott egymással, de az oksági kapcsolatot nem lehetett kimutatni, mivel a talajvizek hasonló EC dinamikáját a kutakra hasonlóan ható csapadékvíz közvetlenül előidézhette.

A talajvíz elektromos vezetőképessége az aktuális hónap csapadékösszege és a talajvíz megelőző hónapban mért EC-értéke alapján jól becsülhető volt, amint azt példaként a 3. kút esetén bemutatjuk (3. ábra). Az autoregressziós lineáris összefüggés többszörös korrelációs koefficiens értéke 0,839 volt.



3. ábra

A talajvíz EC autoregressziós modellezése a 3. kútra. Az ábra felső része a mért (folytonos vonal) és a modell által becsült (szaggatott vonal) értékeket ábrázolja. Az ábra alsó része a modellillesztés reziduumait ábrázolja

## Az izotópos adatok értelmezése

*Oxigén.* A vizsgált terület egy regionális áramlási rendszer föláramlási területe. A mélyebb rétegekből idős, jégkorszaki beszivárgású víz áramlik a felszín felé, ahol keveredik a beszivárgó csapadékvízzel. (A feláramló víz korára csak szórványos adatok vannak: a közelben lévő Balmazújvárosi Vízmű két kútjában 13 és 15 ezer évesnek adódtak a rétegvizek <sup>14</sup>C adatok alapján, MIKÓ 2001). A feláramló víz stabil oxigénizotópos összetételének meghatározásához megmintáztunk három közeli rétegvízkutat (3. táblázat)

Mivel a három rétegvízkút más–más oxigénizotópos összetételű, a feláramló rétegvíz  $\delta^{18}$ O értéke pontosan nem adható meg, azonban feltételezhető, hogy a

| Kataszteri<br>szám | Hely neve       | Nyomásállapot | Talpmélység<br>[m] | δ <sup>18</sup> O érték<br>[‰] <sub>VSMOW</sub> |
|--------------------|-----------------|---------------|--------------------|-------------------------------------------------|
| K-24               | Szettyényes     | nem artézi    | 60                 | -11,80                                          |
| K-152              | Szálkahalom     | artézi        | 81                 | -11,28                                          |
| K-13               | Kadarcsi Csárda | artézi        | 190                | -10,03                                          |

*3. táblázat* A Nyírőlapos környéki rétegvízkutak adatai és a víz δ<sup>18</sup>O értékei

legsekélyebb kút vizéhez közeli, vagyis közelítőleg -11,8 ‰. A magyarországi talajvizek és sekély rétegvizek átlagos  $\delta^{18}$ O-értéke -9,3±0,4 ‰ (DEÁK, 1995).

Mind a hét talajvízkút vizének  $\delta^{18}$ O-értéke pozitívabb (4. táblázat), mint a feláramló víz  $\delta^{18}$ O-értéke, ami a beszivárgó csapadékvízzel való keveredésre, valamint a párolgás által történő izotópos bedúsulásra utal (a víz <sup>18</sup>O-izotópban dúsul, vagyis a  $\delta^{18}$ O-érték pozitív irányba tolódik el). A legmélyebben fekvő figyelőkút (4.)  $\delta^{18}$ O-értéke -8.1 ‰ körüli és időben nem változik. Ez az érték még az átlagos talajvíz- $\delta^{18}$ O értéknél is pozitívabb, ami azt mutatja, hogy a talajvíz párolgás útján izotóposan bedúsul. Az időbeli állandó érték pedig arra utal, hogy a párolgás általi izotópos bedúsulás nem a talajvízben történik, hanem a víztükörnél magasabb szinten, a felszín közelében. A talajvíz a kapilláris hatás következtében izotópos frakcionáció nélkül feljut a telítetlen zónába, majd a felszín közelében a víz egy része elpárolog, a maradék izotóposan bedúsul. Az erőteljes párolgásnak kedvez a sekély talajvízszint (2. ábra). Nagyobb mértékű csapadékhulláskor pedig a lefelé szivárgó víz keveredik az izotóposan bedúsult vízzel és ez a keverékvíz jut le a telített zónába és keveredik a talajvízhez. Feltehető, hogy ez a bonyolult folyamat hosszú távon viszonylag kiegyenlített, vagyis a mélyből feláramló, jégkorszaki beszivárgású víz és a felülről utánpótlódó víz aránya közelítőleg állandó.

A 3. figyelőkút  $\delta^{18}$ O értéke -9,2 körüli, ami nagyon közel áll az átlagos talajvíz- $\delta^{18}$ O értékhez. Feltételezhető azonban, hogy ehhez a vízhez is keveredik valamennyi feláramló jégkorszaki beszivárgású rétegvíz, amely utóbbinak jóval negatívabb a  $\delta^{18}$ O értéke. Ebből pedig arra következtethetünk, hogy ennél a kútnál is jelentős a párolgás hatása. Az időbeli stabilitás ennél a kútnál is fennáll, magyarázata pedig ugyanaz lehet, mint a 4. kútnál.

Az 1. kút vizének  $\delta^{18}$ O- értéke -9,7 ‰ körüli, ami az átlagos talajvíz- $\delta^{18}$ O érték és feláramló víz  $\delta^{18}$ O-értéke közötti, és időben ez is állandó. A fenti két kútnál leírtak itt is igazak azzal az eltéréssel, hogy ebben az esetben nagyobb mértékű az alulról való utánpótlódás.

|                                     | 1.     | 2.     | 3.    | 4.    | 6.     | 249.   | 419.   |
|-------------------------------------|--------|--------|-------|-------|--------|--------|--------|
|                                     | kút    | kút    | kút   | kút   | szelv. | szelv. | szelv. |
| $\delta^{18}O$ [‰] <sub>VSMOW</sub> |        |        |       |       |        |        |        |
| 1997. VII.2.                        | -10,75 | -10,99 | -9,33 | -8,16 |        |        |        |
| 1997. VIII. 21.                     | -9,75  | -10,81 | -9,15 | -8,25 |        |        |        |
| 1997. X. 12.                        | -9,67  | -10,94 | -9,21 | -8,18 |        |        |        |
| 1998. I. 8.                         |        |        | -9,12 |       |        |        |        |
| 1998. II. 4.                        | -9,66  | -10,54 | -9,16 | -8,04 |        |        |        |
| 1998. V. 29.                        | -9,65  | -10,05 | -9,21 |       |        |        |        |
| 1998. X. 29.                        |        |        |       |       | -10,53 | -10,69 | -9,19  |
| Trícium (TE)                        | _      |        |       |       |        |        |        |
| 1998. X. 29.                        |        |        |       |       | 2,8    | 1,3    | 4,8    |
| EC (mS/cm)                          |        |        |       |       |        |        |        |
| 1998. X. 29.                        |        |        |       |       | 3,29   | 1,92   | 12,6   |

*4. táblázat* A nyírőlaposi vizsgált talajvízkutak izotópos és elektromos vezetőképesség adatai

A 2. kút vizének  $\delta^{18}$ O-értéke időben változó és -10 és -11 ‰ közötti. Ez azt mutatja, hogy e kút közelében a legerőteljesebb a feláramlás. A négy figyelőkút környezetében összehasonlítva a víztükör alatti rétegek vízvezető képességét azt látjuk, hogy az a 2. kút közelében a legnagyobb (TÓTH & KUTI, 1999a), ami magyarázhatja, hogy miért itt a legerőteljesebb a feláramlás. A  $\delta^{18}$ O-érték időbeli változása pedig arra utal, hogy nem kiegyensúlyozott a beszivárgó és a feláramló víz aránya.

A 6. és 249. talajszelvénykutak  $\delta^{18}$ O-értéke -10,5 és -10,7 ‰. Ezek az értékek közel esnek egyrészt egymáshoz, másrészt a térben is közeli 2. kút értékéhez (ld 1. ábrán), tehát az ott tett megállapítások itt is érvényesek. A 419. talajszelvénykút  $\delta^{18}$ O-értéke -9,2 ‰, ami szinte megegyezik a tőle nem távoli 3. kútéval.

*Trícium.* A feláramló mély rétegvizek tríciumtartalma nulla, tehát a talajvízbe trícium csak a felszínről beszivárgó csapadékvízzel juthat le. A trícium felezési ideje 12,4 év – vagyis elég gyorsan bomlik le –, tehát a talajvíz tríciumtartalma egyrészt attól függ, hogy milyen a csapadékvíz/rétegvíz arány, valamint attól, hogy milyen lassú a beszivárgás. Durva közelítésben azt mondhatjuk, hogy minél nagyobb a talajvíz tríciumtartalma, annál nagyobb benne a beszivárgó csapadékvíz aránya és a párolgás mértéke (a párolgás a tríciumot is dúsítja). Összevetve a tríciumtartalmakat a  $\delta^{18}$ O-értékekkel megállapíthatjuk, hogy a belőlük levont következtetések egymást támogatják. A  $\delta^{18}$ O-értékek alapján a három talajszelvénykút közül a 419. kútnál a legnagyobb arányú a csapadékvíz beszivárgása (és a párolgás mértéke), és a tríciumtartalom is itt a legnagyobb (4,8 TE). Ez szoros összefüggésben van azzal, hogy ennél a szelvénynél rendszeresen vízállás alakul ki, a talajvíz szintje pedig a három szelvény közül itt a legsekélyebb. Az izotópos adatokat összevetve az oldott sótartalommal (4. táblázat), a korreláció ismét szembetűnő, a 419. kút vizének messze a legnagyobb az elektromos vezetőképessége (12, 6 mS/cm).

A talajvíz áramlási viszonyokról további felvilágosítást nyújt majd a folyamatban lévő deutérium-koncentráció meghatározás.

#### A talajoldatok és a talajvíz Cľ/Br aránya

A csapadékvíz, a talajoldat és a talajvíz keveredésének vizsgálata érdekében a három talajszelvényben, a talajvíz- és a telítési kivonat mintákban meghatároztuk a CI<sup>-</sup> és Br<sup>-</sup> koncentrációt. Ezek arányát a 4. ábrán mutatjuk be. FLURY és PAPRITZ (1993), VINOGRADOV (1959) és WHITTEMORE (1988) szerint a két anion koncentrációja alkalmas arra, hogy a talajvíz egyes változásait nyomon kövessük, mivel mind a kettő "konzervatív" alkotóként viselkedik, vagyis jól oldódik és kevéssé vesz részt kémiai átalakulásokban, megkötődésben. A Br<sup>-</sup> koncentráció a talaj szervesanyag-koncentrációjával pozitív korrelációt mutat (FLURY & PAPRITZ, 1993). Emiatt a 6. és 419. szelvény humuszos szintjeiben kiugróan magas Br-koncentrációt találtunk. Amennyiben a talajvíz és az egyes szintek között az oldatok keverednek, akkor az adott szelvényhez tartozó érté-



4. ábra

A bromid- és kloridionok aránya a három szelvény (6., 419. és 249.) genetikai szintjeinek telítési kivonatában és a szelvények alatti talajvízben

kek egy egyenesen helyezkednek el. Ezt tapasztaltuk a 419. "réti" talajszelvény esetében. Ez alapján is nyilvánvaló, hogy a csapadék közvetlen hatással van a szelvény sótartalmának alakulására, vagyis a párolgás és kimosódás hatása együttesen érvényesül. A 249. "ürmöspusztai" talajszelvény esetén azonban a talajvíz Cl<sup>-</sup>-koncentrációja kisebb mint a talajszintek telítési kivonatáé, vagyis a talajban a talajvízhez képest a sótartalom megnő. A 6. "füvespusztai" talajszelvény esetén az A-szint telítési kivonatában a Cl<sup>-</sup>-koncentráció kicsi (hasonló a 419. réti szelvény A-szintjéhez), a mélyebb szintek Cl<sup>-</sup>-koncentrációja azonban nagyobb, mint a talajvízé, tehát az A-szinttől eltekintve a 249. szelvénynél megfigyeltek érvényesülnek.

A talajvíz ionösszetételét mutató eredmények (melyeket egy külön közleményben tervezzük bemutatni) arra utaltak, hogy a megfigyelt különböző sótartalmú, illetve sóösszetételű talajvíz-zónák (TÓTH & KUTI, 1999a) helyzete időben módosulhat. Ennek következtében a talajvízészlelő kutakban jelentős vízminőség-változást tapasztaltunk, ami összefüggést mutat a talajvízáramlás irányának változásával.

### A talaj-sótartalom szelvénybeli változása

Összehasonlítottuk az egys talajszelvények  $EC_{2.5}$  dinamikáját és megállapítottuk, hogy a "füvespusztai" és "szikes réti" szelvény  $EC_{2.5}$  dinamikája eltér az "ürmöspusztai" szelvényétől.

A havonkénti mintavételek során 1:2,5 arányú vizes szuszpenzióban mért EC-értékeket (EC<sub>2.5</sub>) az 5. ábrán mutatjuk be. Minden egyes alkalommal a talajvízszint megütéséig végeztük a mintavételt. A mélyen fekvő "szikes rét" 419. szelvényében nagy (1999 januárjában 1 %-ot is meghaladó) sótartalom csak az erősen sós talajvíz áramlási zónájában tapasztalható. A havi sótartalom-ingadozás itt nem nagy, a talaj felhalmozódási szintjében azonban intenzív. Az erősen szikes, "ürmöspusztai gyepben" vizsgált 249. szelvényben a B-szint eredetileg is nagy (0,7–1,5 %) sótartalmában csak kis változás volt észlelhető a havi mérések során. A térszínen magasabban található "füvespusztai gyepben" vizsgált 6. szelvényben jelentős sófelhalmozódás (>0,5 %) az évnek csupán egy hónapjában volt kimutatható, a B-szint alján. A feltalaj (0–30 cm) kis sótartalmú (0,01–0,17 %) volt és a sótartalom az év folyamán ingadozott.

Az  $EC_{2.5}$  változása alapján, a térszínen különböző magassági övezetben található három talajszelvényben – felülről lefelé haladva – a talajvíznek a talaj sótartalmát befolyásoló hatása egyre növekszik. A kilúgozódás hatása a legmagasabban és legmélyebben található szelvényekben tekinthető jelentősnek. A középső magassági övezetben található (249.) szelvényben a talaj sótartalma jellemzően az év folyamán végig nagy.

TÓTH et al.



420



A talaj helyszíni elektromos vezetőképessége alapján készített  $EC_{2.5}$  (mS/cm) térképek. A térképek azonos jelkulccsal készültek. A sótartalom növekedését egyre világosodó árnyalatok jelzik



## A talaj sótartalmának területi változása

A felszíni talajréteg sótartalmának három év folyamán történő változását a 6. ábrán összefoglalóan mutatjuk meg. Az ábrán feltüntetett időszak alatt; 1997 márciusában volt a feltalaj átlagos  $EC_{2.5}$ -értéke a legkisebb (1,34 mS/cm), a legnagyobb átlagos értéket pedig 1995 márciusában érte el (2,12 mS/cm-rel). A sótartalom területi eloszlása mind a három évben hasonló volt.

#### A talajbeli sófelhalmozódás koncepcionális modellje

A külföldi szakirodalomban rendszerint a térszín legmélyebb pontjain helyezik el a legnagyobb sófelhalmozódású szelvényeket. Ez nem egyezik a hortobágyi talajzonációval. A jelenség értelmezésére a megfigyelések alapján megszerkesztettük a területen a sófelhalmozódás koncepcionális modelljét, ami száraz és nedves időszakokra a 7. ábrán láható.

A 7.a. ábra mutatja, hogy – a növényzet magasságával és a talaj növényborítottságával összefüggésben – száraz, meleg időben a talajfelszín hőmérséklete szélsőségesen eltérő értékeket érhet el (KOVÁCS & TÓTH, 1988, 2. melléklet). A "kopár szik" mintegy 20 °C-kal, a füvespusztai talajfelszín pedig 10 °C-kal melegebb lehet mint a "szikes réti" talajfelszín. Ez kedvez a párolgás által előidézett, a felszín felé irányuló oldatáramlásnak és a felszín közeli sófelhalmozódásnak, a kopár foltokon pedig a felszíni sókivirágzások megjelenésének.

A 7.b. ábrán bemutatott nedves időszak folyamán a talajfelszínről jelentős mennyiségű beszivárgás csupán a "szikes réti" és "füvespusztai" talajszelvény esetén várható, mivel az "ürmöspusztai" szelvény hidraulikus vezetőképessége igen kicsi, itt a felszínről a csapadékvíz lefolyik (szikpadka), vagy elpárolog. Ugyanakkor a "szikes réti" szelvény felett a csapadékvíz időről időre összegyülemlik, jó része beszivárog, ennek az "ürmöspusztai" szelvény sótartalmára visszaduzzasztó hatása van, majd a kialakuló vízállás miatt a talajvíz áramlásának iránya megfordul és a magasabban fekvő szelvények felé irányul.

# Összefoglalás

Egy 800x300 m-es hortobágyi mintaterületen vizsgáltuk a sófelhalmozódás tényezőinek és a talaj sótartalmának időbeli változását – 420 felszíni elektromos vezetőképesség-mérő pont, hét talajvízkút és három talajszelvényben végzett – ismételt vizsgálatok alapján.

Rámutattunk, hogy a talajvízszintet a csapadékösszeg ismeretében elfogadható pontossággal előre lehet jelezni. A területen belül, az időszakosan kialakuló vízállások hatására a talajvíz áramlási iránya megváltozhat és a mélyebben fekvő területek felől a magasabbak felé irányulhat.

Az egyes talajvízkutakban a víz elektromos vezetőképessége (EC) az aktuális hónap csapadékösszege és a talajvíz megelőző hónapban mért EC-értéke alapján jól becsülhető volt.

A területen belül, a kis távolságok ellenére, különbség volt a vizek oxigén és hidrogén stabilizotóp összetételében, illetve annak időbeli változékonyságában. A legmélyebb, "szikes réti" növényzettel borított részen a mélyebb, pleisztocén eredetű víz feláramlása, a talajvízből történő párolgás és a csapadék utánpótlódása egyensúlyban lévő folyamatok. A mélyebben lévő vizek legnagyobb mértékű feláramlását a legszikesebb övezetben észleltük.

A "szikes réti" jellegű szelvényben a talajvíz és a csapadékvíz szabad keveredését mutattuk ki a Br<sup>-</sup>/Cl<sup>-</sup> ionok aránya alapján. Az "ürmöspusztai gyep" és "füvespusztai gyep" szelvényekben a telítési talajkivonatban a talajvízhez képest a Cl<sup>-</sup>koncentráció jelentősen nagyobb, ami erős párolgásra utal.

Fentiekkel összefüggésben nagyobb sótartalom értékeket a "szikes réti" jellegű szelvényben, csupán az erősen sós talajvíz áramlási zónájában tapasztaltunk. Az erősen szikes "ürmöspusztai gyep" talajának sófelhalmozódási szintje a vizsgált időszak alatt végig nagy sótartalmat mutatott. A legmagasabban fekvő "füvespusztai gyep" szelvényében jelentős sófelhalmozódás csupán az év egy hónapjában volt kimutatható, a B-szint alján, míg az A-szintben erősen ingadozó, de kis sótartalmat tapasztaltunk.

A megfigyelések alapján megfogalmazott koncepcionális modell (7a. és 7b. ábra) száraz meleg és nedves periódusokra külön–külön leírja a sófelhalmozódást. A modellben a legfontosabb tényezők a térszíni fekvés, a felszín növényborítottsága és hőmérséklete, a talaj vízgazdálkodási tulajdonságai és az időszakosan jelentkező vízborítás, aminek következtében a talajvíz áramlási iránya megfordulhat.

A munka még nem zárult le, az adatokat és a levonható következtetéseket folyamatosan adjuk közre. Az eddigi kutatás az OTKA T 023271, valamint T 30738 és T 025623 kutatási témák keretében folyt. További támogatást nyújtott az Európai Közösség Környezeti és Éghajlati Kutatási Programja (PL 970598 számú pályázat). Fórizs István munkáját a Bolyai János Kutatási Ösztöndíj támogatásával végezte.

### Irodalom

ARANY S., 1956. A szikes talaj és javítása. Mezőgazdasági Kiadó. Budapest.

- BLASKÓ L., 1999. A réti szolonyec talajok javításának tartamhatása. Agrokémia és Talajtan. 48. 517–530.
- DEÁK J., 1995. A felszín alatti vizek utánpótlódásának meghatározása izotópos módszerekkel az Alföldön. VITUKI Zárójelentés. Budapest.
- EPSTEIN, S. & MAYEDA, T. K., 1953. Variations of the O<sup>18</sup>/O<sup>16</sup> ratio in natural waters. Geochim Cosmochim Acta. **4.** 213–224
- FLURY, M. & PAPRITZ, A. 1993. Bromide in the natural environment: occurrence and toxicity. J. Environ. Qual. 22. 747–758.
- KARUCZKA A., 1999. Időjárási viszonyok hatása a szikes talaj sómérlegére. Agrokémia és Talajtan. 48. 459–468.
- KOVÁCS J. & TÓTH A., 1988. Mikroklíma mérések a hortobágyi gyeptársulásokban. In: Tudományos kutatások a Hortobágyi Nemzeti Parkban. 287–294. Budapest.
- LUKÁCS A. & RÉDLY L-NÉ, 1988. A talajok sótartalmának és sóösszetételének vizsgálata. In: Talaj- és agrokémiai vizsgálati módszerkönyv 2. (Szerk.: BUZÁS I.) 174–210. Mezőgazdasági Kiadó. Budapest.
- MIKÓ L., 2001. A Magyar Geológiai Szolgálat Kelet-magyarországi Területi Hivatal adatbázisából szolgáltatott adat
- OERTLI, J. J. & RAJKAI, K., 1988. Spatial variability of soil properties and the plant coverage on alkali soils of the Hungarian Pussta. In: Proc. Int. Symposium on Solonetz Soils, Problems, Properties and Utilization, Osijek, 15–21 June, 1988. 156–161.
- PODANI J., 1997. Bevezetés a többváltozós biológiai adatfeltárás rejtelmeibe. Scientia Kiadó. Budapest.
- RAJKAI, K., MARCHAND, D. & OERTLI, J. J., 1988. Study of the spatial variability of soil properties on alkali soils. In: Proc. Int. Symposium on Solonetz Soils, Problems, Properties and Utilization, Osijek, 15–21 June, 1988. 150–155.
- RHOADES, J. D. & MIYAMATO, S., 1990. Testing soils for salinity and sodicity. In: Soil and Plant Analysis. SSSA Book Series No. 3. 299–336. Madison. WI
- SCHER Á., 1960. Bromid és jodid gyors kolorimetriás mikromeghatározása fenolvörössel. Hidrológiai Közlöny. (2) 169–175.
- SEELIG, B. D. & RICHARDSON. J. C., 1994. Sodic soil toposequence related to focused water flow. Soil Sci. Soc. Am. J. 58, 156–163.
- SZABÓ J. et al., 1998. Integration of remote sensing and GIS techniques in land degradation mapping. Agrokémia és Talajtan. **47.** 63–75.
- SZABOLCS, I., 1971. Solonetz soils in Europe. In: European Solonetz Soils and Their Reclamation. (Ed.: SZABOLCS, I.) 9-33. Akadémiai Kiadó. Budapest.
- SZENDREI G., 1999. Hazai szikes talajok mikromorfológiája. Agrokémia és Talajtan. **48.** 481–490.
- TÓTH, T. & KERTÉSZ, M., 1993. Mapping the degradation of solonetzic grassland. Agrokémia és Talajtan. **42.** 43–54.
- TÓTH T. & KUTI L., 1999a. Összefüggés a talaj sótartalma és egyes földtani tényezők között a hortobágyi "Nyírőlapos" mintaterületen. 1. Általános földtani jellemzés, a

felszínalatti rétegek kalcittartalma és pH értéke. Agrokémia és Talajtan. **48.** 431–444.

- TÓTH T. & KUTI L., 1999b. Összefüggés a talaj sótartalma és egyes földtani tényezők között a hortobágyi "Nyírőlapos" mintaterületen. 2. Többszörös összefüggések és a felszíni sótartalom becslése. Agrokémia és Talajtan. 48. 445–457.
- TÓTH, T. & RAJKAI, K., 1994. Soil and plant correlations in a solonetzic grassland. Soil Science. **157.** 253–262.
- TÓTH T. et al., 1991. Characterization of semi-vegetated salt-affected soils by means of field remote sensing. Remote Sensing of Environment. **37.** 167–180.
- VÁRALLYAY GY., 1966. A Duna–Tisza közi talajok sómérlegei. I. Sómérlegek természetes (öntözés nélküli) viszonyok között. Agrokémia és Talajtan. **15.** 423–447.
- VÁRALLYAY GY., 1999. Szikesedési folyamatok a Kárpát-medencében. Agrokémia és Talajtan. **48.** 399–418.
- VINOGRADOV, A. P., 1959. The Geochemistry of Rare and Dispersed Elements in Soils. 2nd ed. Consultants Bureau. New York
- WHITTEMORE, D. O., 1988. Bromide as a tracer in ground-water studies: geochemistry and analytical determination. In: Proceedings of the Ground Water Geochemistry Conference, Feb 16–18., Denver 339–360. CO National Water Well Assoc.

Érkezett: 2001. május 8.