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Alfréd Rényi Institute of Mathematics

Hungarian Academy of Sciences, Budapest, Hungary

and

Department of Computer Science

Simon Fraser University, Burnaby, B.C.

tardos@renyi.hu

Abstract

The local chromatic number of a graph G, as introduced in [4], is the minimum integer
k such that G admits a proper coloring (with an arbitrary number of colors) in which the
neighborhood of each vertex uses less than k colors. In [17] a connection of the local chromatic
number to topological properties of (a box complex of) the graph was established and in [18]
it was shown that a topological condition implying the usual chromatic number being at
least four has a stronger consequence for the local chromatic number being at least four.
As a consequence one obtains a generalization of the following theorem of Youngs [19]: If a
quadrangulation of the projective plane is not bipartite it has chromatic number four. The
generalization states that in this case the local chromatic number is also four.

Both papers [1] and [13] generalize Youngs’ result to arbitrary non-orientable surfaces
replacing the condition of the graph being not bipartite by a more technical condition of
an odd quadrangulation. This paper investigates when these general results are true for the
local chromatic number instead of the chromatic number. Surprisingly, we find out that
(unlike in the case of the chromatic number) this depends on the genus of the surface. For
the non-orientable surfaces of genus at most four, the local chromatic number of any odd
quadrangulation is at least four, but this is not true for non-orientable surfaces of genus 5
or higher.
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We also prove that face subdivisions of odd quadrangulations and Fisk triangulations of
arbitrary surfaces exhibit the same behavior for the local chromatic number as they do for
the usual chromatic number.

1 Introduction

We start by defining the terms in the title. By a surface we mean a compact connected 2-
manifold without boundary. A quadrangulation of a surface is a loopless graph on a surface
with all faces being quadrilaterals. We allow parallel edges and quadrilateral faces with some
of its vertices or even edges coinciding. Given an arbitrary orientation of all faces we can count
the edges that break consistency of the orientation of the surface. (We say that consistency
is not broken at some edge if, considering the orientation of a face as a closed walk along its
boundary, we traverse the edge in opposite directions when considering the faces at its two
sides.) Note that reversing the orientation of a face changes the status of its four edges (except
for the edges appearing twice on the boundary) and thus the parity of the number of edges
breaking consistency does not change. We call a quadrangulation even or odd depending on
this parity. By the previous remark, the parity of the quadrangulation is determined by the
quadrangulation itself and is independent of the actual orientation of the faces.

Note that every quadrangulation of an orientable surface is even as all faces can be oriented
consistently.

We denote by χ(G) the chromatic number of the graph G. The following result was proved
independently by Archdeacon et al. [1] and Mohar and Seymour [13].

Theorem 1.1 ([1, 13]) For an odd quadrangulation G of a surface we have χ(G) ≥ 4.

The theorem only applies to non-orientable surfaces as orientable ones have no odd quad-
rangulations. Youngs [19] has established this earlier for the case of the projective plane. This
result is simpler to state, since being even and being bipartite is equivalent for quadrangulations
of the projective plane and since every quadrangulation of the projective plane is 4-colorable.

Theorem 1.2 ([19]) The chromatic number of a quadrangulation of the projective plane is
either two or four.

In this paper we generalize the above results for the local chromatic number. The local
chromatic number of a graph is defined in [4] as the minimum number of colors that must
appear within distance 1 of a vertex. For the formal definition, let N(v) = NG(v) denote the
neighborhood of a vertex v in a graph G, that is, N(v) is the set of vertices adjacent to v. For an
integer k ≥ 1, we call a proper vertex-coloring c of a graph G a local k-coloring if |c(N(v))| ≤ k−1
for every vertex v of G. The local chromatic number ψ(G) of G is the smallest k such that G
has a local k-coloring.

The −1 term comes traditionally from considering “closed neighborhoods” N(v) ∪ {v} and
results in a simpler form of the relations with other coloring parameters, like the trivial bound
ψ(G) ≤ χ(G).

More on the local chromatic number, including examples of graphs with arbitrarily high
chromatic number and local chromatic number 3, can be found in [4], see also [17, 18].
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First we state the generalization of Youngs’ theorem. This result was hinted in Remark 3 of
[18], here we give a full proof for the sake of completeness in the next section.

Theorem 1.3 The local chromatic number of a quadrangulation of the projective plane is two
or four.

Note that the non-orientable surfaces are determined by a positive invariant, their genus.
The projective plane has genus one. Next we generalize Theorem 1.3 for higher genus surfaces.
This is the main result of the present paper. Surprisingly, and unlike in the case of the chromatic
number, the situation depends on the genus of the surface.

Theorem 1.4 (i) If G is an odd quadrangulation of a (non-orientable) surface of genus at most
four, then ψ(G) ≥ 4.

(ii) Every non-orientable surface of genus at least five admits an odd quadrangulation that has
a local 3-coloring using six colors.

We remark that at least five colors are needed to locally 3-color odd quadrangulations or in
fact any graph with chromatic number higher than 3. This is a consequence of the fact that
any local 3-coloring with four colors can easily be transformed into a 3-coloring by changing the
color of each vertex colored 4 to the color 1, 2, or 3, which is not used in its neighborhood.

If we insist on five colors, the threshold lies higher:

Theorem 1.5 (i) If G is an odd quadrangulation of a (non-orientable) surface of genus at most
six, then G has no local 3-coloring with at most five colors.

(ii) Every non-orientable surface of genus at least seven admits an odd quadrangulation that
has a local 3-coloring using five colors.

For (some special cases of) Theorem 1.4(i) we give several proofs because they use very
different approaches. In Section 2 we present the argument hinted in [18] for Theorem 1.3, i.e.,
for the projective plane. It is based on the concept of the hom space of a graph, which is just
a slightly different version of the graph complexes known as box complexes, see [10], or those
more generally called hom complexes, see (the cited second edition of) [9]. In Section 3 we
give an algebraic proof for the non-existence of odd locally 3-chromatic quadrangulations that
works for both the projective plane and the Klein bottle. In Section 4 we give a combinatorial
argument that works for all surfaces of genus at most four, and henceforth proves Theorem 1.4(i).
The results provided in Sections 2 and 3 follow also from the result of Section 4. But both of
the former sections indicate connections between different concepts that are not shown by the
combinatorial argument in Section 4. In Section 2 we use a general connection between any
surface and the hom space of its quadrangulation. In Section 3 we show how an algebraic question
about so-called semi-free groups is related to our graph theoretic problems. As a consequence
of this connection and the existence of the quadrangulations claimed in Theorem 1.4 we can
partially answer the algebraic question.

The locally 3-chromatic quadrangulations claimed in Theorems 1.4(ii) and 1.5(ii) are con-
structed in Section 5. These constructions are motivated by the argument in the preceding
section. In Section 6 we prove Theorem 1.5(i).
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By inserting a vertex in each face (and joining it to the vertices on the boundary of that
face) of an odd quadrangulation we obtain a triangulation that exhibits similar behavior for the
chromatic number: any subgraph contained in a contractible part of the surface is 3-colorable,
but the chromatic number of the whole graph is at least five. It is shown in Section 7 that the
same holds for the local chromatic number. When coloring graphs on surfaces, another family
of triangulations exhibits unusual behavior [14]; these are triangulations in which all vertices
except two have even degree, and the two vertices of odd degree are adjacent. Fisk [5] proved
that such triangulations cannot be 4-colored, and we show that the same holds for the local
chromatic number. Finally, Section 8 contains related remarks and observations.

2 Hom spaces

In this section we prove Theorem 1.3 for which only a very rough argument was presented in [18].
We shall briefly introduce the necessary notation for hom spaces, but the reader unfamiliar with
these concepts may consult [17] to find precise definitions and to see hom spaces in a broader
context. We start with the definition of medial graphs that will be used in the sequel.

Let G be a graph on a surface S. We define the medial graph M(G), also embedded in S,
as follows. The vertices of M(G) correspond to edges of G. For an edge e of G we choose an
interior point ve of e as the corresponding vertex of M(G). For each vertex x of G we consider
the edges of G incident to x and place a cycle on the corresponding vertices of M(G) as follows.
Let e1, . . . , ed be the edges incident to x listed in the cyclic order these edges leave x. For
1 ≤ i < d we connect vei

and vei+1
with an edge of M(G) drawn inside the face of G bounded

by ei and ei+1. We connect ved
and ve1

the same way.
Notice that M(G) is a 4-regular graph embedded in S that has two types of faces. The

star faces are the ones containing a vertex x of G and bounded by the cycle we introduced on
the vertices of M(G) corresponding to the edges of G incident to x (the star of x). The cycle
faces are the remaining faces of M(G): each is contained in a single face of G and its vertices
correspond to the edges on the corresponding facial walk.

The proof of Theorem 1.3 is based on the notion of the hom space H(G) defined for any
finite graph G. For the precise definition of this and related concepts see, e.g., [17]. Here we
note that H(G) is a cell complex, whose cells correspond to complete bipartite subgraphs of G.
More precisely, the cells are of the form A ⊎ B, where A and B are non-empty, disjoint sets of
vertices, such that every vertex of A is connected in G to every vertex of B.1 The vertices of
H(G) are of the form {x} ⊎ {y}, where xy is an edge of G. In particular, every edge xy gives
rise to two vertices, {x} ⊎ {y} and {y} ⊎ {x}, in H(G). The map σ that switches A ⊎ B with
B ⊎ A is a continuous involution that makes H(G) into a Z2-space. (For the notion and basic
properties of Z2-spaces we also refer to [9].)

Next we show an interesting topological connection between a surface and the hom space of
its quadrangulation from which the proof of Theorem 1.3 follows easily.

Let G be a quadrangulation of a surface S. Let α be a map that maps the vertex ve of M(G)
to the class2 of {x} ⊎ {y} in H(G)/σ where e = xy. Now α naturally extends to the edges of

1We use the notation A⊎B for the ordered pair containing A and B as it is customary in this context, cf. [9].
Alternatively, one can view A ⊎ B as the set (A × {0}) ∪ (B × {1}) ⊆ V (G) × {0, 1}.

2Here we view H(G)/σ as the quotient space obtained by identifying p and σ(p) for each point p in the cell
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M(G) (mapping them to 1-cells connecting the corresponding vertices) and also to the faces of
M(G) as follows. The image of the cycle face of M(G) corresponding to the face xyzt of G will
be the class of the cell {x, z} ⊎ {y, t}. The image of the star face containing the vertex v of G
is inside the class of the cell {v} ⊎N(v). This makes α a continuous map α : S → H(G)/σ.

The map α lifts to a map β : T → H(G) where T is a double cover of S. (See [8] for
more details about covering spaces of graphs and surfaces.) Let us observe that the double
cover restricted to the graph G of the quadrangulation is isomorphic to the categorical product
G × K2 (sometimes called the Kronecker product or the direct product). Let us consider the
involution on T interchanging the pairs of points with the same image in S. This makes T into
a Z2-space and β a Z2-map. Notice that T is the union of two disjoint copies of S if and only if
G is bipartite.

Remark 1. Notice that the parity of the length of a cycle of a quadrangulation of a surface is
determined by the homotopy type of the cycle as a surface cycle. These parities for the different
homotopy types determine the double cover T as follows: an even cycle on S lifts to two cycles
on T , while an odd cycle on S lifts to a single cycle on T .

If we assume that all 4-cycles in G are faces of the quadrangulation and G is not a complete
bipartite graph K2,i (i ≤ 3), then H(G) and T are homotopy equivalent, with β providing one
direction of the homotopy equivalence. The exceptional graphs K2,i for i ≥ 1 quadrangulate
the sphere and for i ≤ 3 all 4-cycles are faces. To see the homotopy equivalence consider the
maximal cells of H(G)—these correspond to maximal complete bipartite subgraphs of G, which
are the face cycles and the stars of vertices. It is not hard to see that G has no vertex of degree
less than 3. If G is 3-regular, T and H(G) are actually homeomorphic and β can be chosen
to be a homeomorphism. Two (d − 1)-dimensional simplicial cells of H(G) correspond to the
star of a degree d vertex of G, so if G is not 3-regular, T and H(G) are not homeomorphic. It
is easy to see though that only the edges of a d-cycle on the boundary of these cells appear in
other cells, therefore the higher dimensional cell can be collapsed to a d-gon without changing
the homotopy type. After this collapse of every higher dimensional cell we obtain a complex
homeomorphic to T . ♦

Proof of Theorem 1.3: The upper bound 4 follows from ψ(G) ≤ χ(G) and from the easy
part of Youngs’ theorem (that every quadrangulation of the projective plane is 4-colorable).
The nontrivial part of the result is establishing that if G is not bipartite it must have no local
3-coloring.

Consider the map β : T → H(G) constructed above. Here T is the double cover of the
projective plane and it is not the union of two disjoint copies of that plane as G is not bipartite.
The only possibility left for T is therefore the sphere, T = S

2. The existence of a Z2-map
β : S

2 → H(G) implies that ψ(G) ≥ 4, as proved in [18]. �

Remark 2: Among the graphs investigated in [17, 18] 4-chromatic generalized Mycielski
graphs are known to quadrangulate the projective plane, see [6], while deleting some edges from
4-chromatic Schrijver graphs one obtains quadrangulations of the Klein bottle. In fact, it was the
investigation of the local chromatic number of the latter graphs that led us to the proof presented
in the next section and to consider the local chromatic number of surface quadrangulations in
general. ♦

complex H(G).
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3 Semi-free groups

In this section we present an intermediate step toward Theorem 1.4(i). This algebraic approach
proves the statement for the non-orientable surfaces of genus one or two, i.e., for the projective
plane and the Klein bottle.

Let H be a graph. The semi-free group ΓH is the following group given by generators and
relations. The generators are the vertices of H while the relations are xy = yx for the edges
xy of H. If E(H) = ∅ we obtain the free group, for a complete graph we obtain a free Abelian
group. Thus, one can consider semi-free groups as a common generalization of free and free
Abelian groups.

Let G be a quadrangulation of a surface S and let c be a local 3-coloring of G. Our goal is
to prove a lower bound on the genus of S if the quadrangulation is odd.

Let m be the number of colors used by the coloring c and assume that these are the elements
of [m] = {1, . . . ,m}. Consider the Kneser graph H = KG(m, 2) and the semi-free group Γ = ΓH .
The generators of Γ are the vertices of H, which are the 2-element subsets of [m]. (Recall that
two such vertices are adjacent in KG(m, 2) iff they represent disjoint subsets.) For i, j ∈ [m] we
introduce the notation

xi,j =







ε if i = j
{i, j} if i < j
{i, j}−1 if j < i.

where ε is the identity element of Γ and {i, j} is a generator of Γ if i 6= j. These group elements
clearly satisfy xi,j = x−1

j,i for any i, j ∈ [m] and by the definition of the Kneser graph we have
xi,jxk,l = xk,lxi,j whenever {i, j} and {k, l} are disjoint. Moreover, we have

xi,jxj,k = xi,k whenever |{i, j, k}| ≤ 2. (1)

Consider the medial graph M(G) of G. (See the definition in Section 2.) We consider
the edges of M(G) as oriented edges with both orientations of each (unoriented) edge being
present. We label these oriented edges by elements of the group Γ. Consider the oriented edge
w = (ve, vf ), where e and f are edges of G. Notice that e = ab and f = ad must be adjacent
edges. In this case we label the oriented edge w by l(w) = xc(b),c(d) ∈ Γ. We let the label l(W )
of a walk W on M(G) be the product of the labels along the walk.

Lemma 3.1 For the opposite orientations w and w′ of the same edge we have l(w′) = l(w)−1.
For a walk W around a face of M(G) we have l(W ) = ε.

Proof. The first statement is trivial. A walk W around a cycle face of M(G) consists of
four edges. See Figure 1 for this case. Let the vertices around the face of G containing W be
a0, a1, a2, a3, connected by the edges ei = aiai+1 (where all indices are taken modulo 4). The walk
W consists of the oriented edges wi = (ei, ei+1) (0 ≤ i ≤ 3) and we have l(wi) = xc(ai),c(ai+2).

Here l(w1) = xc(a1),c(a3) = x−1
c(a3),c(a1) = l(w3)

−1. Similarly, we have l(w0) = l(w2)
−1. The

labels l(w0) = xc(a0),c(a2) and l(w1) = xc(a1),c(a3) commute since if the sets {c(a0), c(a2)} and
{c(a1), c(a3)} were not disjoint, c would not be a proper coloring. Consequently, l(W ) = ε.

Let us now consider the walk W around a star face of M(G) as on Figure 2. Let a be the
vertex of G inside this face and b1, . . . , bd the neighbors of a in this order. We have

l(W ) = xc(b1),c(b2)xc(b2),c(b3) . . . xc(bd−1),c(bd)xc(bd),c(b1).
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a0 a1

a2a3

e0

e1

e2

e3

w0

w1
w2

w3

Figure 1: A cycle face in M(G)

As c is a local 3-coloring there are at most 2 distinct ones among the colors c(bi). So Equation (1)
applies and simplifies the above expression to l(W ) = xc(b1),c(b1) = ε. �

b1

b2
b3

e1

e2

e
d

b
d

a

e3

Figure 2: A star face in M(G)

Let us fix a vertex ve0
of M(G) as the base point of S. If two closed walks on M(G) starting

at the base point are homotopic on S, then one can be transformed to the other by a sequence
of steps, where each step is the introduction or removal of a closed sub-walk which is either a
facial walk or an edge traversed both ways. By our last lemma these steps do not alter the label
of the walk, so the label is determined by the homotopy type. As any homotopy type can be
represented by a closed walk on M(G), we have a map α : π1(S) → Γ from the fundamental
group π1(S) of S that gives as its value to each element of the fundamental group the label of
the walks in the corresponding homotopy class. Clearly, this is a homomorphism.

We shall need another property of products in the semi-free group ΓKG(m,2).
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Lemma 3.2 Let c1, . . . , ct be colors in [m], where ci+1 6= ci for i = 1, . . . , t − 1, and c1 6= ct.
Let α = xct,c2xc1,c3 . . . xct−2,ctxct−1,c1. If t is odd, then α 6= ε.

Proof. Let us assume the lemma is false and consider a counterexample where a minimum
number among the factors Xi = xci−1,ci+1

are non-identity. (Here and in the rest of the proof,
all indices are understood modulo t.) There must be such non-identity factors as otherwise we
would have ci−1 = ci+1 for all i and therefore (as t is odd) that all the ci are the same.

Note that each factor Xi is the identity or a generator or the inverse of a generator in
the semi-free group Γ. We use the observation of Baudisch [2] that if a nontrivial product of
generators and their inverses in a semi-free group is the identity, then one finds a generator and
its inverse in the product such that they commute with all factors separating them (so they
cancel each other). We may therefore choose indices 1 ≤ i < j ≤ t with Xi 6= ε, Xj = X−1

i

and Xi commuting with all Xs for i < s < j. We choose j so that Xj is the first occurrence of
X−1

i after the factor Xi. We have cs = ci+1 for all i < s < j with s− i odd, because otherwise
for the smallest s breaking this rule either Xs−1 would not commute with Xi or Xs−1 = X−1

i

would hold contradicting the minimality of j. For i < s < j with s− i even we have cs 6= ci+1,
because adjacent colors must differ. This implies that j− i is even as cj−1 = ci+1. Furthermore,
cs 6= ci−1 for i < s < j as otherwise Xs−1 and Xi would not commute for the first such s.

Let us modify now the colors cs for i < s < j, s−i odd to c′s = ci−1 without changing the other
colors. This does not create equal neighboring colors and changes only two factors: X ′

i = X ′
j = ε.

We obtain another counterexample to the claim this way, and this counterexample has a smaller
number of non-identity factors. This contradicts our choice and by this contradiction proves the
lemma. �

Lemma 3.3 If α(y) = ε for some class y in the fundamental group of S, then any walk on G
representing y has even length.

Proof. Assume for contradiction that α(y) = ε but the length t of a closed walk W representing
y is odd. Note that here we have the non-standard view of the walk W as “starting” at the
base point ve0

that happens to be in the middle of the edge e0 of G. However, this means that
the walk W uses at the beginning one half of the edge e0, and traverses the other half when
coming back at the end. To apply the definition of α, we have to find first a walk W ′ on M(G)
homotopic to W . Let a1, . . . , at be the vertices of G along W . Since W starts and ends at the
base point, we have e0 = a1at. Let ei be the edge of G connecting ai and ai+1 for 1 ≤ i < t. We
construct the walk W ′ on M(G) as follows. It starts at the base point ve0

and then it passes
through all the points vei

for 1 ≤ i < t in order before returning to the base point. We let the
part Wi of W ′ between vei−1

and vei
follow the boundary of the star face of M(G) containing

ai for 1 ≤ i ≤ t. The indices here and in the rest of this proof are understood modulo t.
Let ci = c(ai). As in the proof of Lemma 3.1 we can use the fact that c is a local 3-coloring

and Equation (1) to conclude that l(Wi) = xci−1,ci+1
. We thus have

α(y) = l(W ′) =

t
∏

i=1

l(Wi) = xct,c2xc1,c3 . . . xct−2,ctxct−1,c1.

Lemma 3.2 shows that a product of this form with t odd is never the identity if ci 6= ci+1 for
all 1 ≤ i ≤ t. Note that neighboring colors ci and ci+1 are distinct in our case as c is a proper
coloring, so this completes the proof. �
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Remark 3. One can try to simplify the argument presented in this section by letting all pairs
of generators commute in Γ, i.e., considering a commutative factor of Γ. The argument breaks
down because Lemma 3.3 does not hold in this case. Assume G has a cycle of length 9 with the
vertices along the cycle colored 2, 1, 2, 3, 1, 3, 4, 1, 4. Lemma 3.3 applies and α(y) 6= ε in Γ for
the class y containing this cycle. But α(y) vanishes in any commutative factor of Γ. ♦

Theorem 3.4 Let g be a positive integer and assume the equality z2
1z

2
2 . . . z

2
g = ε implies

z1z2 . . . zg = ε in the semi-free group ΓKG(m,2), where, as before, ε denotes the identity ele-
ment of the group. Then no odd quadrangulation of a non-orientable surface of genus g has a
local 3-coloring using at most m colors.

Proof. Let S be the non-orientable surface of genus g. The fundamental group π1(S) can be
presented as < y1, . . . , yg | y2

1y
2
2 . . . y

2
g = 1 >. (Cf., e.g., [8] for more details about fundamental

groups of surfaces.) Assume S has a quadrangulation G with a local 3-coloring using m colors.
We need to prove that this quadrangulation is even. With the homomorphism α : π1(S) →
ΓKG(m,2) defined above we let zi = α(yi) for 1 ≤ i ≤ g. We clearly have z2

1z
2
2 . . . z

2
g = ε. By our

assumption this implies z1z2 . . . zg = ε, so α(y) = ε for y = y1y2 . . . yg.
The surface S can be obtained by placing g crosscaps on the sphere and yi can be chosen to

be the class of a loop going only through the ith crosscap, so y will be the class of a loop going
through each crosscap once.

If we cut S along a simple cycle in the homotopy class y we obtain an orientable surface. If
y can be represented as a cycle C of G, then one can cut S along C and consistently orient the
obtained surface and in it all the faces of the quadrangulation G. With this orientation exactly
the edges of C break the consistency of the orientation and thus the parity of the quadrangulation
G is the same as the parity of the length of the cycle C.

In general we cannot assume the existence of a simple cycle in G representing the class y
but we can always represent y by a closed walk W on G. We claim that the length of the walk
has the same parity as the quadrangulation G. To see this one can refine the quadrangulation
without changing its parity or that of any cycle till one finds a simple cycle homotopic to W or
alternatively one can prove that there is an orientation of the faces of G where the consistency
is broken at exactly the edges traversed an odd number of times by W .

By Lemma 3.3, the length of W must be even because α(y) = ε. This shows that G is an
even quadrangulation and completes the proof of the theorem. �

We proved Theorem 3.4 to find another proof for Theorem 1.3 that extends also to higher
genus surfaces.

The non-existence of an odd, locally 3-colorable quadrangulation of the projective plane
follows now from the fact that x2 = ε implies x = ε in every semi-free group. This statement,
and more generally that semi-free groups have no torsion elements, was proved by Baudisch [2].

In another paper [3], Baudisch proved that any two non-commuting elements of a semi-free
group freely generate a free group of rank 2. Thus x2y2 = ε implies that x and y commute.
So we have (xy)2 = x2y2 = ε and by the earlier result xy = ε. This establishes that the Klein
bottle (the non-orientable surface of genus 2) has no odd, locally 3-colorable quadrangulations.

To apply Theorem 3.4 to the next surface we would need that x2y2z2 = ε implies xyz = ε
in semi-free groups, but we were not able to prove this.

9



We can turn Theorem 3.4 around and use its counterpositive form. From the odd quadran-
gulation claimed in Theorem 1.4(ii) we conclude that there are elements z1, z2, z3, z4 and z5 in
the semi-free group ΓKG(6,2) satisfying z2

1z
2
2z

2
3z

2
4z

2
5 = ε and z1z2z3z4z5 6= ε. The construction in

Section 5 gives rise to a description of these elements, see Table 1. We found these elements by
“reverse engineering”. First, we traced out standard generators of the fundamental group (cer-
tain cycles that bound Möbius strips) and calculated the elements of the semi-free group they
are mapped to by the homomorphism α. Finally, we played around with those group elements
to make their presentation shorter. Note that as a result of the properties of the construction
our example uses only nine of the fifteen generators of ΓKG(6,2), so our example actually lives in
the semi-free group ΓC2

3
, where C2

3 is the Cartesian square of the 3-cycle.

z1 = a25a14a
−1
24 a

−1
15

z2 = a15a24a
−1
14 a16a

−1
36 a

−1
15 a35a14a

−1
24 a

−1
15

z3 = a15a24a
−1
35 a36a

−1
14 a

−1
26

z4 = a26a14a
−1
36 a

−1
24 a34a

−1
14

z5 = a14a
−1
34 a36a24a

−1
16 a15a

−1
25 a

−1
14

z2
1z

2
2z

2
3z

2
4z

2
5 = ε

z1z2z3z4z5 = a25a16a
−1
15 a14a

−1
16 a15a

−1
25 a

−1
14 6= ε

Table 1. Five elements in the semi-free group ΓKG(6,2) showing peculiar behavior.
The generator corresponding to the vertex {i, j} of KG(6, 2) is denoted by aij.

From the quadrangulation, whose existence is claimed in Theorem 1.5(ii), one can construct
a similar list of 7 elements in the semi-free group corresponding to KG(5, 2), that is, the Petersen
graph. See Table 2.

w1 = b23b
−1
13 b

−1
24 b14

w2 = b−1
14 b13b24b35b

−1
25

w3 = b25b
−1
24 b

−1
35 b34

w4 = b−1
34 b35b24b

−1
34 b

−1
13 b

−1
35 b15b

−1
23 b

−1
35 b34

w5 = b−1
34 b35b

−1
15 b23b12b34

w6 = b−1
34 b

−1
12 b

−1
23 b15b

−1
45

w7 = b23b45a
−1
15 b34b13b

−1
23

w2
1w

2
2w

2
3w

2
4w

2
5w

2
6w

2
7 = ε

w1w2w3w4w5w6w7 = b23b35b
−1
34 b

−1
13 b

−1
35 b34b13b

−1
23 6= ε

Table 2. Seven elements in the semi-free group ΓKG(5,2) showing peculiar behavior.
The generator corresponding to the vertex {i, j} of KG(5, 2) is denoted by bij .
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4 A combinatorial approach

In this section we present the most elementary and, at the same time, at least by our current
knowledge, the most effective approach toward proving that certain quadrangulations have no
local 3-colorings. It is based on examining properties of minimal counterexamples.

Let us call a triple (G,S, c) a suitable quadrangulation, if G is an odd quadrangulation of the
(non-orientable) surface S and c is a local 3-coloring of G. A suitable quadrangulation (G,S, c)
is called a minimal quadrangulation if no surface of genus less than that of S has a suitable
quadrangulation and S has no suitable quadrangulation with fewer faces.

Lemma 4.1 If (G,S, c) is a minimal quadrangulation and F is a face of this quadrangulation,
then F has four distinct vertices. Moreover, these vertices receive two or four distinct colors in
the local 3-coloring. The neighbors of any vertex in G receive exactly two distinct colors.

Proof. As c is a proper coloring, we have no loops, so only diagonally opposite vertices of F
can coincide. Let us assume that the same vertex x appears at both endpoints of the diagonal
d of the face F . Then the two edges of F connecting x to another vertex of F are parallel edges
or they coincide. Let us cut the face F out from S and close S up by identifying these pairs of
parallel edges of F or by removing the edge if the two neighboring sides of F coincided. Let S′

be the space obtained from S this way and G′ be the resulting graph on S′. As we only identified
parallel edges, c is a local 3-coloring of G′. Considering any orientation of the faces of G and
the same orientation of the faces of G′ one sees that an edge of G′ obtained by identification
breaks consistency of this orientation if and only if exactly one of the corresponding two edges
in G does so, other edges of G′ break consistency of the orientation in G′ if and only if they do
so in G, while edges removed from G did not break consistency there. Therefore, since G is an
odd quadrangulation, G′ must be odd, too. Note, however, that S′ is not necessarily a surface
as the neighborhood of x can be strange (see below), so for the previous sentence to make sense
we have to allow a somewhat extended definition of parity of quadrangulations.

In the following case analysis we always find a quadrangulation showing that (G,S, c) is not
minimal. This is done in slightly different ways depending on the topology of the diagonal d.

In the simplest case d is a one-sided simple closed curve on S (which is clearly non-separating).
In this case S′ is a surface. (To see this, it is enough to check how the faces incident to x are
arranged around this point.) So (G′, S′, c) is a suitable quadrangulation of S′. The surface S′ is
non-orientable as it has an odd quadrangulation. Its Euler characteristic is one more than that
of S, as G′ has one fewer face and two fewer edges, and it has the same number of vertices as
G. So the genus of S′ is one less than that of S contradicting the minimality of (G,S, c).

Our second case is when a pair of coinciding neighboring edges got removed from G. This
makes d a (trivial) separating cycle on S, S′ a surface homeomorphic to S and (S′, G′, c) a
suitable quadrangulation contradicting the minimality of (S,G, c). We mention here that if two
pairs of neighboring edges of F got removed we would end up with S′ empty, but this comes
only from the path P3 as an even quadrangulation of the 2-sphere so it is is not possible.

Next we consider the case that d is separating, but no edge of F got removed. Now S′ is
the union of two surfaces having only x as their common point. The graph G′ quadrangulates
both surfaces. As the total number of edges breaking consistency of orientation in G′ is odd, the
subgraph G′′ of G′ quadrangulating one of these surfaces S′′ is an odd quadrangulation. Clearly,
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S′′ is a non-orientable surface that has an odd quadrangulation G′′ and G′′ has fewer faces than
G but it also inherits a local 3-coloring. As (G,S, c) is a minimal quadrangulation, the genus
of S′′ must be strictly larger than that of S. But this is impossible as the sum of the Euler
characteristics of the two surfaces S′ consists of is exactly 2 more than the Euler characteristic
of S, and the other surface in S′ can contribute at most 2 to the sum.

Our remaining last case is when the diagonal d is a non-separating 2-sided cycle on S. Here
S′ is a “pinched surface”, it can be made into a surface by replacing x with two points. Let S′′

be the surface so obtained and let G′′ be the quadrangulation of S′′ obtained in this process.
The Euler characteristic of S′′ is two more than that of S and its quadrangulation G′′ is odd
and has a local 3-coloring, thus (G,S, c) is not minimal in this case either. This completes our
proof that F must have four distinct vertices.

Let the vertices along the facial cycle around F be x, y, z and t. As c is a proper coloring,
only the colors of x and z, or the colors of y and t can coincide. In order to prove that these
vertices cannot have exactly 3 distinct colors assume for a contradiction that c(x) = c(z) and
c(y) 6= c(t). We do as above: we cut F out from S and close S up by identifying x with z and
also the edge xy with the edge zy and the edge xt with zt. This time we obtain a surface S′

homeomorphic to S. We also obtain a quadrangulation G′ of S′ with one fewer faces and just as
above, it must be an odd quadrangulation. As we identified vertices with equal color, the graph
G′ inherits a proper coloring from c. We claim it is a local 3-coloring. This is because both x
and z had y and t in their neighborhoods, so both neighborhoods must contain only vertices
of color c(y) and c(t). Therefore this is also true for the vertex obtained by identifying x and
z. The contradiction with the minimality of G shows that all faces of G must have two or four
distinct colors at their vertices.

Finally, we have to derive a contradiction from the assumption that the neighborhood of a
vertex x in G is monochromatic. Let F be a face incident to x, let x, y, z and t be the vertices
along its facial walk. As y and t are neighbors of x we must have c(y) = c(t). By the earlier
part of this lemma this implies that F must have only two colors, so c(x) = c(z). We apply the
same procedure again: cut F out from S, and close S up by identifying the edge xy with zy and
the edge xt with zt. We obtain a quadrangulation G′ of a surface S′ with one fewer faces than
in G. As before, G′ is an odd quadrangulation, S′ is homeomorphic with S, and c gives rise to a
local 3-coloring of G′ as all neighbors of the common image of x and z have colors that appear
in the G-neighborhood of z. The contradiction with the minimality of (G,S, c) completes the
proof of the lemma. �

We call a face of a minimal quadrangulation bichromatic or four-chromatic depending on the
number of distinct colors its vertices receive.

Lemma 4.2 Two four-chromatic faces of a minimal quadrangulation cannot share an edge.

Proof. Let (G,S, c) be a minimal quadrangulation and let the vertices along the facial cycles of
the faces on the edge e = xy be x, y, z, t and x, y, z′, t′. If both of these faces are four-chromatic,
then c(z) = c(z′) as otherwise the vertex y had three different colors in its neighborhood.
Similarly, c(t) = c(t′). Let us obtain G′ from G by removing the edge e and inserting a new edge
connecting z and t′. Clearly, G′ is also an odd quadrangulation of S with just as many faces
as G and c is a local 3-coloring of G′. Thus (G′, S, c) is a minimal quadrangulation. Both faces
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incident to the new zt′ edge have three distinct colors. This contradicts Lemma 4.1 and proves
the present lemma. �

We call a vertex of a minimal quadrangulation (G,S, c) regular if its degree is 4. The rest
of the vertices of G are called irregular. We define the auxiliary graph H on the vertex set
V (H) = V (G) by connecting diagonally opposite vertices of the bichromatic faces of G. Note
that in the auxiliary graph only vertices of equal color are connected.

Lemma 4.3 In a minimal quadrangulation each vertex has degree at least four. In the auxiliary
graph regular vertices of the quadrangulation have degree 2, irregular vertices have degree at least
3. In particular, vertices of degree 5 in G have degree 3 in the auxiliary graph.

Proof. Let x be a vertex of a minimal quadrangulation (G,S, c). Its degree dG(x) in G is
the total number of faces incident to x, while its degree dH(x) in the auxiliary graph H is the
number of bichromatic faces incident to x. By Lemma 4.2 at least half of the faces incident
to x are bichromatic. Four-chromatic faces correspond to changes in color as we consider the
neighbors of x in their cyclic order. By Lemma 4.1 there must be such a change, and therefore
at least two four-chromatic faces. The statements of this lemma follow. �

Lemma 4.4 If a component C of the auxiliary graph H of a minimal quadrangulation (G,S, c)
is a cycle, then G has at least two vertices of degree at least 8 that are adjacent in G to a vertex
of C.

Proof. Clearly, all vertices of C are identically colored and by Lemma 4.3 they are all regular
vertices.

A color is said to match a vertex x of C if it is the color c(z) of a vertex z that is diagonally
opposite from x in a four-chromatic face of G. Each vertex of C is regular, so each is incident
to exactly two four-chromatic faces, one on either side of C.

We claim that the same colors match every vertex of C. To see this it is enough to prove that
the same colors match neighboring vertices along C. Let x and y be neighbors along C. As they
are connected in H, they appear as diagonally opposite vertices of a bichromatic face F1 of G.
Consider a color c(z) that matches x with z diagonally opposite from x in the four-chromatic
face F2. As x is a regular vertex the bichromatic and four-chromatic faces F1 and F2, both
incident to x, must share an edge xt. Now ty is an edge of F1 and as y is a regular vertex,
the other face F3 incident to this edge must be four-chromatic. Let u be the vertex diagonally
opposite from y in F3. Clearly, c(u) matches y. We finish the proof of the claim by observing
that the neighborhood of t in G contains x, z and u, so these vertices cannot have all distinct
colors. Since F2 and F3 are four-chromatic faces, we have c(z) 6= c(x) and c(u) 6= c(y) = c(x),
therefore we must have c(z) = c(u).

Let us now fix a color α that matches the vertices of C and consider the coloring c′ of the
vertices of G given by c′(x) = α for x in C and c′(x) = c(x) otherwise.

We claim that c′ is a proper coloring of G. To see this it is enough to consider a vertex
x of C and prove that no neighbor of x in G has color α. As α matches x we have α = c(z)
with z diagonally opposite from x on a four-chromatic face F . The two other vertices on F are
neighbors of x and have distinct colors neither of which is α. As c is a local 3-coloring all other
neighbors of x must also have one of these two colors, so none can have the color α.
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It is easy to see that c′ is not a local 3-coloring. If it were, then (G,S, c′) would also be a
minimal quadrangulation, but any face F that has a vertex x in C and a vertex z with c(z) = α
as diagonally opposite vertices would have 3 distinct colors, contradicting Lemma 4.1.

We thus have a vertex w that has at least 3 different colors under c′ in its neighborhood.
This is only possible if w has some vertex x of C in its neighborhood and also some vertex
x′ of the same color c(x) = c(x′) but outside C. Consider the faces around w. We saw that
four-chromatic faces correspond to alternations in the color of the neighbors of w, so there must
be an even number of those faces. As vertices of C are regular we see that there are two four-
chromatic faces separated by a bichromatic face with two neighbors of w on C. As we must also
have x′ among its neighbors this further means that four-chromatic faces incident to w but not
to its just mentioned two neighbors on C must exist, so we have at least 4 four-chromatic faces
around w. By Lemma 4.2 these faces must be separated by bichromatic faces, so the degree of
w is at least 8.

To finish the proof of this lemma we have to establish that the vertex w found above is not
the only high degree vertex in the neighborhood of C. To see this, notice that w has no neighbor
s with c(s) = α as otherwise it would have no more c′-colors in its neighborhood than c-colors.
But w has a neighbor x in C and one of the two faces incident to the edge xw is a four-chromatic
face F . If z is diagonally opposite from x in F , then β = c(z) matches x and we can define the
coloring c′′ by re-coloring the vertices of C to β. With this we find another high degree vertex
as w, this one also in the neighborhood of C, but not having color β in its neighborhood. �

Proof of Theorem 1.4(i): We shall prove that for a minimal quadrangulation (G,S, c) the
genus g of S is at least 5. The Euler characteristic of the non-orientable surface of genus g
is 2 − g. As G is a quadrangulation, it has half as many faces as edges, so we have 2 − g =
|V (G)| + |E(G)|/2 − |E(G)|. Here 2|E(G)| =

∑

dG(x), where dG(x) is the degree of the vertex
x in G. We have

∑

x∈V (G)

(dG(x) − 4) = 4(g − 2).

We call dG(x)− 4 the excess of the vertex x. Clearly, regular vertices have zero excess, irregular
vertices have positive excess. Note that at this point (or rather at Lemma 4.3) we have re-proved
Theorem 1.3, as for g = 1 the total excess should be −4.

We distribute the excess of irregular vertices to the colors. If a vertex has excess 1 (i.e., it is
of degree 5), we give this excess to its color. If the excess of a vertex is 2 or 3 we give 2 of it to
its color. If the excess of a vertex is at least 4 we still give 2 to its color and we give 1 to each of
the two colors in its neighborhood. (Recall that any vertex has two colors in its neighborhood
by Lemma 4.1.)

We have distributed not more, than the total excess of 4(g−2). We claim that each color that
is used by the coloring c receives at least 2 units of the overall excess. Indeed, the vertices of any
color form one or more components of H. If such a component is a cycle, then by Lemma 4.4 the
corresponding color receives 1 unit of excess from at least two distinct high degree neighboring
vertices. Now consider a non-cycle component. By Lemma 4.3 each vertex in H has degree at
least 2 and degree 3 means that 1 unit of excess is given to the color of this vertex, while degree
4 or higher means that 2 units of excess is given to its color. As no (finite) component can have
a single degree 3 vertex with all other vertices being of degree 2, this proves the claim.
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By Theorem 1.1, G is not colorable by 3 colors. This implies that c uses at least 5 colors as
any graph that has a local 3-coloring with 4 colors can, in fact, be properly colored with 3 colors
(as we have observed after Theorem 1.4). So the total excess of 4(g − 2) is at least 5 · 2 = 10,
and we have g ≥ 5 as claimed. �

5 Constructions

In this section we construct several odd quadrangulations that are locally 3-colorable. In par-
ticular, we prove Theorems 1.4(ii) and 1.5(ii). Our starting points are the following graphs
U(m, r), defined in [4], characterizing local r-colorability.

Let m ≥ r be positive integers and [m] = {1, . . . ,m}. The vertex set V (U(m, r)) consists of
the pairs (i, A) with i ∈ [m], i /∈ A ⊂ [m] and |A| = r − 1. The vertices (i, A) and (j,B) are
adjacent in U(m, r) if and only if i ∈ B and j ∈ A. The natural coloring of U(m, r) gives the
color i to each vertex (i, A). This is a local r-coloring of U(m, r).

By an elementary result proved in [4], a graph is locally r-colorable using at most m colors
if and only if it has a homomorphism to U(m, r).

It will be beneficial to distinguish edges of U(m, 3) appearing in triangles. These triangle
edges connect (i, {j, k}) with (j, {i, k}) for some distinct colors i, j, k ∈ [m].

We let G0 be the subgraph obtained from U(5, 3) by removing all triangle edges. This is an
edge-transitive graph on thirty vertices with sixty edges.

(1,25)

(1,24)

(1,23)

(1,35)

(1,34)

(3,12)(2,13)

(2,14)

(2,15)

(3,14)

(3,15)

(5,23)

(4,23)

Figure 3: The faces around the vertex (1, 23) in G0

We shall describe an embedding of G0 into a surface by listing the faces. The embedding
will have quadrilateral and hexagonal faces. We take all 4-cycles in G0 as quadrilateral faces
and we take the 6-cycles that receive only two distinct colors at the natural coloring as the
hexagonal faces. Notice that each edge of G0 appears in exactly one quadrilateral and exactly
one hexagonal face. To check that these faces give rise to a surface, one has to check that the
faces form a disk neighborhood around each vertex. By transitivity of G0, it suffices to verify
this for any vertex of G0, and we refer to Figure 3 for details (where we use the notation (i, jk)
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to denote the vertex (i, {j, k})).
Altogether, we have fifteen quadrilateral faces and ten hexagonal faces. This makes the

Euler characteristic of the resulting surface S0 equal to 30 − 60 + 25 = −5. Therefore S0 is the
non-orientable surface of genus 7.

(1,24)

(2,14)

(2,16)

(3,15)

(4,25)

(4,15)

(2,15) (5,24)

(1,34)(4,16)

(5,34)

(5,14)

(4,35)

(6,24)

(1,26)

(1,25)

Figure 4: The faces around vertices (1, 24) and (4, 15) in G1

To obtain a similar example on a surface of smaller genus, we start with the graph U(6, 3).
Let G1 be the subgraph of U(6, 3) consisting of the vertices (i,H), with |H ∩ {1, 2, 3}| = 1 (and
hence also |H ∩ {4, 5, 6}| = 1), and with all non-triangle edges connecting these vertices. This
is a vertex-transitive graph on 36 vertices with 72 edges.

We embed G1 into a surface by listing the resulting faces. As in the case of G0, we have
quadrilateral and hexagonal faces; we take all 4-cycles of G1 as quadrilateral faces and the 6-
cycles of G1 that receive two colors at the natural coloring as the hexagonal faces. We have
to check again that these faces form a disk neighborhood around each vertex, and they do (cf.
Figure 4). So these faces form a surface S1. We have 18 quadrilateral faces that receive four
colors at the natural coloring and nine further quadrilateral faces receiving two colors, and six
hexagonal faces. This makes the Euler characteristic of S1 equal to 36−72+33 = −3. Therefore
S1 is the non-orientable surface of genus 5.

To obtain quadrangulations of S0 and S1 from the above examples, we add a main diagonal
to every hexagonal face of G0 and G1. The choice, which of the three main diagonals to add
is arbitrary for each such face. It is simple to check that the resulting graphs G′

0 and G′
1 are

odd quadrangulations of S0 and S1, respectively. Notice that the new diagonal edges of G′
0

are still edges of the original graph U(m, 3) (m = 5 or 6): they are triangle edges that were
removed earlier. This ensures that the natural coloring locally 3-colors G′

0 with 5 colors and
locally 3-colors G′

1 with 6 colors.
We have just given constructions for the first cases of Theorems 1.4(ii) and 1.5(ii). To finish

the proof of these results we need to give examples similar to G′
0 and G′

1 but quadrangulating
higher genus surfaces. For this note that both quadrangulations G′

0 and G′
1 have pairs of faces

sharing a common edge and receiving only two colors. Removing the common edge we get (back)
a hexagonal face. We add a crosscap in the middle of this hexagonal face and quadrangulate
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the resulting surface by adding all three diagonals through the crosscap. The surface we obtain
is of genus one higher than our original surface, the resulting quadrangulation is still odd, and
the same coloring still locally 3-colors the new graph. Note that the resulting graph will again
have neighboring faces receiving only two colors, so this process can be repeated any number of
times finishing the proof of the existence claims.

We remark that here we increase the genus of the surface with adding new edges but no
new vertices to the quadrangulating graphs. This soon results in quadrangulating graphs with
parallel edges. If one prefers quadrangulating graphs without parallel edges one can subdivide
each edge into three edges and each face into a grid of nine faces. This has no effect on the
parity, but it gets rid of any parallel edges. Any local 3-coloring extends to the subdivided graph
using the same set of colors.

We also note that applying the above process exactly once to every hexagonal face of G0 or
G1 we can see that the graph U(5, 3) and an induced subgraph of U(6, 3) are themselves odd
quadrangulations of some surfaces: these are the non-orientable surfaces of genus 17 and 11,
respectively. �

6 Local 3-colorings with five colors

In this section we turn the construction proving Theorem 1.5(ii) around and use it to prove the
impossibility result Theorem 1.5(i).

Let G be a quadrangulation of a surface and assume each edge of G is oriented. We call a
face of G odd if the edges around it are oriented with three in one cyclic direction and one in
reverse. The following simple observation justifies this name.

Lemma 6.1 Let G be a quadrangulation of a surface in which all edges are oriented. Then G
is an odd quadrangulation if and only if the number of odd faces is odd.

Proof. Orient the faces of G in an arbitrary manner and consider the facial walks in this
direction. The parity of all face-edge pairs with the facial walk traversing the edge in reverse
direction is the parity of all faces contributing an odd number – these are the odd faces – and
also it is the parity of all edges contributing an odd number – these are the orientation breaking
edges. �

Proof. (of Theorem 1.5(i)). We consider the graph G0 described in Section 5 as the graph
embedded in the genus 7 non-orientable surface S0. Add all main diagonals in all hexagonal
faces to obtain a drawing of U(5, 3) in S0 where each of these newly added triangular edges cross
two other triangular edges.

Let G be an odd quadrangulation of another surface S and c a local 3-coloring of G with the
five colors {1, 2, 3, 4, 5}. As we have mentioned in the previous section (and as proved in [4]) c
gives rise to a graph-homomorphism f : G→ U(5, 3) such that the natural coloring assigns the
color c(x) to f(x) for every vertex x of G. Let f̄ : S → S0 be a continuous extension of f . First
extend f from vertices to the points along the edges, then realize that the facial walk of any
face of G is mapped trivially to one or two edges of U(5, 3) or within a face of G0 and thus can
easily be extended within the same face.
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We want to use a simple result that relates the genera of two surfaces and the degree3

of a mapping between them. As the degree is defined for oriented surfaces we consider the
orientable double covers S̃0 of S0 and S̃ of S with an arbitrary orientation. Note that the Euler
characteristic of the double cover is twice the Euler characteristic of the base, so the genera of
S and S̃ agree and so do the genera of S0 and S̃0. The map f̄ : S → S0 lifts to f̃ : S̃ → S̃0. Let
d be the degree of this map. Consider a quadrilateral face F of G0 and let nF be the number of
faces of G that f maps onto F . Notice that the graphs G and G0 are also lifted to the orientable
surfaces and the number of faces mapped to either one of the faces above F is also nF . To
obtain the degree d of the map f̃ one has to count these inverse images with appropriate signs
depending on whether f̃ keeps the orientation of the face. In the notation from the footnote,
we have nF = n+

F + n−F and d = n+
F − n−F . Thus the parity of d and nF agree. In particular,

the parity of nF is independent of the choice of the quadrilateral face F . (Note that if using
hexagonal faces of G0, it would be harder to find the parity of the degree as some faces of G
map to parts of those hexagonal faces.) We use Kneser’s formula [12], see also [20, p. 73]. It
states that g − 1 ≥ |d|(g0 − 1) for the genera g > 0 and g0 of S̃ and S̃0 (respectively) if a map
of degree d from S̃ to S̃0 exists. We use the consequence of this formula that d = 0 whenever S
has genus less than 7.

We claim that G is an odd quadrangulation if and only if the degree of f̃ is odd. As 0 is
even, this claim finishes the proof of Theorem 1.5(i).

It is easier to show the claim using Lemma 6.1 considered as an alternative definition of odd
quadrangulations.

To obtain an oriented version of G let us orient an edge xy from x to y if c(x) < c(y). The
odd faces will be exactly those with some colors a < b < d < e around the face in this order.
So G is an odd quadrangulation if and only if

∑

nF is odd, where the summation is for the
quadrilateral faces F of G0 whose verices receive some colors a < b < d < e in this order in the
natural coloring. There are five such faces in G0. This finishes the proof of the claim and with
it the proof of Theorem 1.5(i). �

Note that a proof similar to the above is not possible for Theorem 1.4(i) for two reasons.
First, G1 is too small a part of U(6, 3), there are large parts of U(6, 3) that are not represented
by G1. Second, even if G1 was all (or a large part) of U(6, 3), this line of thought would only
prove the impossibility of a local 3-coloring of an odd quadrangulation of small genus surfaces
using 6 colors, whereas Theorem 1.4(i) states the same for any number of colors.

7 Local 4-colorings of triangulations

If Q is a quadrangulation, we define the face subdivision T (Q) of Q as the triangulation of
the same surface that is obtained from Q by adding a vertex in each face and joining it to
the four vertices on its boundary. The behavior of the local chromatic number exhibited in

3The degree of a map between oriented surfaces is a generalization of the winding number, defined for mappings
between 1-dimensional spheres. If S and S′ are quadrangulated oriented surfaces and φ : S → S′ is a cellular
map, then the degree of φ can be defined as follows. Let F be an arbitrary face in S′ and let n+

F be the number
of faces in S that map onto F preserving the orientation, and let n−

F be the number of faces mapped onto F
reversing their orientation. The value n+

F − n−
F is independent of the choice of F and is called the degree of φ; see

[20].
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odd quadrangulations also shows up in their face subdivisions T (Q). It has been proved by
Hutchinson et al. [7] that in an odd quadrangulation Q of the projective plane, a vertex coloring
with any number of colors gives rise to a four-colored face. This has been generalized to odd
quadrangulations of arbitrary non-orientable surfaces in [1]; for some further extensions see also
[11]. This shows that the face subdivision triangulation T (Q) does not admit a local 4-coloring,
and its local chromatic number is at least 5. Since all added vertices can be colored with the
same color, we also conclude that ψ(T (Q)) ≤ ψ(Q) + 1.

Theorem 7.1 If Q is an odd quadrangulation of a non-orientable surface and T (Q) is its face
subdivision, then the local chromatic number of T (Q) is at least five.

There is another family of triangulations of surfaces that exhibits unusual chromatic behavior
– a simple local condition forces the chromatic number to be at least 5 despite the fact that
these graphs seem to be “almost 3-colorable”. Let T be a triangulation of some surface such
that all its vertices except two have even degree, and the two vertices of odd degree are adjacent.
Fisk [5] proved that T cannot be 4-colored. See [14, Section 8.4] for further details.

Here we observe that the above result of Fisk can be extended to local colorings as well.

Theorem 7.2 Let T be a triangulation of some surface such that all its vertices except two
have even degree. If c is a local 4-coloring of T , and x and y are the two vertices of odd degree,
then c(x) = c(y) and the set of three colors used on the neighbors of x and of y, respectively,
is the same. In particular, if x and y are adjacent, then T has local chromatic number at least
five.

Proof. We may assume that c(V (T )) = {1, 2, . . . ,m}. For every i, j, k ∈ {1, 2, . . . ,m}, let Tijk

be the set of facial triangles whose vertices are colored i, j, k, and let V jk
i be the set of vertices

of color i that are incident with a triangle in Tijk.
If v ∈ V (T ), then the set of facial triangles containing v determines a cycle C (the link of v)

passing through all the neighbors of v. Since c is a local 4-coloring, it determines a 3-coloring of
C, which can be viewed as a mapping of C onto the cycle C3 of length 3. Let w be the winding
number of this mapping. Since C3 has an odd number of edges, it follows that

w ≡ |C| = deg(v) (mod 2).

This simple conclusion implies that the parity of the number of triangles in Tijk can be expressed
as follows:

|Tijk| ≡
∑

u∈V
jk
i

deg(u) ≡
∑

v∈V ik
j

deg(v) ≡
∑

z∈V
ij

k

deg(z) (mod 2). (2)

There are distinct colors i, j, k such that x ∈ V jk
i and y /∈ V ik

j . The second congruence in (2)

can hold only when y ∈ V jk
i since x and y are the only vertices of odd degree and the sum of

degrees of vertices in V ik
j is even. This shows that x and y have the same color and the same

set of colors in their neighborhood. �
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8 Concluding remarks

Quadrangulations can be classified into four types according to the homology of their odd cycles.
Let us describe this refined classification of even/odd quadrangulations more closely. Let G be
a graph that is embedded in a surface S such that all facial walks are of even length. Then it is
easy to see that the lengths of any two closed walks in G that are homologous (with respect to
the Z2-homology H1(S,Z2)) have the same parity. The parities of walks in different homology
classes thus determine a homomorphism φ : H1(S,Z2) → Z2, which is called the cycle parity
map of G. If S is a non-orientable surface of genus g, then it is homeomorphic to the connected
sum of g projective planes Q1, . . . , Qg, and its homology group H1(S,Z2) ∼= Z

g
2 is generated

by 1-sided cycles αi in Qi, i = 1, . . . , g. In particular, φ can be represented by the g-tuple
(φ1, . . . , φg), where φi = 1 if Qi contains a closed walk in G of odd length, and φi = 0 otherwise.
If φ1 = φ2 = φ3 = 1 and φ4 = 0, then we can replace the chosen basis α1, . . . , α4 of the homology
group by α′

1 = α1 + α2 + α3, α
′
2 = α1 + α2 + α4, α

′
3 = α1 + α3 + α4, and α′

4 = α2 + α3 + α4,
respectively. It is easy to see that α′

1, . . . , α
′
4, α5, . . . , αg can be represented by disjoint 1-sided

simple closed curves in S that generate H1(S,Z2). Moreover, since φ is a homomorphism, it
follows that the parity map representation changes from (1, 1, 1, 0, . . . ) to (1, 0, 0, 0, . . . ) under
the new generating set. This shows that there is a representation of φ in one (and precisely one)
of the following four forms:

Φ0 = (0, 0, 0, . . . , 0), Φ1 = (1, 0, 0, . . . , 0),

Φ2 = (1, 1, 0, . . . , 0), Φ3 = (1, 1, 1, . . . , 1).

We say that G is of type Φi (i ∈ {0, 1, 2, 3}) if its cycle parity map can be represented by Φi.
We refer to [16] or [15] for a similar treatment with more details.

It is clear from the definition that Q is of type Φ3 if and only if every 1-sided closed walk
has odd length. (It is a corollary of this that every 2-sided closed walk has even length.) Let us
observe that the quadrangulation G′

1 of the genus 5 non-orientable surface constructed in Section
5 is of type Φ3. This can be proved as follows. First we observe that G′

1 can be represented by
means of local rotations and the signature (cf. [14]). The edges of negative signature are the
following ones:

(2,35)(3,26) (2,36)(3,25) (5,26)(6,35) (5,36)(6,25)
(3,14)(4,35) (3,14)(4,36) (1,26)(6,14) (1,36)(6,14)
(1,25)(5,14) (1,35)(5,14) (2,14)(4,25) (2,14)(4,26)

If we remove all these edges, we get a bipartite spanning subgraph G′′
1 of G′

1, and each removed
edge joins two vertices that belong to the same bipartite class in G′′

1 . This shows that all 1-sided
closed walks (i.e. those that traverse an odd number of edges with negative signature) in G′

1

have odd length. Thus, G′
1 is of type Φ3.

We have shown that odd quadrangulations of non-orientable surfaces of genus at most four
have local chromatic number at least four and that for every surface of genus at least five, there
are examples for which this no longer holds. Let us observe that a quadrangulation is odd if
and only if it is either of type Φ1 (for arbitrary genus) or it is of type Φ3 when the genus is
odd. As shown above, our example G′

1 of an odd quadrangulation of genus 5 that admits a local
3-coloring is of type Φ3. When producing quadrangulations of higher genera, we can switch
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to type Φ1 (by repeatedly inserting three diagonals into hexagonal faces as done in the proof
of Theorem 1.4(ii)). But we can also stay within the type Φ3 by taking a quadrangulation of
type Φ3 of odd genus g that admits a local 3-coloring, such that on two adjacent faces only two
colors are used, and then replace those two faces by making a connected sum with a 3-colorable
quadrangulation (minus an edge e) of the Klein bottle of type Φ2 in which the two faces sharing
the edge e are 2-colored. This gives a quadrangulation of genus g + 2 of type Φ3 that admits a
local 3-coloring, and leaves only one unresolved case – type Φ1 on the non-orientable surface of
genus 5.

Question 8.1 Is there a quadrangulation of type Φ1 of the non-orientable surface of genus 5
that admits a local 3-coloring?
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