
AGROKÉMIA ÉS TALAJTAN  55 (2006) 1                                                        99–108 

Correspondence to: GÁBOR ILLÉS, Department of Ecology and Silviculture, Forest Re-
search Institute, H-1023 Budapest, Frankel L. út 42–44. Hungary. E-mail: illesg@erti.hu 
 

 
 
 
 
 

Digital Soil and Landsite Mapping in Forest Management Planning 
 

1G. ILLÉS, 2G. KOVÁCS, 2A. BIDLÓ and 2B. HEIL 
 

1Department of Ecology and Silviculture, Forest Research Institute, Budapest and 
2Department of Forest Sites, University of West-Hungary, Sopron (Hungary) 

 
 
Under Hungarian conditions, a randomly based comparison between the data of 

soil sampling plots and data of existing soil descriptions’ of the same forested area 
(e.g. in the case of soil maps or rather soil descriptions in management plans, too) 
would result in a very poor fit if soil properties were regarded. The reason for this is 
twofold. On the one hand, forested areas have not always been mapped in a system-
atic manner. On the other hand, soil properties have not been the first order targets 
of mapping. They were used as characteristic indicators of taxonomic soil classes. 
Consequently, the resulting maps contained the soil classes with their typical (or 
mean) values. In this way, the explored spatial variance of soil attributes within the 
soil classes and their dependence on the environmental variables were lost (BIDLÓ 
et al., 2003). This was partly caused by the lack of suitable tools for extending the 
data of point samples over the whole study area, including the unvisited sites as 
well.  

At present we have the tools for building and running complex environmental 
models and they have been developed and are being used widely in ecological re-
searches (AUSTIN, 2002; RECKNAGEL, 2001; LEK & GUEGAN, 1999; LOREK & 
SONNENSCHEIN, 1999; JORGENSEN, 1997). Naturally, this is valid for applied soil 
sciences, too (SCULL, 2003; LÁSZLÓ & RAJKAI, 2003). 

The sound technological basis is provided mainly by the geographic information 
systems (GISs) and the sophisticated statistical software solutions, which offer effi-
cient and fast data mining techniques. Coupling these two provides the means of 
deriving high resolution and reliable soil property and soil class maps or at least 
towards maps with known error ranges and confidence levels. 

The effort for predicting soil properties or soil classes from environmental vari-
ables roots in a very simple cause: Preparing accurate soil maps in a traditional way 
is a very expensive and time consuming activity and the data for the required envi-
ronmental variables are generally easier to obtain than data on soils. This approach 
has already been applied in several studies on soil mapping so far (MCBRATNEY et 
al., 2000; DOBOS et al., 2000, 2002; ODEH et al., 1992; ZHU, 1997; SINOWSKI & 
AUSERWALD, 1999).  
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Soil models are based on the concept that there is an existing relationship be-
tween soils’ properties and the co-existing environmental factors. To express it in 
short: 

S = f(r, g, c, … , t);   S = f(E)                                          (1) 

where:  S = the required soil property; r = relief features; g = geography; c = climate; t = 
time; E = soil forming environmental factors. 

This is the common hypothesis of all soil models, but they may differ in which 
soil attributes and exploratory techniques are used to achieve predictions. 

For solving the equation some observations of soil (S) are needed in the field at 
known locations and functions, using meaningful predictor variables of environ-
ment (E) from the soil development’s point of view. The predictor variables of “E” 
are generally represented as raster data layers in a GIS, while the observations of 
“S”, originating from distinct soil samples, are represented as point data layer in the 
same GIS (MCBRATNEY et al., 2003).  

Up till now, a generalized, widespread and commonly used procedure has not 
been worked out to set up and approximate the equation above. The reason for this 
is that most of the studies deal with one or only a few of the possible soil attributes 
and the methods have different suitability for predicting them in accordance with 
the set of predictor variables. 

 
 

Materials  and Methods 
 

The above-described experimental soil mapping approach was applied in three 
different forest areas: 1. a peat land in Northwest Hungary called the Hanság (ILLÉS 
et al., 2002, 2003; ILLÉS, 2001); 2. the so-called Széki forest in the hilly bottom 
region of the Bakony Mountains; and 3. a forest reserve of the Bükk Mountains in 
Northeast Hungary, called Várhegy (Fig. 1). 

 

Application in a peat land (Hanság) 
The research in the Hanság region aimed to model the soil forming environ-

mental conditions and the occurrence of different soil types in their presence, using 
fuzzy classification, multivariate regressions (ZHU et al., 1996, 2001; ZHU, 1997; 
MCBRATNEY & ODEH, 1997) and GIS applications (ZHU, 2000; JANG, 1993). 
Modelling the soil forming factors and making reliable predictions of the soil 
attributes were done with the purpose of improving the local forest management. 
From soil scientific point of view, this region can be represented by a set of organic 
soils, making the area a unique field for research. First, a detailed GIS database of 
the Hanság was established, focusing on forestry. A forest stand growth rate–
weighted random sampling design was applied to collect soil samples from known 
locations (GPS). Afterwards, a fuzzy classification of soil data and environmental 
variables was carried out to identify the naturally occurring soil property versus 
environmental property groups. 
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Fig.1 

The map of Hungary showing the study areas.  
1. Peat land, the Hanság; 2. Széki forest, and 3. Forest reserve, Várhegy. 

 

Finally, a within group, stepwise multivariate regression was used to set up for-
mal relationships between the values of environmental variables (as predictors) and 
the values of soil attributes (as dependent variables). Running the resulted equations 
on the raster datasets within the GIS frame it is possible to plot the required soil 
property maps. The environmental dataset included the following raster maps: 

– the digital map of geological formations at 2 m depth below the surface 
(SCHAREK, 1991);  

– the digital map of the monthly average depth of the groundwater table derived 
from the measurements of groundwater wells in the study area from 1955 to 2000, 
data of 540 months (ÉDUVIZIG), and  

– the digital topographic map of the area, in a 1:10 000 scale, which was used to 
generate a digital elevation model (DEM) for the study area. Further maps derived 
from the DEM were the slope and aspect map and maps of micro-watersheds and 
their lowest points.  

Concerning field observations, we had altogether 96 randomly selected sample 
plots, which served as the samples for soil property examinations. The data of 74 
randomly selected plots provided the base of the soil property model and the re-
maining plots served as validation points. 

The soil data – originating from the sample plots – were uploaded to the GIS da-
tabase. 

The following observations were made at each location: soil profile description; 
delineation of soil layers; description of the rootable depth, or peat layer thickness, 
and soil characteristics from the laboratory analyses of soil samples. 

1 

2 
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Data processing had two main aspects: grouping the cases based on the soil and 
environmental parameters and establishing relationships between environmental 
and soil data. 

To avoid the known restrictions of crisp classification methods fuzzy classifica-
tion (ZADEH, 1965; PODANI, 1997) was applied (using the SYN-TAX 2000 (PO-
DANI, 2000) software). The above-described complex dataset served as the input for 
fuzzy clustering in order to identify the naturally separating classes and their 
transitions among environmental variables and soil property variables. Five classes 
were identified and delineated on the maps. The delineation of classes was followed 
by the within-class soil property assessment. 

Separate sets of environmental variables were found for each class, which are 
responsible for determining the main soil properties. Therefore, the class-by-class 
parameter estimation came up with better results than the parameter estimation over 
the pooled data. The step-forward multiple regression method was used to fit the 
following general equation: 

SP = a0+a1*(Elevation)a2+a3*(Slope)a4+a5*(Aspect)a6+a7*(Parent mat.)a8+ 
                                 +a9*(Watershed dist.)a10+a11*(w)a12                          (2) 

where:  
SP = the assessed soil property;  
a0, a1, a3, a5, a7, a9, a11 = parameters for the regression;  
a2, a4, a6, a8, a10, a12 = exponents 1–5;  
Watershed dist. = distance from the lowest point of the watershed in the percentage of 

the furthest point’s distance;  
w = the 50-year average distance of groundwater from the surface. 
 

Application in a hilly region (Széki forest) and in a mountainous region (Várhegy) 

In the case of study areas 2 and 3, the aim of the research was to investigate how 
the relief features affect the values of A horizon thickness, and rootable depth. Dif-
ferent types of brown forest soils and lithomorphic soils occur in the study areas. 
Systematic sampling designs were applied with a 100×100 m grid size in the case of 
the Széki forest (2), and a 50×50 m grid in the case of the Várhegy (3) study area 
(Fig. 2). 

Soil borer sampling provided the requested field values for the assessment on 
site. During the data processing, the recorded soil parameters and the relief features 
(altitude, slope, aspect, profile and plan form curvatures) were coupled within a GIS 
frame. DataFit 8.1 software (OAKDALE ENGINEERING, 2005) was used to derive 
possible relationships between relief and soil data and to plot local characteristic 
curves for soil attributes by different relief features. For the regression, first the 
relief features (such as altitude and curvature) were grouped, then the group-wise 
average values of soil attributes by relief groups were used. 
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Fig.2 

The perspective view of the Várhegy (study area 3) with the sampling plots of  
a 50×50 m grid 

 
 

Results  and Discussion 
 

From the results of the investigation in the Hanság region (study area 1), a map 
demonstrating the spatial pattern of the rootable depth thickness is presented (Fig. 
3). This may be considered as one of the most important soil properties from the 
forest management point of view. Fig. 4 shows the error distribution of our predic-
tions over the control or validation samples. 

Figs. 5 and 6 illustrate preliminary results of the study carried out in the Széki 
forest (study area 2) and Várhegy region (study area 3).  

These preliminary results have already revealed some important facts: 
1. There are recognizable relationships between some physical attributes of soil 

and relief features. 
2. The relationship may differ for different relief features.  
3. The character of the relationship is probable to vary from site to site. 
In the Hanság study area (Figs. 3 and 4) it was found that the prediction error 

remained within the average category range of the currently used rootable depth 
thickness categories for forestry in 60% of the cases. There is a 30% chance of 
missing the range by one category and 10% to have even greater differences. These 
error ranges are still considered rather wide, but by increasing the sampling density 
the proportion of correctly classified areas is probably improvable. 
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Fig.3 

Map of the predicted rootable depth under study area 1 (The Hanság) 
 

 
Fig. 4 

The error distribution of predicted values over observed values of the rootable depth 
(Study area 1, the Hanság) 
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Considering the relief features–soil attributes characteristic curves it was found 
that the relationship may be different at different locations. So, it is hard to imagine 
curves that are generally accurate and can be used commonly. The run of the curves 
seem to differ for hilly and mountainous regions, therefore local surveys need to be 
evaluated separately.  

 

 
Fig.5 

The empirical, local characteristics curve of altitude (m) (X) versus A horizon thickness 
(cm) (Y) for the Széki forest (study area 2) (R² = 0.97) 

 

 
Fig.6 

The empirical, local characteristics curve of profile curvature (1/100 m) (X) versus  
A horizon thickness (cm) (Y) for the Várhegy forest reserve (study area 3) 

(R² = 0.99) 
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As a consequence of the above-mentioned, it is hard to derive a general set of 
rules which may be convenient for everyday use in a widespread mapping algo-
rithm. Considering these results, further research activities should continue in two 
main directions. First, there is a classification problem to handle: to predict the 
possible soil classes based on the sets of environmental data, having learning and 
testing samples large enough to derive and validate classifications. This task may be 
solved by the use of artificial neural networks or classification trees (BEHRENS et 
al., 2005). The second problem is more regression-like, which includes the method 
of predicting the within class soil attributes from the spatial model of pedologically 
meaningful variables on the basis of sampling. 

 
 

Conclusions 
 

The GIS frame and spatial statistics enable the building of complex models by 
taking into consideration as many meaningful environmental variables as possible 
for task-oriented spatial modelling. Spatial model-based site mapping in turn pro-
vides new possibilities for forest management. Digital soil maps with additional 
layers of environmental variables would be a milestone in forestry-oriented site 
evaluation. Attempts to model the relationships between soil and its environment 
hopefully lead to increasing the efficiency of forest management planning. The 
paper demonstrated some preliminary, but promising results in this respect. New 
methods, however, require scientific and technological expertise. The basis of digi-
tal soil and site maps is the detailed evaluation of environmental and soil attributes. 
In this way hitherto mismatched information can be combined. 

Fields, where further improvements are necessary include the compilation of 
environmental databases, data mining and predictions, spatial error handling, and 
development of a stand-alone application. 

 
 

Summary 
 
The current methodology of forest site evaluation has some challenging weak-

nesses, which may greatly influence the efficiency of both forest planning and for-
est management practice. This fact keeps us searching for new methods to over-
come the difficulties. The present paper gives a short overview of our research on 
GIS based digital soil mapping techniques and their possible application in forestry, 
offering a powerful tool for forest site evaluation. The paper focuses on four main 
issues. First, the main weakness in site evaluation, second, methods of digital soil 
mapping, third, the description of the study areas and mapping procedures, and 
finally, the possible outcomes and the major directions of further development. 
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