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Abstract

The long-term application of central nervous system implants is currently limited by the

negative response of the brain tissue, affecting both the performance of the device and

the survival of nearby cells. Topographical modification of implant surfaces mimicking

the structure and dimensions of the extracellular matrix may provide a solution to this

negative tissue response and has been shown to affect the attachment and behavior of

both neurons and astrocytes. In our study, commonly used neural implant materials, sili-

con, and platinum were tested with or without nanoscale surface modifications. No bio-

logical coatings were used in order to only examine the effect of the nanostructuring.

We seeded primary mouse astrocytes and hippocampal neurons onto four different sur-

faces: flat polysilicon, nanostructured polysilicon, and platinum-coated versions of these

surfaces. Fluorescent wide-field, confocal, and scanning electron microscopy were used

to characterize the attachment, spreading and proliferation of these cell types. In case

of astrocytes, we found that both cell number and average cell spreading was signifi-

cantly larger on platinum, compared to silicon surfaces, while silicon surfaces impeded

glial proliferation. Nanostructuring did not have a significant effect on either parameter

in astrocytes but influenced the orientation of actin filaments and glial fibrillary acidic

protein fibers. Neuronal soma attachment was impaired on metal surfaces while

nanostructuring seemed to influence neuronal growth cone morphology, regardless of

surface material. Taken together, the type of metals tested had a profound influence on

cellular responses, which was only slightly modified by nanopatterning.
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1 | INTRODUCTION

A great deal of research has been performed on central nervous sys-

tem (CNS) implants to help patients suffering from diseases such as

amyotrophic lateral sclerosis (ALS), spinal cord injury or paralysis.

Effective long-term usage of such devices is limited by the defensive

reaction of the CNS resulting in neuronal loss and glial scar formation.

These events lead to the signal obstruction between neurons and

electrodes during long-term implantation, degrade the performance of

the neural electrodes causing instability, and eventually, the failure of

the implanted device. The main aims of implant development are to

improve neuronal survival and unimpeded regeneration and extension

of neurites, while preventing microglial and astrocyte activation by

keeping them from attaching to the implanted surface [see (Adewole,

Serruya, Wolf, & Cullen, 2019; Fernandez & Botella, 2018; Jorfi,

Skousen, Weder, & Capadona, 2015; Kim et al., 2018) for review].

One of the recent strategies is the topographical modification of neural

implant surfaces, as imitating the structure of the extracellular matrix

(ECM) can influence the attachment and behavior of neural cells (Jeon,

Simon Jr, & Kim, 2014; Kim et al., 2018). The micro−/nanostructure of the

implant surface can have a selective effect on astrocytes and neurons,

demonstrated previously both in vitro and in vivo (Berces et al., 2016;

Moxon et al., 2004; Moxon, Hallman, Aslani, Kalkhoran, & Lelkes, 2007;

Piret, Perez, & Prinz, 2015). Proposed explanations by which nano-

structuring results in better biocompatibility include the formation of

mechanical cues similar to the ECM, and/or the adsorption of growth fac-

tors and other molecules facilitating the survival of neurons. However, the

exactmechanisms involved are not yet clear (Marcus et al., 2017).

Many of the commercially available neural implants use silicon as a

carrier material and platinum for the electrodes (Kotov et al., 2009). Plati-

num and silicon have been extensively characterized both in vivo and

in vitro for their biocompatibility with neuronal cells and tissue (Biran,

Martin, & Tresco, 2007; Ereifej et al., 2011; Griffith & Humphrey, 2006;

Mols, Musa, Nuttin, Lagae, & Bonin, 2017; Pennisi et al., 2009; Polikov,

Tresco, & Reichert, 2005). A wide variety of nanostructure types and

sizes of these materials has been created and tested so far (Jeon et al.,

2014; Kim et al., 2018; Kotov et al., 2009; Marcus et al., 2017), often in

combination with the application of different ECM-like surface coatings

(von der Mark, Park, Bauer, & Schmuki, 2010). On the other hand, the

exact modifications of the nanopatterned surfaces generated by biomi-

metic coatings are hard to describe which further complicates the inter-

pretation of the experimental findings (Kim et al., 2018).

Previously, our group has established the fabrication of so-called

black polysilicon (Fekete, Horvath, Berces, & Pongracz, 2014), referred

to as nanostructured silicon in this article. Such surfaces were created

by large-area, maskless, and cryogenic plasma etching. This technology

could be integrated easily into the manufacturing steps of silicon-based

multichannel neural microelectrodes (Fekete, 2015). Earlier, we demon-

strated that neuronal survival was increased in the vicinity of an

uncoated black polysilicon implant surface 8 weeks after implantation,

while the rate of glial activation was unaffected by nanostructuring

(Berces et al., 2016).

In an attempt to more closely examine the initial cellular reactions

behind these effects, we investigated the attachment and growth of

primary mouse astroglial cells and hippocampal neurons on these metal

surfaces, until a confluent cellular layer was formed. Tested materials

included vapor deposited polycrystalline silicon (referred to as the “flat”

surface) and its nanostructured counterpart created by photolithogra-

phy, as well as the platinum sputter-coated version of both of these

surfaces. As we wished to investigate the initial effects of cell-surface

contact, cell behavior was analyzed during the first 3 days in culture. In

order to more directly compare our in vitro and in vivo results, no addi-

tional surface coating to facilitate cell attachment was applied.

We found that nanostructuring in itself did not have a marked

effect on the attachment, spreading and proliferation of astrocytes,

while neuronal growth cones seemed to differentiate between flat

and nanostructured surfaces. On the other hand, the attachment of

neuronal soma was highly impaired on both metal surfaces.

2 | MATERIALS AND METHODS

2.1 | Design and manufacture of the in vitro test
chips

Test chips for in vitro cell culturing were fabricated by standard

MEMS processes in a way to contain all four different surfaces. In our

study, flat polysilicon formed by low-pressure chemical vapor deposi-

tion or nanostructured polysilicon produced by cryogenic dry etching

were used as seed layers and platinum deposited by DC magnetron

sputtering was applied as coating material. To make well-defined

interfaces between all four materials, we employed a specific chip

design shown in Figure 1b. The manufacturing process is described in

detail in an earlier publication by our group (Berces et al., 2018).

The four different experimental surfaces—flat polysilicon, nano-

structured polysilicon, flat platinum, nanostructured platinum—were

characterized by scanning electron microscopy (Figure 1a). In case of

the nanostructured silicon surfaces, the height of the nanopillars was

between 520 and 800 nm and pillar density was 18–70 pillars/μm2,

with pillar diameters of 80–150 nm. Flat polycrystalline silicon sur-

faces had a grain size of 100–200 nm. Both platinum surfaces pos-

sessed an additional thickness of 30 nm compared to the silicon

surfaces. Chips were designed so that both large continuous regions

as well as small rectangular geometries were created on each surface

(Figure 1b).
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2.2 | Animal handling

Wild-type CD1 mice were obtained from Charles River Laboratories

(Wilmington, Massachusetts) and housed at 22 ± 1�C with 12-hr

light/dark cycles and ad libitum access to food and water. All experi-

ments complied with local guidelines and regulations for the use of

experimental animals (PEI/001/1108–4/2013 and PEI/001/1109–4/

2013), in agreement with local and EU legislation.

2.3 | Primary cell cultures

Primary astrocytes were prepared postnatally from 1 to 4 days old

mouse pups essentially according to a previously described method

(Tarnok et al., 2010). Cultures were maintained in HDMEM (Sigma)

with 10% FCS (Gibco), 2 mM glutamine (Sigma), 40 μg/mL gentamicin

(Hungaropharma, Budapest, Hungary) and 2.5 μg/mL amphotericin B

(Sigma). Cells were allowed to proliferate and passaged at least twice

with 0.05% trypsin – 0.02% EDTA (Sigma) before being seeded onto

test chips. Test chips were dry-heat sterilized at 180�C for 4 hr then

placed in 24-well culture plates without any further surface treatment.

Astrocytes were seeded at starting densities of 2.6 × 104 cells/cm2.

Primary hippocampal neuronal cultures were prepared from

18-day-old mouse embryos, as previously described (Czondor et al.,

2009). Neurons were seeded onto the test chips at densities of

6 × 104 cells/cm2 and were maintained in Neurobasal medium (Life

Technologies) supplemented with B27 (Life Technologies), 5% FCS,

0,5 mM glutamax (Invitrogen), 40 μg/mL gentamicin, and 2,5 μg/mL

amphotericin B. All cultures were kept at 37�C in a 5% CO2 atmo-

sphere. Cells were fixed after 24, 48 or 72 hr.

2.4 | Immunocytochemistry, microscopy, and image
processing

Cells were fixed with 4% paraformaldehyde (TAAB), permeabilized with

0.1% Triton-x-100 in phosphate buffered saline (PBS) and blocked using

2% bovine serum albumin (Sigma) in PBS solution. Neurons were immu-

nostained with primary antibody anti-IIIβ-tubulin (1:1000, mouse, Exbio),

while astrocytes were immunostained with anti-glial fibrillary acidic pro-

tein (GFAP) (1:1000, mouse, Sigma). The secondary antibody was anti-

mouse-Alexa488 (1:500, Molecular Probes) in both cases. Staining with

Alexa546-conjugated phalloidin (1:300, Molecular Probes) was used to

visualize the actin cytoskeleton and DAPI was employed to visualize

nuclei. Samples were mounted using Mowiol 4.88 (Polysciences,

Hamburg, Germany).

Samples were investigated by a Zeiss Axio Observer Z1 or

LSM800 inverted fluorescence microscope. Images were captured by

an AxioCamMR3 camera or GasP detectors using ZEN software.

Whole-chip scans were acquired by a mosaic-type image stitching

technique using individual images of 10× magnification (obtained with

a Plan-Neofluar 10×/0.30 objective). Individual images were captured

by a Plan-Apochromat 63x/1.4 oil immersion objective and deco-

nvoluted by the nearest neighbors method before z-projection.

To manually analyze the density of DAPI-stained astrocyte nuclei,

the Cell Counter plugin of FIJI (Schindelin et al., 2012) was used. Aver-

age area covered by astrocytes or the average area of growth cone

actin structures were also determined using FIJI, based on binarized

images of phalloidin staining. To calculate the average area of individ-

ual cells within a 0.17 mm2 ROI, the area covered by cells was divided

by the total number of nuclei.

For automatized evaluation of the images, we used the Image

Processing Toolbox of Matlab R2017b. Detailed description of the pro-

gramming of our self-developed program, CellAnalyser, can be found in

the Supplementary Information. Mean intensity and area values of the

detected cell nuclei were calculated after background correction and

cumulative histograms were created for every surface type.

2.5 | Scanning electron microscopy

Cells were fixed with 2.5% glutaraldehyde (Sigma) + 5% saccharose in

0.1 M cacodylate buffer for 1 hr at RT and dehydrated using increasing

F IGURE 1 Surface and layout of the test chips. (a) Representative images of each experimental surface and the borders between the
respective surfaces. Bars denote 1 μm. Left and central panels show surfaces viewed from the top; right panels are shown at a 45.5� angle.
(b) Schematic of a single chip used in the study. White surfaces denote flat silicon (Si), black surfaces designate nanostructured silicon (nano-Si).
Chips were coated diagonally with platinum, resulting in flat platinum (Pt; light gray) and nanostructured platinum (nano-Pt; dark gray)
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concentrations of ethanol (50, 60, 75, 90, and 100%), and amyl-acetate

(Sigma). Dried samples were sputter coated with gold for scanning elec-

tron microscopy. Samples were imaged using a LEO XB1540 (Zeiss)

scanning electron microscope. Tilt angles are stated in figure legends.

Surface characterization was performed using the ImageJ software.

2.6 | Statistics

The numbers of independent samples tested and the numbers of data

points per experiment are noted in the legends of Figures 2 and 6. Statis-

tical analyses for the results shown in Figure 2 were performed with

SPSS Statistics (IBM). Normal distribution of the samples was evaluated

using the Shapiro–Wilk test. Data was analyzed using one-way ANOVA

tests with post hoc Bonferroni corrections or the nonparametric

Kruskal–Wallis test with pairwise comparisons. A p-value equal to or

lower than .05was considered as a statistically significant difference.

3 | RESULTS

3.1 | Attachment and spreading of primary
astrocytes on uncoated silicon and platinum surfaces

We systematically analyzed the behavior of primary astrocytes seeded

onto different test surfaces made from flat polysilicon, nanostructured

polysilicon, flat platinum or nanostructured platinum before seeded

cells reached confluency.

F IGURE 2 Analysis of the total number (a), total surface area (b), average cell area (c) and nucleus size distribution (d–e) of astrocytes on the
flat polysilicon [Si], nanostructured polysilicon [nano-Si], flat platinum [Pt] and nanostructured platinum [nano-Pt]. (a–c) Data points show values
for the individual ROIs. Horizontal line through data points shows median value. Exact p values are shown in the tables below the graphs, with
p < .05 in red. (d, e) Cumulative histograms of nucleus size (d) 24 or (e) 48 hr post-seeding. All data were obtained from 3 to 4 independently
seeded test chips. Data points per experiment varied between 9 and 20. (f, g) Representative images of primary astrocyte cultures used for
quantitative analysis fixed at either (f) 24 or (g) 48 hr post seeding. Inverted images of fluorescent phalloidin staining reveal the actin cytoskeleton
of astrocytes over adjacent surfaces. Scale bars denote 100 μm
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Cell density was calculated upon staining the nuclei with DAPI. By

24 hr after seeding, a similar cell density was found on each surface,

indicating that neither the surface material nor nanostructuring had an

effect on the initial attachment of astrocytes (Figure 2a). When ana-

lyzing the changes in cell densities on the same surface 24 hr later, we

found that average number of nuclei increased significantly only on

platinum surfaces. This implies that astrocyte proliferation is impeded

on silicon, regardless of surface architecture. The effect of

nanostructuring itself was revealed only in case of nanostructured

platinum, as at 48 hr, significantly more cells were present on this sur-

face compared to silicon.

The degree of astrocyte spreading on the different surfaces was

determined by phalloidin staining of the actin cytoskeleton (Figure 2b,

for representative images, see Figure 2f,g). When we compared the

area covered by astrocytes 24 hr after seeding, we found that the

degree of cell coverage was significantly higher on nanostructured

platinum compared to silicon. In the next 24 hr, cell coverage

increased significantly only on flat platinum. As a consequence, both

platinum surfaces differed significantly compared to flat and nano-

structured silicon 48 hr after seeding. By the third day after seeding,

cultures seeded onto platinum surfaces reached confluency (data not

shown).

In order to compare the average extent of cell spreading, average

cell area values were calculated by dividing the area of cell covered

surface by the corresponding number of DAPI-stained nuclei within

the individual ROIs (Figure 2c). 24 hr post-seeding, astrocytes were

less spread over silicon compared to cells on either flat or nanostruc-

tured platinum. Interestingly, this difference was only observed

between flat silicon and the two platinum surfaces at 48 hr post-

seeding. At this time, average cell area values on nanostructured sili-

con showed a slight increase compared to the values for flat silicon,

but no significant change was determined compared to any of the

other surface type. Average astrocyte surface area remained similar

between 24 and 48 hr after seeding, indicating that cell proliferation

did not influence cell spreading.

We also evaluated the distribution of nucleus size on the different

surfaces with a custom-made algorithm (see Supplementary Informa-

tion for a detailed description) and visualized the data using cumula-

tive histograms (Figure 2d,e). According to this analysis, 24 hr after

seeding astrocytes had the smallest nuclei on nanostructured silicon,

followed by the flat silicon surface. The size distribution of nuclei was

very similar in case of flat and nanostructured platinum (Figure 2d).

48 hr after seeding, no marked difference was found between both

silicon surface and nanostructured platinum. However, nuclei were

larger over flat platinum (Figure 2e).

To assist in the direct comparison of the effect induced by differ-

ent surface types, representative chip areas incorporating both flat

and nanostructured silicon and platinum are shown 24 (Figure 2f) or

48 hr (Figure 2g) after seeding. Astrocytes were visualized by

phalloidin staining of the actin system. In agreement with our quanti-

tative measurements, astrocytes spread more on platinum and

achieved significantly higher confluence by 48 hr compared to the

silicon surfaces. It is also evident from the images that astrocytes were

generally smaller on silicon (Figure 2f,g).

Using widefield fluorescent microscopy, a notable difference in

phalloidin (Figure 2f,g) fluorescent signal intensity over flat or nano-

structured surfaces was evident. These differences are mainly due to

the increased light absorbance of the nonreflecting nanostructured

surfaces (Fekete et al., 2014). On the other hand, astroglial cells

showed stronger fluorescence over silicon surfaces comparing to the

same type of platina surfaces, especially 48 hr after seeding.

Examination of individual astrocytes by confocal microscopy rev-

ealed further differences between the test surfaces (Figure 3). A gen-

eral observation in case of platinum surfaces was that filamentous

actin in astrocytes was present in bundles indicative of well-

developed stress fibers. In contrast, astrocytes attached to silicon had

shorter and thinner actin fibers, which, especially in case of the nano-

structured silicon, were often arranged in a radial pattern. GFAP

intermedier filaments were more linear and mostly radially oriented in

cells attached to either nanostructured surface. On the other hand,

astrocytes grown over flat surfaces had thicker and more focally orga-

nized GFAP filaments.

In addition to fluorescent light microscopy, we also employed

scanning electron microscopy (SEM) to examine astrocyte attachment

to the different surface types. SEM images revealed that in case a cell

attached to the test chip in the vicinity of or across a flat-

nanostructured surface boundary, glial protrusions often seemed to

avoid (Figure 4a,b) or detach from (Figure 4c,d) nanostructured

surfaces.

3.2 | Attachment and spreading of primary
hippocampal neurons on uncoated silicon and
platinum surfaces

In order to test the attachment of neurons to the different surfaces,

primary neuronal cultures dissociated from the hippocampi of 18-day-

old mouse embryos were seeded onto the test chips. At this age of

isolation, most of the isolated cells are neurons while astroglial cells

form less than 5% of the cell suspension [data not shown]. In contrast

to astroglial cells, primary hippocampal neurons attached very poorly

to all of the uncoated metal surfaces. Instead, neuronal cell bodies

attached to each other and formed aggregates with various sizes,

containing either a few or up to several hundreds of cells. Surface-

attached astroglial cells, on the other hand, provided an attractive

substrate for aggregates as well as for outgrowing neurites (Figure 5).

As expected, neurite extension on top of the attached astroglial cells

was not affected by the baseline surface material nor nanostructuring

(Figure 5).

Occasionally, neurites spread out to the noncovered uncoated

metal surfaces, as well (Figure 6). Scanning electron microscopy rev-

ealed that growth cones attached to nanopatterned surfaces had nar-

row lamellopodia separated by several filopodia. In contrast, growth

cones attached to flat surfaces did not possess distinct lamellopodia

and often tapered to a point (Figure 6a).

2354 LILIOM ET AL.



F IGURE 3 Representative
images of deconvoluted and
z-projected confocal images of
individual astrocytes. From left to
right, columns show black-and-
white inverted fluorescent signals
denoting the actin cytoskeleton
(phalloidin), glial fibrillary acidic
protein (anti-GFAP) and the
nucleus (DAPI). Right columns
show the merged phalloidin
(magenta) and anti-GFAP (green)
signals. Scale bars denote 10 μm

F IGURE 4 Scanning electron
microscopy images of individual
astrocytes attached across or
near flat-nanostructured surface
boundaries. The surface types—
flat polysilicon, nanostructured

polysilicon, flat platinum and
nanostructured platinum—are
marked as Si, nSi, Pt, and nPt,
respectively. Enlarged image
areas delineated by white
squares are shown in the bottom
left (a) or right (b–d) corners.
Scale bars in full-sized images
denote 10 μm, while bars in
insets denote (a, b, d) 5 or
(c) 2 μm
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To examine the cytoskeleton of these growth cones, we per-

formed immunostaining to detect neuron-specific IIIβ-tubulin and

phalloidin staining to visualize filamentous actin. Microtubule localiza-

tion was similar in all investigated growth cones, mainly forming bun-

dles (Figure 6b). In agreement with growth cone topology, the actin

cytoskeleton was arranged in a mesh-like pattern within the

lamellopodia over nanostructured silicon and platinum. We also com-

pared the extent of the actin network within the growth cones, by

measuring the area of phalloidin staining over different surfaces

(Figure 6c). Although only a few individual growth cones were found

on each surface, there is a clear trend of more extensive actin struc-

tures on top of both nanostructured surface types.

In summary, these observations indicate that uncoated silicon and

platinum surfaces do not promote the attachment of primary neuronal

cell bodies. Nanostructuring of these surfaces, on the other hand, may

selectively promote neurite outgrowth.

4 | DISCUSSION

Silicon and platinum have been characterized extensively in terms of

biocompatibility for implantable device applications (Biran et al., 2007;

Ereifej et al., 2011; Mols et al., 2017; Pennisi et al., 2009; Polikov

et al., 2005), but fewer publications tested uncoated silicon or plati-

num surfaces.(Biran, Martin, & Tresco, 2005; Pennisi et al., 2009) As

bare surfaces are less biocompatible, biomimetic coatings are often

used to improve their performance (Adewole et al., 2019; Fernandez &

Botella, 2018; Jorfi et al., 2015; Polikov et al., 2005). Part of previous

research on the effect of nanostructuring on neural cells in vitro

involved surfaces additionally treated with molecules such as poly-D-

lysine/poly-L-lysine and laminin to aid cell adhesion and survival on

otherwise biologically inert materials (Bugnicourt, Brocard, Nicolas, &

Villard, 2014; Huang et al., 2018). Use of biomimetic coatings is also a

promising strategy in itself for attenuating the negative tissue

response to CNS implants (Aregueta-Robles, Woolley, Poole-Warren,

Lovell, & Green, 2014; Jorfi et al., 2015), however, little is known

about their persistence, longevity or adverse effects in an in vivo

setting (Adewole et al., 2019; Chen, Canales, & Anikeeva, 2017; Cody,

Eles, Lagenaur, Kozai, & Cui, 2018; He, McConnell, & Bellamkonda,

2006; Rao & Winter, 2009). So far, only the lack of coating degrada-

tion in response to the insertion process was shown (He et al., 2006).

Therefore, it is important to examine whether the modification of

implant surface topography in itself is capable of significantly affecting

neural cell behavior.

Consequently, we extended our previous in vivo and in vitro stud-

ies by testing chronic responses to similar implant surfaces within the

brain (Berces et al., 2016) or acute effects on immortalized neural

stem cells and microglia (Berces et al., 2018), respectively. We aimed

to compare how primary astrocytes and hippocampal neurons attach

to flat or nanostructured silicon or platinum surfaces without addi-

tional coating. Our primary goal was to examine the effect of these

materials on the spreading and proliferation of astrocytes and on neu-

rite outgrowth within the initial days after seeding, until glial cells

reach confluency.

In our study, neither bare silicon or platinum induced an acute

cytotoxic effect on neurons or astrocytes during the experimental

period, in agreement with previous studies (Ereifej et al., 2011; Kang

et al., 2016). In accordance with previous studies, we found that direct

attachment of primary hippocampal neurons to both uncoated metal

surfaces was impaired (Khan, Auner, & Newaz, 2005; Piret, Perez, &

Prinz, 2014). Earlier in vitro studies involving primary neurons that did

not utilize additional surface treatment showed similar clusters of

neurons sitting on top of glial cells in case of both nonstructured

(Piret et al., 2014) and nanostructured silicon surfaces (Khan et al.,

2005). In other cases, the morphology of the examined cells was

clearly not neuronal (Ma, Liu, Xu, & Cui, 2005). There are also reports

where neurons were apparently able to directly attach to uncoated sil-

icon surfaces, but some of these surfaces also had a cytotoxic effect

after 5 days of culture (Fan et al., 2002; Fan et al., 2002) or the pres-

ence of surface coating was not clearly stated (Kang et al., 2016).

In case neurites did attach to the tested surfaces, growth cone for-

mation appeared to be promoted by nanostructuring. Similarly, an

increase in neurite outgrowth on nanostructured relative to smoother

surfaces has been demonstrated in several studies (Bugnicourt et al.,

F IGURE 5 Scanning electron
microscopy images of aggregated
primary hippocampal neurons
attached to primary astrocytes on
flat polysilicon (Si) or platinum
(Pt) surface 24, 48 or 72 hr post-
seeding. Bars denote 10 μm
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2014; Moxon et al., 2004; Moxon et al., 2007). Kang and colleagues

also showed enhanced and more directed neurite extension on silicon

nanowires, however, growth cones on top of the nanowires were

narrower compared to those on flat silicon (Kang et al., 2016). It is

important to note that the apparent differences compared to our

results might be explained by different surface composition and/or

coating between the studies.

Our results regarding the behavior of astrocytes are in agreement

with another study focusing on the effects of uncoated, non-

structured silicon and platinum surfaces on several aspects of glioblas-

toma behavior in vitro (Ereifej et al., 2011; Ereifej et al., 2013). In the

report by Ereifej and colleagues, the observed effects of silicon and

platinum were attributed to increased glial reactivity, which was not

examined directly in our study. Due to differences in the reflectivity

of the tested metal surfaces, we could not reliably compare the fluo-

rescent intensity of anti-GFAP immunostaining as an indicator of

astrocyte reactivity. However, our results showed increased prolifera-

tion as well as greater spreading of astrocytes grown on platinum,

indicating that uncoated platinum provides a more suitable surface for

primary astroglial cells than silicon. Nanostructuring itself did not

affect cell spreading but cytoskeletal orientation was changed and

resulted in thinner GFAP fibers, which were more radially oriented.

Pennisi and colleagues also found that the morphology and prolifera-

tion of a glial cell line was not markedly affected on either of the

examined nanostructures (Pennisi et al., 2009). In other studies,

changes in gene expression point toward a reactivity reducing effect

of nanostructured surfaces (Ereifej et al., 2013; Ereifej et al., 2018).

In line with the above results, previous work by our group (Berces

et al., 2016) and others (Chapman et al., 2017; Moxon et al., 2007;

Piret et al., 2014) reported that nanostructuring affects primary

astrocytes/glial cell lines and primary neurons/neuronal cell lines in a

different manner. in vivo results also demonstrated no effect of

microstructuring on astrocyte reactivity while the number of surviving

neurons was positively affected by the topographical modification

(Moxon et al., 2007). Neuronal attachment was unaffected by

nanoporous gold surfaces, while astrocytic coverage was decreased

compared to a nonstructured surface of the same material (Chapman

et al., 2017). Additionally, Piret and colleagues were able to separate

primary neurons from glia with vertically grown nanowires, although a

marked separation of the two cell types was only achieved in case of

alternating large contiguous flat and nanostructured surfaces—

narrower arrays or single rows of nanowires did not induce such an

effect (Piret et al., 2015). Interestingly, we observed that astrocytes

frequently aligned along surface boundaries between flat and nano-

structured regions, which might be explained by a sensitivity to steep

changes in surface architecture.

The surface modification of polysilicon thin films resulted in a sili-

con nanostructure with dimensions in the same range as the

150–200 nm diameter of typical collagen fibrils in the extracellular

matrix (Garvin, VanderBurgh, Hocking, & Dalecki, 2013; Li, Zhu,

Strakova, & Wang, 2014; Shoulders & Raines, 2009). Neurons have

been shown to be sensitive to surface roughness on the scale of

nanometers, and—in case of silicon-based structures—have been

F IGURE 6 Representative images of neuronal growth cones directly

attached to the different uncoated experimental surfaces.

(a) Representative images produced by scanning electronmicroscopy.

Asterisk in the upper left imagemarks the edge of a glial process. Scale bars

denote 2 μm. (b) Deconvoluted and z-projected confocal images of

individual neuronal growth cones over flat polysilicon (Si), nanostructured

polysilicon (nano-Si), flat platinum (Pt), and nanostructured platinum (nano-

Pt). Upper andmiddle images display inverted fluorescent signals of

neuron-specific IIIβ-tubulin or phalloidin. Bottom images show themerged

phalloidin (red) and anti-tubulin (green) signals. Scale bars denote 5 μm.

(c) Data points show the area of phalloidin stainingwithin individual

neuronal growth cones on flat polysilicon (Si), nanostructured polysilicon

(nano-Si), flat platinum (Pt), and nanostructured platinum (nano-Pt).

Horizontal line through data points showsmedian value. All datawere

obtained from four independently seeded test chips. Data points per

experiment varied between 1 and 5
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reported to best attach to and survive on surfaces with average sur-

face roughness (Ra) values ranging from 20 to 100 nm. Both lower

and higher values were found to negatively affect cell adhesion and

viability, albeit to a different degree in different studies (Fan, Cui,

Chen, et al., 2002; Fan, Cui, Hou, et al., 2002; Ma et al., 2005). Other

studies concluded that pillar height of nanostructures influences the

cellular adhesion and viability and can determine whether cells spread

on top of the nanostructures or grow into the trenches between them

(Choi et al., 2007; Piret, Perez, & Prinz, 2013). It can be speculated

that the feature size of our nanostructured surfaces inhibited the

adhesion of the neuronal somas. On the other hand, implantable

device performance does not necessarily depend on the attachment

of the neuronal somas, however, the unimpeded—and possibly

guided–growth of neurites along the implant surface would be crucial

to improve long-term functioning.

It must be noted that it is difficult to directly compare results from

different groups related to this aspect due to large variations in fabri-

cation methods, applied surface treatments, cleaning protocols and

the resulting features themselves in terms of shape, size, and distribu-

tion. The exact feature dimensions different research groups choose

to publish are also not uniform [see (Marcus et al., 2017) for review].

Therefore, further investigation is needed in order to clarify the

effects of nanostructured materials on neural cell types.

In conclusion, we detected that nanostructuring of artificial silicon

and platinum surfaces without any biomimetic coating do not affect

the attachment and morphology of astrocytes. The type of surface

material, on the other hand, had profound influence on cellular

responses, further emphasizing that metal implants are less suitable

for potential in vivo usage compared to other more promising mate-

rials (Chen et al., 2017; Feiner & Dvir, 2018).
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