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Abstract
Technical maintenance of machines and equipment in processing industry requires elaborate 
technical diagnostics systems to recognize the current state and forecast their future state. Creating 
such a system is a complex task due to multiple factors, with aging in aggressive exploitation 
environment being an important one. Statistical pattern recognition systems are very suitable to 
solve problems of technical diagnostics as they produce quantitative estimates of the states. We 
present the use of a hybrid Bayesian pattern recognition classifier that utilizes statistical and fuzzy 
paradigms and expresses the measurement information with four types of features (discrete, pseudo-
discrete, multi-normal and independent continuous). It uses frequentist and subjective information 
(from training samples and expert opinion respectively) to identify the unknown parameters of the 
conditional likelihood density functions of each technical state. We discuss possible sources to 
collect learning information, and different methods to represent it. The classifier uses three different 
methods for parameter estimation of the conditional likelihood densities using data fusion. The 
classification is realised as a discriminant non-linear machine, which incorporates fuzzy approaches 
at different levels. We develop a novel algorithm for fault prediction without dynamic learning with 
four possible types of answers. A detailed example of technical diagnostics system for classification 
and prediction of states of turbomachinery for ammonia synthesis is presented. For the journal 
bearing diagnostics, we introduce modification of the hybrid Bayesian classifier using pseudo-priors 
to incorporate rule-based knowledge and improve the classification.

Keywords: hybrid Bayesian classifier, pseudo-discrete features, fuzzy parameter estimation, 
backward discriminant functions, aging, pseudo-priors, ammonia synthesis

1. Introduction
Proper and consistent technical maintenance procedures are the way to increase profitability, 

quality and reliability in exploitation of complex machines and equipment. These procedures are 
environmentally-friendly and allow to minimize the time that the equipment stays out of operation 
(due to break downs and long-lasting repairs). A good example is turbo machinery in chemical 
processing industry. Technical maintenance is a resource-demanding activity (sometimes reaching 
1.5-2 times the investment in complex production equipment), which is another reason why the 
choice of technical maintenance strategy is of crucial importance. There are four main technical 
maintenance strategies – event-driven, time-driven, actual-state-driven and mixed strategy. Each 
strategy has its implementation areas depending on the requirements of the machinery.

The event-driven maintenance assumes that technical service to the equipment is provided 
when a technical failure occurs. That strategy is suitable for home appliances or for high-reliability 
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equipment such as sophisticated computers or other hi-tech machinery, where moral aging occurs 
before mechanical aging. 

The time-driven maintenance assumes that technical servicing and repairs of the equipment 
are made at regular, pre-defined time intervals (Zavoichinskaya, Zavoichinskii, 2006). It is the 
widest spread approach in technical maintenance. It is useful when the equipment can be restored to 
its original condition at every preventive maintenance in case the failure rate is increasing. 
Otherwise this strategy becomes counterproductive (Ebeling, 2010, pp. 237-247). In this strategy, 
after completion of a given time of operation the equipment goes for scheduled maintenance or 
repair and stays inoperable for a given duration of time. This is an expensive approach since 
regardless of how precisely the time interval between repairs  was identified, it will practically T
always differ from the actual interval  between the last servicing of the equipment and the oT
occurrence of a technical failure. If  then functional segments of the equipment are being oT T 
replaced and technical maintenance was performed too early. If  then the technical failure oT T 
may also lead to expensive non-scheduled repairs. The strength of this strategy is the ability to 
schedule the maintenance periods in the operational cycle of the equipment, on the expense of some 
potential financial and exploitation risks. 

The actual-state-driven maintenance (also called condition-based maintenance, see (Hadden et 
al, 2000) may lead to major economic benefits since maintenance is only performed when technical 
fault emerges (or is detected). This strategy requires constant measurement of exploitation 
parameters and constant information about the technical status of equipment. It is also necessary to 
follow the patterns of how performance parameters change to make proper forecasts for eventual 
failures (hence schedule timely repairs).

The fourth strategy is a mixed one, which relies on estimation of the technical state of the 
equipment in regular intervals of time  as well as on needs for repairs dictated by the gT
deteriorating exploitation characteristics. The repair is conducted only after deterioration of 
performance is proven. The effectiveness of this approach is present if  and the g oT E T    
variance  is low. Those two conditions guarantee that there will be a maintenance activity oV T  
before the failure occurs. In this case, it is crucial to be able to forecast the future state of the 
equipment within the interval , which implies that the probability to observe failure till the next gT
time we estimate technical state would be low. 

The types of failures that are most typical for a given set of equipment also impacts the choice 
of maintenance strategy. Equipment that breaks unexpectedly without visible or detectable 
indication requires to use the second strategy. On the other hand, the third and fourth strategies are 
economically sustainable for gradually developing faults, i.e. when the exploitation of the system in 
deteriorated technical state and the deterioration of production quality leads to changes that are 
initially negligibly small but later become explicitly evident and may lead to severe failures and 
long-lasting repairs. The aging of equipment in process industry is an example of such situation.

The effectiveness of the third and fourth strategies depends on the presence of a technical 
diagnostics system (TDS). Technical diagnostics has the task to recognize the current state and 
forecast the future state of technical systems (Iserman, 2006; Vachtsevanos et al., 2006). The most 
effective are those methods that give a quantitative estimate of the state. Those may be incorporated 
into a general scheme for technical maintenance management. They have a positive effect on the 
repairs and sometimes technical diagnostics is perceived as actual-state-feedback in the control 
system of complex equipment. Designing a TDS in processing industry is not trivial because of the 
following peculiarities:

1) The connection between the states and the values of the diagnostic features is non-
deterministic and unreliable. As a rule, many low-informative features contain the 
information about most of the faults.

2) It is impossible to describe the objects of TDS with differential equations due to complex 
deterministic or stochastic feedbacks. Differential equations can be used to described only 



unrealistically over-simplified models of equipment (Marinov, et al., 2014; Marinov et al., 
2016) 

3) The presence of a great number of features, usually multi-dimensional and bound by 
complex correlations

4) The qualitative changes in the state of the TDS objects occur continuously due to aging and 
not in a deterministic fashion

5) The objects of TDS (e.g. powerful multi-section turbines and compressors, rotational and 
piston machinery, large heat exchangers, etc.) are very expensive and their projected 
reliability is very high, therefore it is very hard to find training samples

6) Conducting active experiments during the presence of faults is practically impossible
7) Due to high risk of failure of expensive equipment segments and disruption of working 

parameters during continuous operations
8) The most important thing about TDS is to detect the tendency or the trend, i.e. to give 

quantitative estimation of the technical state
9) The responsibility for fault-free operation is carried by engineers and technicians, so that it 

is impossible to completely trust the system, instead it is necessary to visualize the 
classification and forecasting. The introduction of a TDS is a major organizational change in 
technical maintenance, which is always a challenge (Nilsen, 2006)

10) Most equipment in the processing industry operates in an aggressive production 
environment, which further accelerates the aging process 

Technical diagnostic systems are also known as fault detection and isolation systems (FDI) 
(as tackled by the control engineering community (Patton et al., 2000, pp. 15-49)). There are several 
types of such systems. Model based FDIs utilize a given model of the system, which allows to make 
predictions for the analysed quantities and parameters during the current operating regime and 
decide about occurrence of faults (Heng et al., 2009). The accuracy of the utilized model is a key 
issue since it predefines the accuracy of the analysis of the system behaviour (Rajamani, Cheded, 
2017). The discrepancy between the true measurements and the ones forecasted by the model define 
the so-called residuals. These are compiled in a vector and serve to detect various types of faults. If 
a given snap shot of observations at a given time indicates the presence of a given fault, the 
residuals are treated as signatures of the fault (Briones et al., 2008) (Bregon et al., 2008). 

There are many methods for model-based diagnostics, including parity-space approach, 
observer-based approach (Ding, 2008, pp. 21-45), qualitative fault signatures (Mosterman, Biswas, 
1999) and possible conflicts (PCs) (Pulido, Alonso-Gonzalez, 2004), analytic redundancy relation 
(ARR) (Samantaray et al., 2006) (Bregon et al., 2008). The greatest advantage of such model based 
FDIs is that they attempt to find all faults in the system at the same time. These methods often 
assume there is no noise in the system, which has been postulated by works both in the control 
community (Patton et al., 2000, 2-13) and in the artificial intelligence community (Cordier et al., 
2004). Alternative view on the system containing stochastic parts and the observations having 
probability distributions rather than exact values is suggested by (Krysander, Nyberg, 2008). 
However, the construction of such models requires a great deal of learning information about the 
physical process under analysis. Therefore, such systems are successful only when there is a small 
number of highly informative features, indicating various faults. 

Another type of FDIs are the signal processing FDIs, where series of experiments are 
conducted to diagnose faults based on the results of those experiments using mathematical or 
statistical operations (Bahrampour et al., 2011). These systems also require large sets of learning 
information, which is often missing. They are rarely known to generate probabilities for the faults, 
instead those methods only identify the possible fault existent in the system. 

A third type of systems are the artificial intelligence FDIs. The essence of those methods is 
some form of a classificator, based on various components such as artificial neural networks, expert 
systems, non-parametric and semi-parametric systems (K-nearest neighbour, support vector 
machines (Palade et al., 2002), Parsen windows, etc.), or a Bayesian classificator (Rajamani, 



Cheded, 2017). A typical characteristic of such systems is the usage of many low-informative 
features, where each possible fault is diagnosed by various models (i.e. there is a separate part of the 
system that deals with each fault). 

The strengths of Bayesian classificators in machine fault diagnostics are the following:
- They allow to conveniently combine all types of learning information from expert 

knowledge or from training samples
- They find posterior probabilities for the technical status of an object in any moment of time. 

Traditionally, they analyse faults as separate classes of state, which also includes the no-fault class. 
Often, if there is a situation where more than one fault occurs at the same time, then these situations 
are excluded as being very rare in this context. The result is usually a single vector of posterior 
probabilities, describing all states simultaneously. 

- The presence on a single vector of posterior probabilities leads to the following:
o Clear picture of the status of the system in each moment of time
o Possibility to create a decision-making system to control the maintenance, where the 
uncertainty in the system is evaluated by the Bayesian classification system (Cullum, 
Tenekedjiev, 2017)
o It is possible and convenient to make forecasts using statistical information

- The probability for error during classification is theoretically the lowest for Bayesian 
classificators. As it is proven in Duda et al. (2001, pp. 45-46), the use of the Bayesian rule (i.e. that 
the observation is classified into the class with maximum posterior probability) maximizes the 
chance of being correct for any conditional likelihoods. 

- There are well-developed methods for feature selection and feature extraction, which are 
part of statistical pattern classification

- They allow to run the system and make classifications fast while allowing the system to use 
left-learning procedures to upgrade its diagnostic capabilities

- There are well-developed methods for performance estimation that include many 
parameters, such as confusion matrix (indicating the percentage of the i-th class classified into the j-
th class), certainty matrix (average percentage to classify the i-th class in class j) and doubt matrix 
(average percentage of the correct class if classification is wrong and average percentage of the first 
incorrect class if classification was correct) (Nikolova et al., 2013)

- The learning sample for classification, learning and recognition can transfer from one data 
base to another very flexibly (Tenekedjiev et al., 2006)

The most elaborate TDS are the pattern classification systems. There are different types of 
pattern recognition (PR) and pattern classification approaches: syntactic PR, structural PR, neural 
networks PR (Hambebo et al., 2013), template matching PR (Jain et al., 2000), fuzzy PR (Klir, 
Yuan, 1995, pp. 357-374), and statistical PR. The first four of them are qualitative-oriented rather 
than quantitative. The fuzzy PR tries to emulate human behavior. Some basic human classification 
techniques have been identified by Zadeh (1977), to develop a formal fuzzy PR system. The 
different types of uncertainty (that can influence a PR problem) are investigated by Klir (2006). The 
possibility theory introduced in (Zadeh, 1978) allows reasoning with uncertain, imprecise, 
ambiguous, and/or conflicting vague knowledge. The possibilities and advantages of combining 
fuzzy set theory and PR are outlined by Pedrycz (1997) and Tonon, (1999). In the statistical PR, 
observations are represented by a set of measured values (called features) organized in multi-
dimensional feature vectors. The objective is to select those features, and/or extract new ones, 
which after appropriate transformation allow the observation vectors belonging to different 
categorical classes to occupy compact and mainly disjoint regions in the multidimensional space. 
The separation of those regions is made according to conditional distributions of each of the 
categorical class feature vectors (Jain et al., 2000). Widely used is the Bayesian technique (based on 



the Bayes theorem, see Pratt et al. (2008)), where the recognition is made according to the object’s 
maximum probability to belong to each of the classes, given a certain observation vector (Duda et 
al., 2001). Apart from the latter, all other techniques are qualitative-oriented rather than 
quantitative. 

In Appendix A, we outline the hybrid Bayesian PR classifier of Tenekedjiev et al. (2006). 
There are several reasons why that classifier is suitable for TDS in processing industry: 

a) New data formats are employed for data presentation allowing the observation vector to 
operate on four types of features: discrete, pseudo-discrete, multi-normal and independent 
continuous.

b) The Bayesian approach has a minimal overall error of classification from all other 
approaches as discussed by Duda et al. (2001) 

c) It is possible to train the selected classifier utilizing the frequentist and the subjective 
definition of probabilities and even to combine them.

d) The proposed classifier uses fuzzy techniques in the data presentation, in the learning data 
fusion, in the learning phase and in the recognition phase.

e) The posterior probabilities for each state are calculated and they can in turn be the input to 
a general decision support system about the maintenance of technical objects (see Gammack et al. 
2011)

f) This classifier adapts very well on one hand to the changes in the object (caused by aging) 
and on the other hand – to the changing quality and quantity of the learning information. 

Other examples for hybrid approaches can be found in Hadjiski and Doukovska (2012) 
(hybrid neuro-fuzzy network classifiers), and Tonon et al. (1999) (for hybrid fuzzy and statistical 
classifier). 

The objective of this paper is to discuss the sources and methods of learning information for 
pattern recognition and then present elaborate methods for parameter estimation of conditional 
likelihood density functions using four types of feature descriptions. As a result, we will present 
procedures to build non-linear machine of discriminant functions for multi-class classification of 
technical state of equipment. We will apply the hybrid Bayesian classification approach for 
technical diagnostics of turbomachinery used for ammonia synthesis. In Section 2 we discuss the 
various sources and methods for collection of learning information for PR. In Section 3 we analyse 
different methods to process learning information to estimate parameters of the conditional 
likelihood density functions in the hybrid Bayesian PR classifier using three methods. In Section 4, 
we formulate the non-linear machine of discriminant functions for classification and transform the 
discriminant functions into posterior probabilities, assessed by that hybrid Bayesian PR classifier. 
Section 5 gives a case study for the application of the hybrid Bayesian PR classifier in ammonia 
production. 

2. Sources of learning information used in the hybrid Bayesian classifier
For the construction of a Bayesian classifier of type (A.1) it is necessary to estimate the 
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For the conditional likelihood densities’ estimation, a hybrid parametric-nonparametric 
approach is employed like the recently developed semi-parametric density estimation approach 



(Hoti and Holmstrom, 2003). The entities for the conditional likelihood densities’ estimation are 
called parameters, just for the sake of simplicity. 

Two main sources of learning information are used for parameter estimation: training samples 
and experts estimates for the conditional likelihood densities’ parameters.

The training sample  for class k contains nk couples. Each   1 2k
k xk

l klx L | l , , ,n   
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The fuzzy confidence coefficient of the expert  facilitates the data fusion of the    0; 1k x
jL 

learning information and allows learning not only from measurement of S itself, but also from 
observations of similar objects of S. 

The expert information for class k can be divided into four groups: the conditional 
probabilities of the discrete features, the conditional probabilities of the pseudo-discrete features, 
the parameters (mean values, standard deviations, and correlation coefficients) of the multi-normal 
features, and the conditional quantiles of the independent-continuous features of S. Each group 
exists in its entirety or is absent altogether. All parameters can be directly or indirectly estimated by 
experts as suggested by Brown (2005). 

The expert information about the conditional probabilities of the discrete features 
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The fuzzy confidence coefficient for the dfi conditional probabilities’ estimates     0; 1k d
iL 

increases with the confidence of the expert.
The expert information about the conditional probabilities of the pseudo-discrete features 

 for class k contains t couples (for further discussion on pseudo       1 2p k p k p
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The fuzzy confidence coefficient for the pfi conditional probabilities’ estimates     0; 1k p
iL 

increases with the confidence of the expert.
The expert information about the distribution of the multi-normal features 
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The expert information about the conditional quantiles of the independent-continuous features 

 for class k contains g couples. Each couple consists of expert       1 2i k i k i
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increases with the confidence of the expert.
The count of the fuzzy confidence coefficients is [c(a+t+g+1.5e+0.5e2)]. They are useful for 

the data fusion of the learning information.
Alternatively, the experts can use preferential equations for elicitation of their parameter 

estimates. The elicitation process usually takes the form of a series of simple questions in each of 
which the expert needs to compare two options by her preference. Those options’ structure depends 
on the type of elicited parameter. Quantitative decision analysis (QDA) measures uncertainty of an 
event through subjective probability elicited by such a series of questions. Each of the discrete 
probabilities (12) and pseudo-discrete probabilities (13) can be elicited by a procedure advised in 
(French, 1993, 237-244; French and Insua, 2010, pp. 74-76) because they relate to well defined 
random events. A similar QDA-procedure exists for elicitation of a subjective quantile from the 
Cumulative Distribution Function (CDF) of a one-dimensional random variable (r.v.) (see Pratt et 
al. (2008, pp. 150-155)). If applied, that would result directly in expert estimates for conditional 
quantiles (17) as well as for the mean values (14). The latter is true because the mean value 
coincides with the median (the 0,5-quatile) when the marginal distribution of cfi is normal. The 
experts’ estimates for standard deviations (15) and for correlation coefficients (16) cannot be 
elicited directly. The reason is that both are moments of the distribution and any statement about 
their value is unverifiable (French, 1993, 235-236). However, one can obtain QDA-estimates for 
(15) and (16) by applying the weighted least square procedures proposed by Nikolova et al. (2010).  
The first procedure elicits the upper and lower quartile for the marginal distribution of cfi using the 
above-mentioned quantile elicitation method.  It finds the expert estimates (15) as the standard 
deviation of the normal distribution with the best goodness-of-fit measure. The second procedure 
elicits the medians of four conditional distributions: the cfi distribution provided that the cfj is set on 



its lower quartile, the cfi distribution provided that the cfj is set on its upper quartile, the cfj 
distribution provided that the cfi is set on its lower quartile, and the cfj distribution provided that the 
cfi is set on its upper quartile. It finds the expert estimates (16) as the correlation coefficient of the 
bi-normal distribution with the best goodness-of-fit measure.

Any elicited estimates for the parameters of the conditional likelihood functions obtained by 
QDA-preference equation-procedures are in an interval form usually due to limitations in the 
discrimination power of the real experts. The tighter the uncertainty interval of an estimate, the 
larger the fuzzy confidence coefficient of that parameter should be.

3. Parameter estimation in the hybrid Bayesian classifier
The existence of learning information in the form of training samples and in the form of 

expert estimates enables the system to apply the hybrid frequentist-subjective approach to 
probabilities.

If nk is big ‘enough’ then the conditional likelihood density parameters for class k can be 
estimated by the maximum-likelihood method:
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for i=1,2,…, e-1; j=i+1, i+2, …, e; k=1,2,…, c (22)

The maximum likelihood estimate of the conditional quantiles for the independent continuous 
features is not as straightforward as the above formulae. One can get the estimates using the 
following procedure -times for calculating  m g c 

j
k

,iz .

a. Extract the observations in  for ifi:k
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and z1,i are respectively the minimum and maximum allowed value of ifi. Then form sorted 

observations in  for ifi:  .k  
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, for l=1, 2, …, nk+1 
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The function interp1 "looks-up" the  in  and based upon its location, returns the value  j T ,
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linearly interpolated within the elements of  (Mathworks, 2018).zT
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If nk is 0 then the conditional likelihood density parameters for class k must be taken from 
experts estimates:

, for i=1,2,…, a; j=1,2,…, bi; k=1,2,…, c, (24) k ek
j ,i j ,ip p

, for i=1,2,…, t; j=1,2,…, hi; k=1,2,…, c, (25) k ek
j ,i j ,iq q

, for i=1,2,…, e; k=1,2,…, c, (26) k ek
i i 

, for i=1,2,…, e; k=1,2,…, c, (27) k ek
i i 

, for i=1,2,…, e-1; j=i+1, i+2, …, e; k=1,2,…, c (28) k ek
i , j i , jr r

, for i=1,2,…, g; j=1,2,…, m; k=1,2,…, c. (29) 
j j

k ek
,i ,iz z 

In all other cases, we have some data in the learning sample and some expert estimates for 
class k. Then, it is possible to apply pseudo-Bayesian fusion of both the frequentist and the 
subjective parameter estimates. In that fusion we use the notion that fully reliable expert estimate 
should be equal to an estimate of approximately 20 observations:

, for i=1,2,…, a; j=1,2,…, bi; k=1,2,…, c, (30)
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, for i=1,2,…, t; j=1,2,…, hi; k=1,2,…, c, (31)
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, for i=1,2,…, e; k=1,2,…, c, (32)
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, for i=1,2,…, e; k=1,2,…, c, (33)

       

   
1

1

20

20

k

k

n k x k x k k e
i i il

k l
i n k x k

il
l

L L

L L





 
 














, for i=1,2,…, e-1; j=i+1, i+2, …, e; k=1,2,…, c (34)
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, for i=1,2,…, g; j=1,2,…, m; k=1,2,…, c. (35)
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4. Discriminant Function Formation
The direct calculation of the value of the conditional likelihood density if S is in ωk (A.3) 

using (A.6), (A.11), (A.21), (A.23) and (A.27) is never a good idea. The reason is that the resulting 
formula will have multiple positive values less than 1 multiplied. It can often lead to underflow 
error, or to catastrophic loss of precision of the calculations. Almost as a standard, instead of the 
conditional likelihood densities (A.3), c number of discriminant functions Fk are calculated. The 
discriminant function Fk is defined as the dependent on the class k part from the natural logarithm of 
the posterior probability : kP | x 

, for k=1, 2,…, c (36)
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In (36), A is calculated using (A.17),  is calculated using (A.14),  are calculated using    i
kip x |

(A.27), the membership functions  are calculated using (A.9), and:  p
j ,i ix

, for k=1, 2,…, c (37)
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In the case of equal covariance matrices (A.22), the dependence (36) simplifies slightly to

, for k=1, 2,…, c (38)
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where 

, for k=1, 2,…, c (39)
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A stable numerical scheme to calculate the posterior probabilities from the discriminant 
functions is



, for k=1, 2,…, c (40) 
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In general, the classification is done by finding appropriate discriminant functions for each 
class. Each assigns a real number to the measurement vector. The latter is assigned to that class 
which has the largest discriminant function value (Klir and Yuan, 1995, p. 358). So, the 
classification may be conducted using any type of non-linear machine, where the discriminant 
function may not be interpreted as dependent on the class k part from the natural logarithm of the 
posterior probability. Then (40) may also be utilized, yet the result would not be some posterior 
probabilities, but a quasi-probability (Wang and Klir, 2009).

During maintenance of turbomachinery, it is necessary to not only know the status at a given 
moment, but also judge on the change of that status, its direction and its speed (i.e. how fast does 
the change occur). Practically speaking, the task here is to develop a fully functional system, which 
classifies and makes conclusions (forecasts) if there is a fault that might develop in time. If so – 
then we need to identify that fault and predict when it is going to start to explicitly dominate the 
technical status of the machine. 

Collecting enough dynamic learning information is a complex, expensive, slow and almost 
impossible process. Therefore, we try to solve the problem of fault prediction based on enough 
static information to create the classificator. The dynamic information for the process of technical 
system deterioration is encoded in M count of input observations in various moments of time ti. This 
results in a multi-dimensional linear trend with varying critical values determined by the 
classificator. 

Let the forecasting sample X contains M observations , measured in times t1, t2, 1 2 Mx ,x , ,x  
…, tM, where ti<ti+1 for i=1, 2,…, M–1. The purpose is to give one of the following four types of 
answers:

1) There is more than a single most probable class
2) The class number  has tendency to stay the most probable
3) The status will change from class  to class  
4) The status will change from class number  to class number  after time T – tM after the  

last measurement

The meaning of the first type of answer is to realize the physical essence of forecasting, i.e. 
the fully-functional status dominates in the analysed moments of time, while faults are only in 
development, but have not occurred (explicitly) yet. There are many methods to solve the tasks of 
identifying one of the four types of answers. A novel algorithm is presented below.

Algorithm 1: Prediction without dynamic learning

1. Using hybrid Bayesian classificator, we calculate the discriminant functions   for  k i k ,iF x F


each observation , for i=1, 2, …, M and each class k=1, 2, …, c. We need to calculate 1 2 Mx ,x , ,x  
the most probable class  in the moment t1:  = arg{max(Fk,1)}. If  is different from   
arg{max(Fk,1)} for any i=2, 3, …, M, then the answer of first type is the correct one. We can also 
assume that  is the fully-functional class to support the physical essence of forecasting.
2. Recalculate  for each observation , for i=1, 2, …, M and each class k=1, 2, …, c k ,iF 1 2 Mx ,x , ,x  

into posterior probabilities  using formula (40).k ,iP
3. Calculate the backward discriminant functions .   k i k ,i k ,iG x G ln P 



4. For each of the k classes, construct the predicted discriminant functions Gk(t)=akt+bk, using the 
pairs t1–Gk,1, t2–Gk,2, …, tM –Gk,M. We can use ordinary least square without weighing. 



Alternatively, if we want to increase the influence of the last observations we can use weighted least 
square with weight coefficients equal to either time ti (correction by time) or i (correction by 
observation number) 
5. The line  crosses the lines Gk(t) for k , where the crossing point has a coordinate Tk. If ak  G t  

is lower or equal to  , then Tk is set to . a 

6. Let T be the minimum of Tk and  is the argument of the minimum of Tk.
7. If T is  then the second type of answer applies. 
8. If T<tM, then the third type of answer applies. 
9. If neither of the above is true, then the fourth type of answer applies. 

Figure 1 presents an example to demonstrate the fourth type of answer. We have four 
observations made in four moments of time (M=4) – t1, t2, t3 and t4 to classify the status of an object 
into c=3 classes. We have utilized linear models of type Gk(t)=akt+bk. The resulting classification 
indicates that =2 and =1.  

Figure 1. Demonstration of the fourth type of answer for prediction 
of four measurements into three classes

We selected linear models for each class because of the following considerations:

- If the forecasted effect has started to develop visibly in moment tj, then there is no point in 
collecting large sets of observations for the time before tj 

- Defects develop with different speed and it is hard to collect a large set of observations after 
the moment tj

- The linear model is largely robust, i.e. insensitive to noise in the input data 
- The linear model is applied to various non-linearly related parameters using the discriminant 

function
- It is not mandatory to have good linear models for every class. Of importance is mostly the 

quality of the linear models for the classes that define the forecast



5. Practical application
We have applied the proposed hybrid Bayesian Classifier for technical diagnostics of the 

turbomachines included in an ammonia synthesis loop in a nitrogen fertilizer plant. The 
technological scheme of the production is given in Figure 2. The feedgas has a discharge of 72000 
Nm3/h (normal cubic meters per hour). It contains 73% Hydrogen, 26.2 % Nitrogen, 0.6% Methane, 
and 0.2% Argonne. Four consecutively connected compressors increase the pressure of the feedgas 
from 22.5 bar to 270 bars. Anhydrous liquid ammonia with discharge of 2600 kg/m is produced in 
the ammonia synthesis column. The latter is part of a recirculation loop with a recirculation rate of 
5.5 times. The compressors are powered by a SEG 25 steam turbine, which is situated in the middle 
of the compressor train. The turbine is a single casing, non-reheat two-section, arranged in series, 
with one inter-section steam extraction. The extracted steam as well as the exhausted steam after the 
low-pressure section are used for technological purposes. All compressors are centrifugal, single-
shaft, multiple stage, barrel type, with vaneless diffusors. The first one, 2BCL408, is an eight stage, 
with back-to-back arranged two sections, and with inter-stage cooler (H1801). Let us denote the 
first section with 1A and the second section with 1B. The second compressor (denoted as 2), 
BCL407 is a seven stage, single section. It sucks the feedgas from the external cooler H1802, which 
is after the first compressor. The third compressor (denoted as 3), BCL306 is a six stage, single 
section. It sucks the feedgas from the external cooler H1803, which is after the second compressor. 
The fourth compressor, 2BCL306, is a 6 stage, with back-to-back arranged two sections. The first 
section (denoted as 4) of 2BCL306 has five impellers. It sucks the feedgas from the external cooler 
H1804, which is after BCL306 and discharges the gas in the recirculation loop through the external 
cooler H1805. The feedgas movement in the recirculation loop is powered by the sixth impeller of 
2BCL306. This last stage forms the second section (denoted as 4P) of the compressor.

Figure 2. Technological scheme of ammonia production

We have developed series of classifiers for technical diagnostics of different elements of the 
turbomachinery train. One such classifier is described in (Tenekedjiev et al., 2006). It monitors the 
gas flow section of the four compressors by determining the posterior probabilities for c=13 classes: 
“no faults” and 12 faults. Six of the faults refer to labyrinth packing aging of the gas side seals. 
Another six refer to broken rubber O-rings. The observation vector consisted of 34 features: a=11 



discrete (each with bi=3 nominal value), t=5 pseudo-discrete (each with hi=2 typical sub intervals) 
and e=18 multi-normal continuous.

The first 5 discrete features are the presence of oil in the draining cage of each intermediate 
cooler with b1=b2=b3=b4=b5=3 nominal values of ‘no oil’, ‘traces of oil’, and ‘obvious oil presence’. 
The next 5 discrete features represent the type of compression ratio drop in each of the compressor 
section 1A, 1B, 2, 3, and 4. The nominal values for any of these features are: ‘no obvious decrease 
of the actual compression ratio from the scheduled one’, ‘smooth decrease of the actual 
compression ratio from the scheduled one’, and ‘sharp decrease of the actual compression ratio 
from the scheduled one’. The last discrete feature is the type of compression increment decrease in 
the recirculation section 4P with nominal values of ‘no obvious decrease of the actual compression 
increment from the scheduled one’, ‘smooth decrease of the actual compression increment from the 
scheduled one’, and ‘sharp decrease of the actual compression increment from the scheduled one’.

The 5 pseudo-discrete features were formed as the quotients of the actual compression ratios 
and the scheduled compressor ratios at the current working regime for 1A, 1B, 2, 3 and 4. For all 
pseudo-discrete features the first typical sub-interval ‘no increase’ was set from D1,i=0.5 to U1,i=1, 
whereas the second typical sub-interval ‘increase’ was set from D2,i=1.02 to U2,i=2. 

The first multi-normal continuous feature was the RPM of the compressors shafts. The next 
10 multi-normal features were selected as the input and output temperature (in oC) of the gas 
mixture for 1A, 1B, 2, 3 and 4. The next 5 multi-normal features represented the discrepancies 
between the compression ratios and the nominal compression ratios at the current working regime 
for 1A, 1B, 2, 3 and 4. The 17th multi-normal feature is the discrepancy (in bars) between the actual 
output pressure and the scheduled output pressure at the current working regime at the exhaust 
valve of 4. The 18th multi-normal feature is the discrepancy (in bars) between actual compression 
increment and the scheduled compression increment at the current working regime for the 
circulation section 4P.

We used both a training sample and expert estimates in the conditional likelihood density 
parameter estimation (with the expert estimates confidence coefficients being very high for the 
conditional probabilities of the discrete and pseudo-discrete features and satisfactory for those of 
the multi-normal features). Learning was performed with identical within-class covariance matrix 
for all classes, estimated mainly based on the ‘no fault’ training sample information. After several 
improvements, the demonstrated system achieved 93% of agreement between the expert panel 
opinion and the system output over artificially generated samples.

Table 1 gives information about four measurements of the system, made on the 15th, 45th, 75th 
and 135th day after main repair. We perform prediction in the 13 classes previously defined and 
calculate the discriminant functions Fk,i in all four measurement points (i=1, 2, 3, 4) (see rows 2, 3, 
4, and 5 of Table 1). Using Algorithm 1, we recalculate the discriminant functions Fk,i to posterior 
probabilities Pk,i first (see rows 6, 7, 8 and 9 of Table 1), and then to backward discriminant 
functions Gk,I (see rows 10, 11, 12 and 13 of Table 1). For each class, the four backward 
discriminant functions are then approximated with linear models, whose linear parameters ak and bk 
are given in rows 14 and 15 of Table 1. The result of the prediction is that based on correction by 
item number, step 9 of Algorithm 1 makes a prediction of type 4 as follows: the most probable is 
class 8 – “labyrinth packing aging of compressor 3” and the aging will occur up to 81 days after last 
measurement. The result is also demonstrated in Figure 3 where the two important classes – 1 and 8 
– are depicted. Row 16 of Table 1 gives the R2 of the linear models. For classes 1 and 8 we have 
high R2 values (of 0.74 and 0.78 respectively), so the linear models are of good quality. This does 
not hold for the models of some of the other classes (reaching R2 as low as 0.013). However, this 
does not diminish the reliability of prediction because in this case the important classes are 1 and 8. 
The other two methods (no correction and correction by time) give similar results. For the case of 
no correction the R2 values for classes 1 and 8 are respectively 0.72 and 0.73 with Tk=190 and the 
aging will occur up to 54 days after last measurement. For the case of correction by time the R2 
values for classes 1 and 8 are respectively 0.81 and 0.85 with Tk=230 and the aging will occur up to 



96 days after last measurement. Evidently, predictions are practically the same for the three 
methods. This demonstrates that the prediction is robust. 

Table 1. Two types of discriminant functions, posterior probabilities, coefficients of the linear 
model, R2 and Tk of prediction problem with four measurements in 13 classes

classes 1 2 3 4 5 6 7 8 9 10 11 12 13
Fk,1 -2.5e+0 -7.2e+0 -1.1e+1 -8.1e+0 -8.7e+0 -1.0e+1 -9.4e+0 -6.4e+0 -5.4e+0 -6.2e+0 -1.0e+1 -6.0e+0 -8.3e+0
Fk,2 -1.3e+0 -5.5e+0 -6.4e+0 -6.3e+0 -4.7e+0 -4.8e+0 -4.8e+0 -3.3e+0 -4.4e+0 -5.5e+0 -4.6e+0 -5.7e+0 -5.2e+0
Fk,3 -1.1e+0 -5.3e+0 -4.7e+0 -5.8e+0 -4.1e+0 -6.1e+0 -6.1e+0 -3.1e+0 -5.9e+0 -3.6e+0 -4.7e+0 -5.8e+0 -3.6e+0
Fk,4 -1.2e+1 -1.7e+1 -1.7e+1 -1.7e+1 -1.7e+1 -1.8e+1 -1.7e+1 -1.4e+1 -1.4e+1 -1.6e+1 -1.6e+1 -1.8e+1 -1.7e+1
Pk,1 +8.7e-1 +7.9e-3 +1.3e-4 +3.0e-3 +1.7e-3 +3.4e-4 +8.2e-4 +1.6e-2 +4.5e-2 +2.0e-2 +3.3e-4 +2.6e-2 +2.6e-3
Pk,2 +7.3e-1 +1.1e-2 +4.2e-3 +4.6e-3 +2.3e-2 +2.1e-2 +2.2e-2 +9.6e-2 +3.1e-2 +1.1e-2 +2.7e-2 +8.5e-3 +1.5e-2
Pk,3 +6.9e-1 +1.0e-2 +1.8e-2 +6.2e-3 +3.3e-2 +4.3e-3 +4.7e-3 +9.4e-2 +5.3e-3 +5.7e-2 +1.9e-2 +6.4e-3 +5.3e-2
Pk,4 +6.7e-1 +5.0e-3 +4.4e-3 +7.7e-3 +7.6e-3 +2.3e-3 +5.4e-3 +1.8e-1 +7.7e-2 +1.7e-2 +1.7e-2 +2.3e-3 +6.0e-3
Gk,1 -1.3e-1 -4.8e+0 -8.9e+0 -5.8e+0 -6.4e+0 -8.0e+0 -7.1e+0 -4.1e+0 -3.1e+0 -3.9e+0 -8.0e+0 -3.6e+0 -5.9e+0
Gk,2 -3.2e-1 -4.5e+0 -5.5e+0 -5.4e+0 -3.8e+0 -3.8e+0 -3.8e+0 -2.3e+0 -3.5e+0 -4.5e+0 -3.6e+0 -4.8e+0 -4.2e+0
Gk,3 -3.7e-1 -4.6e+0 -4.0e+0 -5.1e+0 -3.4e+0 -5.4e+0 -5.4e+0 -2.4e+0 -5.2e+0 -2.9e+0 -4.0e+0 -5.1e+0 -2.9e+0
Gk,4 -4.0e-1 -5.3e+0 -5.4e+0 -4.9e+0 -4.9e+0 -6.1e+0 -5.2e+0 -1.7e+0 -2.6e+0 -4.1e+0 -4.1e+0 -6.1e+0 -5.1e+0
ak -1.5e-3 -6.6e-3 +1.1e-2 +6.4e-3 -2.2e-3 -3.7e-3 +1.4e-3 +1.3e-2 +1.1e-2 -1.2e-3 +1.3e-2 -1.7e-2 -5.1e-3
bk -2.2e-1 -4.3e+0 -6.3e+0 -5.7e+0 -4.2e+0 -5.3e+0 -5.3e+0 -3.4e+0 -4.6e+0 -3.7e+0 -5.5e+0 -3.7e+0 -3.9e+0
R2 +7.4e-1 +7.1e-1 +2.7e-1 +9.1e-1 +7.3e-2 +5.3e-2 +5.9e-2 +7.8e-1 +1.9e-1 +1.3e-2 +3.5e-1 +9.6e-1 +7.4e-2
Tk   +4.9e+2 +6.9e+2   +1.8e+3 +2.2e+2 +3.4e+2 +1.1e+4 +3.6e+2  

Figure 3. Linear trend of the modified discriminant functions
on backward discriminant nodes for classes 8 and 1. The dashed-dotted line 

is the point of change of the class

In this paper, we describe classifiers of technical state of the journal bearings of the 
turbomachinery train. The four radial bearings of 2BCL408 and BCL407 are hydrodynamic, split 
journal bearings with four ball and socket tilting pads each. The six radial bearings of the 
compressors BCL306, 2BCL306 and the steam turbine SEG25 are hydrodynamic split journal 
bearings with five self-aligning tilting pads each. A tilting pad is free to rotate about a pivot 
mounted on the inner housing. When rotating, the shaft is supported by the oil wedges between the 
sharp and the pads. This improves both the stability of the oil film and the rotor-dynamic stability. 



For each bearing, we measure a vibrosignal in the horizontal and vertical plane using piezoelectric 
sensors, fixed to the bearing housing. The sensor signal is proportional to the vibro-acceleration, 
which is integrated once to obtain the vibro-velocity. There are two additional eddy-current sensors 
mounted on each bearing except for the outer bearing of 2BCL408 and 2BCL306. The eight eddy-
current sensors measure a signal proportional to the relative vibro-displacement between the shaft 
and the pad support disk. They are fixed to the pad support disks through the outer housing. 

All 36 vibro-signals can be recorded and transferred to a PC for pre-processing. The root 
mean square (RMS) and the autocorrelation function of each signal is calculated. The RMS is 
proportional to the vibro-energy. The autocorrelation function is transformed to amplitude spectral 
density (ASD) using the Fourier integral. The vibro-displacement is fully and automatically 
compensated for deviations of ideal concentricity of the shaft and for the electrical non-
homogeneity of the path of the rotor, on which the sensor is pointed. This is possible thanks to an 
additional processor, which subtracts a signal measured at low RPM of the shaft from the measured 
vibro-displacement. 

Experimental observations demonstrate that the vibro-signals:
 only slightly depend on the type of bearings’
 depend on the plane, in which the sensors are placed – vertical or horizontal
 strongly depend on the type of sensors – absolute or relative
 strongly depend on the degree of load of the compressor (i.e. on the RPM of the 

turbine)
As a result, two types of vibro-classifiers are constructed:

 first type that processes the vibro-velocity measured by the two absolute sensors at 
nominal load of the compressor

 second type that processes vibro-displacement measured by the two relative sensors at 
nominal load of the compressor

The first type is utilized for diagnostics of the 10 journal bearings of the turbomachinery train. 
The second type is utilized for diagnostics of the 8 inner journal bearings of the turbomachinery 
train. Each of the 18 classifiers defines the technical state as one of the following c=6 classes: 1) 
“no faults”; 2) “rotating unbalance of the shaft”; 3) “angular misalignment”; 4) “aging of the pads”; 
5) “increased maximum static clearance between the shaft and the pads”; 6) “disrupted lubrication”. 

The observation vector consists of 15 continuous features:
1. Percentage change of the actual increase from the input to the output temperature of the 

bearing lubricant (in % from the scheduled increase at the current working condition from the input 
to the output temperature of the bearing lubricant).

2. RMS of the vibro-signal on the horizontal plane (in mm/sec for the absolute sensors and in 
 for the relative sensors).m

3. Amplitude of first harmonic for the horizontal ASD i.e., the value of the horizontal ASD at 
the fundamental frequency, (in mm/sec for the absolute sensors and in  for the relative sensors).m

4. Amplitude of the second harmonic for the horizontal ASD i.e., the value of the horizontal 
ASD at twice fundamental frequency (in % from feature 3).

5. Amplitude of third harmonic for the horizontal ASD i.e., the value of the horizontal ASD at 
trice fundamental frequency (in % from feature 3).

6. Amplitude of fourth harmonic the horizontal ASD i.e., the value of the horizontal ASD at 
quadruple the fundamental frequency (in % from feature 3).

7. Amplitude of the maximal subharmonic for the horizontal ASD i.e., the maximal value for 
the horizontal ASD at a frequency less than the fundamental (in % from feature 3).

8. Amplitude of the maximal high interharmonic for the horizontal ASD i.e., the maximal 
value for the horizontal ASD at a frequency greater than the quadruple fundamental frequency (in 
% from feature 3).



9. RMS of the vibro-signal on the vertical plane (in mm/sec for the absolute sensors and in 
 for the relative sensors).m

10. Amplitude of first harmonic for the vertical ASD value, that is the value of the vertical 
ASD at the fundamental frequency, (in mm/sec for the absolute sensors and in  for the relative m
sensors).

11. Amplitude of the second harmonic for the vertical ASD i.e., the value of the vertical ASD 
at twice fundamental frequency (in % from feature 10).

12. Amplitude of third harmonic for the vertical ASD i.e., the value of the vertical ASD at 
trice fundamental frequency (in % from feature 10).

13. Amplitude of fourth harmonic the vertical ASD i.e., the value of the vertical ASD at 
quadruple fundamental frequency (in % from feature 10).

14. Amplitude of the maximal subharmonic for the vertical ASD i.e., the maximal value for 
the vertical ASD at a frequency less than the fundamental (in % from feature 3).

15. Amplitude of the maximal high interharmonic for the vertical ASD i.e., the maximal value 
for the vertical ASD at a frequency greater than the quadruple fundamental frequency (in % from 
feature 10).

Initially, it was assumed that all the 15 coordinates were multi-normal (e=15) for the two 
types of classifiers (the relative and the absolute one). For both classifiers, we used almost 
exclusively expert estimates in the conditional likelihood density parameter estimation (with the 
expert estimates confidence coefficients being very high for the mean values, satisfactory for 
standard deviations and low for the correlation coefficients). The training samples were available 
mostly for class 1 (“no faults”). The learning was performed with identical within-class covariance 
matrix for all classes. Initially, the relative sensor classifier achieved 71% of agreement between the 
expert panel opinion and the system output over artificially generated samples. The same 
percentage for the absolute sensor classifier happened to be 64%. Since the results were not 
satisfactory, especially for the absolute sensors, we replaced features 7, 8, 14 and 15 from multi-
normal to independent continuous features, estimated on 7 quantile indices: 

. The classifier with the absolute sensors substantially improved 0 05 0 2 0 4 0 5 0 6 0 8 0 95. . . . . . ., , , , , ,      
its results and reached 75% agreement. However, the results from the classifier with the relative 
sensors deteriorated and dropped to 67%. Therefore, finally the 10 classifiers on absolute sensors 
work with 15 features, of which e=11 multi-normal (1-6, 9-13) and g=4 independent continuous 
features (7, 8, 14, 15). The 8 classifiers on relative sensors work with 15 features, all of which are 
multi normal (e=15). 

To improve the precision of classification, we modified the hybrid Bayesian PRS presented. 
The main goal was to incorporate two empirical rules regarding the proxy vibration V, which is the 
sum of RMS in the horizontal and the vertical plane:

1) if V is substantially lower than the first marginal rate of the sub-failure vibrations (2.8 
mm/sec vibro-velocity and 18  vibro-displacement), then the classification should indicate class m
1 regardless of the values of the other features. 

2) if V is around or above the first marginal rate of the sub-failure vibrations, then the 
classification should not indicate class 1 regardless the values of the other features. 

An additional goal of the modification was to produce a system very sensitive to emerging 
faults especially at the early stages of fault development. The modification was called classification 
with pseudo priors:

1) Calculate V as sum of the 2nd and 9th feature.
2) Set the parameters PM1 and PM2 according to the type of classifier. (Here: PM1=1  m

and PM2=2  for absolute sensors, whereas PM1=10 mm/sec and PM2=12 mm/sec for m
relative sensors).

3) Calculate the pseudo-priors as a function of V (see Figure 4):
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Formula (42) holds for k=2, 3, …, c
4) Add  to the discriminant function of the k-th class . kln PP     kF x

The general form of the pseudo-priors for c=6 classes of state if given on Figure 4. 

Figure 4. Relation between the proxy vibration V and the pseudo-priors for c=6 classes of state

The application of the classification with pseudo priors increased the agreement the 
agreement between the expert panel opinion and the system output over artificially generated 
samples for the relative sensor classifier to 80% and to 83% for the one with absolute sensors. 

6. Conclusions
Our proposed method for prediction has many advantages, especially when compared to the 

three widespread alternative approaches – predicting trends of the physical measurement, predicting 
trends of the posteriors, and predicting trend of the discriminant functions. 

The simplest prediction idea is to form linear trends of the coordinates of   in the physical x

space of the observations. However, in the presence of a discrete part , it is impossible and  dx

incoherent to make solid prediction based on a linear model.



On the other hand, prediction by posterior probabilities is doubtful as in any given moment of 
time the predicted values P1(t), P2(t), …, Pc(t) may lose their probabilistic nature (i.e. they may exceed 
one or be negative or their sum does not add up to one). 

A good side of forecasting by discriminant functions Fk(t) is that in any given time it is possible 
to recalculate them to coherent posterior probabilities. They are defined as that part of the posterior 
probabilities’ logarithm that is dependent on the class. The part that is independent of the class, 
however, is an arbitrary additive constant. Therefore, from a classification stand point, the arbitrary 
nature of the constant is of no importance. Yet if we need to capture the trend of change it makes a 
huge difference (see for example rows 2-5 of Table 1 as well as Figure 1). If we do not know the 
additive constant, then it is needless to explore the trends as the trends would be purely random. 
Therefore, forecasting by discriminant functions will give poor results. 

It is obvious that the three alternative prediction approaches give questionable results. In our 
proposed novel algorithm, we use the logarithm of the posterior probabilities to find the backward 
discriminant functions for nodes of the linear trend. The backward discriminant function is a 
discriminant function by its own right. However, the predicted discriminant functions Gk(t) are not 
random because the nodes do not contain an arbitrary additive constant.

The stage of development of the mathematical background of pattern recognition is so high 
that practically any method would work well if there is a good number of training samples. 
Unfortunately, such training samples are only present for the no-fault class with training samples 
for the other classes in very short supply. Such problems are also known as imbalanced and cause 
huge problems for practical pattern recognition (Barandela et al., 2003). This is another reason why 
using systems that can utilize subjective information is a recommended approach. 

The paper offered a discussion on the ways to represent learning information and the sources 
for obtaining the later. Three types of parameter estimation of conditional likelihood density 
functions were incorporated in the hybrid Bayesian classifier: 1) using only training samples; 2) 
using only expert information; 3) pseudo-Bayesian data fusion approach. These parameters were 
used to create a non-linear machine for classification consisting of one discriminant function per 
each class. The final product uses fuzzy concepts in the data presentation, the parameter estimation, 
the learning and the pattern recognition phases to ensure that the resulting classification is optimum 
at any quality and quantity of learning information. Such a classifier is of crucial importance for 
technical diagnostics of equipment in processing industry, where the aggressive production 
conditions cause rapid aging effects and the learning information increases with the time for 
operation. We provided example of such an application for turbomachinery in ammonia synthesis. 

The hybrid Bayesian PR classifier may have other components in addition to the ones 
discussed here. It allows integration into larger-scale data processing systems that also perform 
feature selection, visualization, technical forecasting, clustering, data generation, etc. Those 
components are beyond the scope of the current paper, yet they speak of the versatile essence of the 
approach and its practical value.

It is unreasonable to believe that any classification system is applicable for technical 
diagnostics of any equipment. The heuristic knowledge either from expert opinion or from data 
mining (Alonso and Espin Andrade, 2013) in any form should be utilized as modifications of the 
basic nonlinear machine (see Receo-Garcia et al. (2010)). The presented pseudo-priors modification 
of the hybrid Bayesian PR classifier for the technical diagnostics of the turbomachinery journal 
bearings is an example of such an approach. This is a rule more than an exception in any practical 
application (Hadjiski, Doukovska, 2013). 

In the hybrid Bayesian PR classificator the training process is brought down to assessment of 
parameters. There are many methods in QDA about parameter estimation, probability estimation, 
numerical characteristics estimation (e.g. probability quantiles), etc. Some of those techniques for 
example would be suitable to construct the conditional distributions of the multi-normal features. If 
experts apply the PR techniques, then we expect that they have sufficient statistical skills to handle 
the estimation themselves. For those not so knowledgeable in the field of stochastic uncertainty 



assessment there are formalized techniques to extract quantitative estimates of those parameters. 
This implies that estimates would be subjective, but not arbitrary.
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Appendix: Hybrid Bayesian PR System

A1. Hybrid Bayesian PR System Features
Let’s assume that the technical state S of an equipment at a given moment of time belongs to 

one of c classes of state ωk, for k=1,2,…,c. A formal description of S often comes in the form of a 
multi-dimensional observation vector , whose features are measurable. The objective of the x

Bayesian PR is to assess the c posterior probabilities P(ωk| ) for S to be in the different classes:x

, for k=1, 2,…, c                      (A.1)     
   
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k k k
k c
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In the so called Bayes theorem (Bayes, 1763), the densities of the conditional likelihoods fk( x

|ωk) are proportional to the probability for observing , if S belongs to ωk. The base rates P(ωk) x

(a.k.a. priors) are the probability that S belongs to ωk when  is not known. They can be assessed x

subjectively, but better to calculate them proportional to the failure rates for each class (Ebeling, 
2010, pp. 28-30).

The observation vector , may contain four types of features:x

A1.1) A set of a discrete features dfi, each with bi possible nominal values dfd1,i, dfd2,i, …,

, and grouped into an a-dimensional vector , where  is the ib ,idfd         1 2

Td dd d
ax x ,x , ,x

   d
ix

observed value of dfi;
A1.2) A set of t pseudo-discrete features pfi each with hi typical sub-intervals and grouped 

into a t-dimensional vector , where  is the observed value of pfi. It is         1 2

Tp p pp
tx x ,x , ,x

   p
ix

said that  has fallen into the jth sub-interval when , but  has fallen into  p
ix  

1 1
p

j ,i j ,iix U ,D    
 p
ix

the jth typical sub-interval when , where Dj,i and Uj,i are respectively the lower and  p
j ,i j ,iix D ,U   

upper margin of the jth typical sub-interval of pfi:
D1,i < U1,i < D2,i < U2,i <…< D  < U (A.2)ih ,i ih ,i



The value of  may be any real one;  p
ix

A1.3) A set of e continuous multi-normal features cfi, grouped in an e-dimensional vector 

,  where  is the observed value of cfi ;        1 2

Tc cc c
ex x ,x , ,x

   c
ix

A1.4) A set of g independent-continuous features ifi, grouped in a g-dimensional vector 

, where  is the observed value of ifi.        1 2

Ti ii i
gx x ,x , ,x

   i
ix

The value of  will be in the interval [z0,i; z1,i];  i
ix

As a result, the observation vector  is an (a+t+e+g)-        Td T p T c T i Tx x ,x ,x ,x
    

dimensional column vector with mixed features.

A2. Conditional Likelihood Density Evaluation
In line with traditions in statistical PR described by Fukunaga (1990) and Duda et al. (2001) it 

is accepted that the discrete, the pseudo-discrete, and the independent-continuous features are 
independent of each other and from the multi-normal features for every class of state: 

, for k=1,2,…,c  (A.3)             d p c i
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In (A.3)  and  are the conditional probabilities that the discrete and   d
k kP x |   p

k kQ x |

the pseudo-discrete features of S take values  and  whereas  and   dx  px   c
k kx |    i

k kx | 

are the conditional likelihood densities at points  and , if S is in class ωk. cx  ix

A2.1. Conditional likelihood density for the discrete features
From the independence of the discrete features it follows that

  , for k=1,2,…, c (A.4)     
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In (A.4),  is the probability that the discrete feature dfi takes value  if S is in   d
kiP x |  d

ix

ωk. Let

, for i=1,2,.., a; j=1,2,.., bi; k=1,2,.., c (A.5)   d k
j ,i k j ,iiP x dfd | p 

This means that  is the probability of  taking the nominal value dfdj,i , if S is in ωk.k
j ,ip  d

ix
So,
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A2.2. Conditional likelihood density for the pseudo-discrete features
From the independence of the pseudo-discrete features it follows that

, for k=1,2,…, c (A.7)     
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In (A.7),  is the probability that pseudo-discrete feature pfi takes value , if S   p
kiP x |  p

ix

is in ωk. Let

, for i=1,2,.., t; j=1,2,.., hi; k=1,2,.., c (A.8)  p k
j ,i j ,i k j ,iiP x D ,U | q   



The parameter  is the probability of  falling into the jth typical sub-interval of pfi, if S k
j ,iq  p

ix

is in ωk, provided that  belongs to one of the typical sub-intervals. The probability   p
ix   p

kiP x |

is calculated as a function of all the  (for j=1,2,.., hi) with the help of hi fuzzy membership k
j ,iq

functions µj,i = µj,i( ) for each of the feature pfi typical sub-intervals. An example for the seventh  p
ix

pseudo-discrete coordinate  with four typical subintervals (h7=4) is given in Figure A.1. The jth
 

 
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fuzzy membership function is 1 for any typical value in [Dj,i; Uj,i], but linearly decreases to 0 in Uj-

1,i and in Dj+1,i:

    (A.9)  
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From (A.9) it is obvious that for each value of  the sum of all membership functions will be 1.  p
ix

Then,

,    for i=1,2,.., t; k=1,2,.., c  (A.10)     
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From (A.7) and (A.10) follows that,

, for k=1,2,…, c    (A.11)     
11

iht pp k
k k j ,i j ,ii

ji
Q x | x q 


 



The theoretical justification for applying the probability description of fuzzy measurements 
(in the form of pseudo-discrete features) is given by Tenekedjiev et al., (2006).

Figure A.1. Fuzzy membership functions for the seventh pseudo-discrete coordinate  with four  
7

px
typical subintervals (h7=4)

A2.3. Conditional likelihood density for the multi-normal features 



The conditional likelihood density function of  is multi-normally distributed, if S is in ωk.  cx

This density is fully characterized with the vector of the mean values  and with the covariance k

matrix Kk. The vector of the mean values  is an e-dimensional column vector with ith coordinate k

 being the conditional mean value of the continuous multi-normally distributed feature cfi if S is k
i

in ωk.:

, for k=1,2,…, c (A.12) 1 2
Tk k k
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The covariance matrix Kk is a symmetric positively semi-definite square matrix e by e. Its 
(i,j)th entry is , where , , and  are the standard deviations and the correlation k

i , jr k
i k

j k
i k

j k
i , jr

coefficient of the continuous multi-normally distributed features cfi and cfj , if S is in ωk:

 , for k=1,2,…, c  (A.13)
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The unconditional likelihood density function of  is partially characterized by its vector of  cx

the mean values  and its covariance matrix K:
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The first sum in (A.15) is the within-class covariance matrix KW, whereas the second sum in 
(A.15) is the between-class covariance matrix KB. The matrix K turns out to be a symmetric 
positively semi-definite matrix because of (A.15) and because all Kk are symmetric positively semi-
definite matrices. So K has e orthonormal eigenvectors  with associated eigenvalues λk. (see Press kV



et al. (2007)). The latter are real, non-negative. We can sort in descending order the eigenvalues and 
their eigenvectors, so that only the first d are positive:

(A.16)1 2 1 2 0d d d e              
Let us define a [d x e] matrix A with ith row containing the transposed ith eigenvector divided 

to the square root of its eigenvalue:

(A.17)
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Then,  can be linearly transformed from the original e-dimensional space with the multi- cx

normal features cfi  (called physical space) into a d-dimensional space with the continuous multi-
normally distributed features cfoi (called objective space):

(A.18)   c cy Ax A 
  

The density function of  is characterized by a zero vector of the mean values  and  cy y

identity covariance matrix Ky. So, the objective space is a non-singular, normalized, and centred 
space which contains the same information as the physical space. The transformation (A.18) is a 
whitening Karhunen-Loeve transformation (Ding et al., 2011). It is easy for humans to observe the 



objects in the objective space by selection two or three coordinates at a time. However, the main 
advantage is that the covariance matrices in the objective space are (or can be approximated with) 
invertible ones.

Since the conditional likelihood density function of , provided that S is in ωk, is multi- cy

normally distributed, then it can be calculated using the vector of the mean values  and the y ,k

covariance matrix Ky,k:
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In (A.21), |Ky,k| stands for the determinant of Ky,k, and  stands for the inverse of Ky,k. It is 1
y ,kK 

obvious that the covariance matrices Ky,k should be all be positively definite in order to be 
invertible. That is often true in the objective space, but if that is not the case then some 
approximation should be used. The standard assumption under the circumstances is that the class 
covariance matrices Ky,k are equal and should be substituted by the within-class covariance matrix 
in the objective space which is non-singular:
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A2.4. Conditional likelihood density for the independent continuous features
From the independence of the independent-continuous features it follows that

, for k=1,2,…, c . (A.23)     
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In (A.23),  is the conditional likelihood density function of the independent-  i
kip x |

continuous feature ifi, if S is in ωk. This type of features is discussed by Nikolova et al. (2004). Let 
us select m quantile names, ‘well’ distributed in the unit interval [0; 1] :  

 (A.24)1 20 1m      
Let 
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In (A.25)  is the -quantile from the conditional distribution of the independent-
j
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continuous feature , if S is in ωk. We can set up: i
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Then, the conditional likelihood density of ifi can be approximated as:
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Figure 1. Demonstration of the fourth type of answer for prediction 
of four measurements into three classes



Figure 2. Technological scheme of ammonia production



Figure 3. Linear trend of the modified discriminant functions
on backward discriminant nodes for classes 8 and 1. The dashed-dotted line 

is the point of change of the class



Figure 4. Relation between the proxy vibration V and the pseudo-priors for c=6 classes of 
state



Figure A.1. Fuzzy membership functions for the seventh pseudo-discrete coordinate   
7

px
with four typical subintervals (h7=4)



Table 1. Two types of discriminant functions, posterior probabilities, coefficients of the linear 
model, R2 and Tk of prediction problem with four measurements in 13 classes

classes 1 2 3 4 5 6 7 8 9 10 11 12 13
Fk,1 -2.5e+0 -7.2e+0 -1.1e+1 -8.1e+0 -8.7e+0 -1.0e+1 -9.4e+0 -6.4e+0 -5.4e+0 -6.2e+0 -1.0e+1 -6.0e+0 -8.3e+0
Fk,2 -1.3e+0 -5.5e+0 -6.4e+0 -6.3e+0 -4.7e+0 -4.8e+0 -4.8e+0 -3.3e+0 -4.4e+0 -5.5e+0 -4.6e+0 -5.7e+0 -5.2e+0
Fk,3 -1.1e+0 -5.3e+0 -4.7e+0 -5.8e+0 -4.1e+0 -6.1e+0 -6.1e+0 -3.1e+0 -5.9e+0 -3.6e+0 -4.7e+0 -5.8e+0 -3.6e+0
Fk,4 -1.2e+1 -1.7e+1 -1.7e+1 -1.7e+1 -1.7e+1 -1.8e+1 -1.7e+1 -1.4e+1 -1.4e+1 -1.6e+1 -1.6e+1 -1.8e+1 -1.7e+1
Pk,1 +8.7e-1 +7.9e-3 +1.3e-4 +3.0e-3 +1.7e-3 +3.4e-4 +8.2e-4 +1.6e-2 +4.5e-2 +2.0e-2 +3.3e-4 +2.6e-2 +2.6e-3
Pk,2 +7.3e-1 +1.1e-2 +4.2e-3 +4.6e-3 +2.3e-2 +2.1e-2 +2.2e-2 +9.6e-2 +3.1e-2 +1.1e-2 +2.7e-2 +8.5e-3 +1.5e-2
Pk,3 +6.9e-1 +1.0e-2 +1.8e-2 +6.2e-3 +3.3e-2 +4.3e-3 +4.7e-3 +9.4e-2 +5.3e-3 +5.7e-2 +1.9e-2 +6.4e-3 +5.3e-2
Pk,4 +6.7e-1 +5.0e-3 +4.4e-3 +7.7e-3 +7.6e-3 +2.3e-3 +5.4e-3 +1.8e-1 +7.7e-2 +1.7e-2 +1.7e-2 +2.3e-3 +6.0e-3
Gk,1 -1.3e-1 -4.8e+0 -8.9e+0 -5.8e+0 -6.4e+0 -8.0e+0 -7.1e+0 -4.1e+0 -3.1e+0 -3.9e+0 -8.0e+0 -3.6e+0 -5.9e+0
Gk,2 -3.2e-1 -4.5e+0 -5.5e+0 -5.4e+0 -3.8e+0 -3.8e+0 -3.8e+0 -2.3e+0 -3.5e+0 -4.5e+0 -3.6e+0 -4.8e+0 -4.2e+0
Gk,3 -3.7e-1 -4.6e+0 -4.0e+0 -5.1e+0 -3.4e+0 -5.4e+0 -5.4e+0 -2.4e+0 -5.2e+0 -2.9e+0 -4.0e+0 -5.1e+0 -2.9e+0
Gk,4 -4.0e-1 -5.3e+0 -5.4e+0 -4.9e+0 -4.9e+0 -6.1e+0 -5.2e+0 -1.7e+0 -2.6e+0 -4.1e+0 -4.1e+0 -6.1e+0 -5.1e+0
ak -1.5e-3 -6.6e-3 +1.1e-2 +6.4e-3 -2.2e-3 -3.7e-3 +1.4e-3 +1.3e-2 +1.1e-2 -1.2e-3 +1.3e-2 -1.7e-2 -5.1e-3
bk -2.2e-1 -4.3e+0 -6.3e+0 -5.7e+0 -4.2e+0 -5.3e+0 -5.3e+0 -3.4e+0 -4.6e+0 -3.7e+0 -5.5e+0 -3.7e+0 -3.9e+0
R2 +7.4e-1 +7.1e-1 +2.7e-1 +9.1e-1 +7.3e-2 +5.3e-2 +5.9e-2 +7.8e-1 +1.9e-1 +1.3e-2 +3.5e-1 +9.6e-1 +7.4e-2
Tk   +4.9e+2 +6.9e+2   +1.8e+3 +2.2e+2 +3.4e+2 +1.1e+4 +3.6e+2  


