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ABSTRACT

Despite their importance for public transportation, communication within organizations or the general understanding of organized
knowledge, our understanding of how human individuals navigate in complex networked systems is still limited owing to the
lack of datasets recording sufficient amount of navigation paths of individual humans. Here, we analyze 10587 paths recorded
from 259 human subjects when navigating between nodes of a complex word-morph network. We find the clear presence
of systematic detours organized around individual hierarchical scaffolds guiding navigation. Our dataset is the first enabling
the visualization and analysis of scaffold hierarchies whose presence and role in supporting human navigation is assumed in
existing navigational models. By using an information theoretic argumentation, we argue that taking short detours following the
hierarchical scaffolds is a clear sign of human subjects simplifying the interpretation of the complex networked system by an
order of magnitude. We also discuss the role of these scaffolds in the phases of learning to navigate a network from scratch.

Introduction
Everyday life is full of complex networked systems humans navigate recurringly on a daily basis (e.g. traveling between
locations in a city using public transportation). The available navigational datasets1–4 and models3–10 considering networked
systems, mostly target to uncover the average properties of a group of subjects and capture collective human behavior. Thus
existing datasets do not have sufficient data or appropriate tracing methods permitting the analysis of long-term individual
patterns. Here, we analyze the results of an experiment with human subjects solving navigational tasks in a complex word-morph
network. We have recorded on average 40.9 timely-ordered paths from 259 subjects and more than 200 paths from 9 subjects
which makes the analysis of individual human navigation patterns possible. The nodes of the word-morph network are English
words which are connected if they differ in only a single letter. In this large and complex network, human subjects are given
navigational tasks, i.e. to reach a destination word from a starting word by changing only one letter at a time, while still having
meaningful words at intermediate states. Figure 1a shows a sample fragment of the word-morph network and two solutions (a
shortest path and a human path) of the task with the starting word “yob” and destination word “way”.

Network theoreticians across many disciplines11–15 argue that the shortest path, i.e. the path containing the minimal number
of intermediate steps in a network, between a source and a destination is a usable approximation of the real paths between
them. In contrast with these results, our study shows that humans subjects frequently apply detours, even in the long run. Our
main finding is that these detours are the consequences of how an individual interprets a complex networked system on its own
level. We show that people tend to build up a significantly simpler representation of the word-morph network in the form of a
hierarchy in their minds. These hierarchies are then used as scaffolds to the paths in the network. As a result, real paths will
be somewhat longer than the shortest alternatives, but the detours will be characteristic to the individual taking them, as no
two may abstract away the same hierarchy of the network. Although there are existing models assuming latent hierarchical
scaffolds aiding navigation6, 10, 16–19, this is the first study processing sufficient individual human navigation data to visualize
and analyse these individually created hierarchies.

Although this study concentrates on a networked system, the underlying problem of human navigation in the word-morph
network seems even more interesting in the light that current explanations of physical navigation tend to apply models
considering the graph-like abstraction of the surrounding physical environment. In fact, there is an ongoing debate about if we



build a detailed cognitive map or a much simpler cognitive graph of the possible physical choice points20, 21 inside our head.
Furthermore, recent studies reported major correlations between navigation and learning skills of humans22, 23 while others go
even further and investigate the possibility that navigation in cognitive spaces may lie in the core of any form of organized
knowledge and thinking24–26. The word-morph network is a special mixed system over which navigation relies strongly on
domain-general mechanisms since both spatial, manifested in the Hamming distance between words, and cognitive dimensions,
i.e. the function and the meaning of the words, contribute to the formation paths. Thus, the identification of individual scaffolds
guiding human navigation in the word-morph network may contribute to the better understanding of how humans structure,
encode and navigate through cognitive spaces.

The empirical confirmation of individual scaffold hieararchies may also help to resolve known anomalies in modeling
human navigation behaviour in networks. Human paths over networks are reported to exhibit non-negligible memory27–29,
which leads to problems when applying first-order Markov chains to approximate paths in spreading dynamics and community
detection27. Individual scaffold hierarchies explain the source of these anomalies as the next step of hierarchically guided
paths clearly depends on nodes visited previously by the given individual. Building on the assumption of hierarchical scaffolds
behind network paths we may able to refine higher-order Markov models and bring us closer to the better understanding of how
real systems are organized and function.

baa

bad

bag

bat

bay

boa

bob

bod

bot

boy

cat

cay

cob

cot

day

eat

fob

rat

rob

rot

wat

way

yob
a

Starting word (yob)

Destination word (way)

Shortest path

Human path

0 10 20 30 40 50 60 70 80 90 100

20

40

60

Task number

A
ve

ra
ge

tim
e

to
so

lu
tio

n

Avg. time to solve the i-th task
Moving average with window size 20

b

0 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

Task number

St
re

tc
h

Avg. path stretch at the i-th task
Moving average with window size 20

c

Figure 1. An example and high-level statistics of our navigation experiment. Panel (a) shows a sample section of the network
of three-letter English words, in which two words are connected if they differ only in a single letter. When human subjects
solve a navigation task, they come up with a path from a randomly given starting word to a destination word by changing only a
single letter at a step such that they always get a valid intermediate English word. The red and green paths show a shortest and
slightly detoured human solution from “yob” to “way”. Panel (b) presents the average time it takes for human subjects to solve
the n-th task in a row, while panel (c) shows the stretch of the human paths, i.e. the ratio of the length of the paths found by
human subjects and the length of the shortest possible path in the word-morph network. While the average time to solve a task
clearly decreases with the number of tasks solved, the stretch of the solutions stabilizes between 1.2 and 1.1. This suggests that
human subjects develop a specific strategy in the first few rounds, but after a few tens of solved tasks their strategy is not
improved any further in terms of length. So they have a simplified interpretation of the network and they find their paths
through that, only slightly faster as time goes by.

We discuss that navigational scaffold hierarchies may boost up the learning process to navigate in the word-morph network
and reduce the memory requirement of navigation by an order of magnitude. Moreover, identifying the individual scaffold
hierarchies as the enablers of memory-efficient navigation in the word-morph network is of particular importance since this
may promote to uncover navigational schemes in other complex networked systems considering not only humans. Similar
detours have been identified in measurements capturing collective behaviour in networks from diverse areas of life. Gao et al.
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showed that the paths of packets going through the internet are also detoured in a non-negligible extent30 and they show that the
hierarchical policies of internet packet routing may be responsible for the major proportion of the inflation. Detours have been
identified in road networks by Zhu et al.31 and in cattle pen systems by Grandin32, while similar phenomena was reported in
airport10, 27 and brain networks10, 33 too.

Results

For our experiment we have designed a word-morph game application for smartphones34 (see Methods for details). The
application collected 19828 paths from 259 human subjects navigating in the word-morph network. After cleaning the data by
removing tasks that were either unfinished, contained loops or taking extraordinary long time (> 300 seconds) to complete, our
working dataset of paths was reduced to 10857 paths. The word-morph network is a complex network which is impossible for a
human subject to keep fully in mind with its 1008 nodes and 8320 edges. The average degree, the diameter and the clustering
coefficient of the network is 16.39, 9 and 0.44 respectively. To get a high-level impression about the performance of human
navigation we have plotted the average time needed to solve the n-th task in a row in Figure 1-b. We can see that after a few
of initial rounds human subjects find a solution in around 30 seconds on average and from there on they slowly improve to
around 20 seconds after solving 100 tasks. It is a kind of astonishing in itself, that after a few rounds people can find paths in
this complex maze very efficiently. Strikingly, the improvement in time doesn’t imply that the paths found are also shorter. In
Figure 1-c, the stretch of human solutions is shown compared to the shortest paths. The stretch of a path P is computed as the
ratio of the length of P and the length of the shortest path between identical starting and destination words. In the example of
Figure 1-a, the stretch of the human path (green) is 5

4 = 1.25 compared to the shortest possible path (red). Figure 1-c shows that
although human subjects improve in terms of the time needed to solve a task, the stretch of the paths they find stabilizes slightly
below 1.2. Thus the length of the human paths seem not to converge to the length of the shortest path (i.e. to stretch 1) and they
always include some detours. A plausible explanation for this is that human subjects develop some kind of sub-optimal strategy
through the course of the game and use this strategy to solve upcoming tasks. The improvement in time only means that the
application of the same strategy becomes more and more effective. But how can we characterize the strategy in use?
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Figure 2. Structures behind human paths and shortest paths. Panel (a) shows how many times an edge is crossed after solving
1000 random tasks by using the shortest path between the source and target word. The almost homogeneous distribution of
edge crossings suggests that the entity using these paths, does not have any form of understanding or interpretation of the
word-morph network, conversely, it mechanically picks paths. Human paths are quite the contrary. Panel (b) shows the edge
crossings of a human subject when solving the same 1000 random tasks. Human solutions appear to be highly structured
suggesting that humans possess a characteristic concept of the word-morph network. The structure is very close to a pure
hierarchy. There is a clear scaffold that guides navigation, consisting of red, orange and green edges with a high number of
crossings. This scaffold shows that human subjects tend to simplify the problem and form a simpler, systematic although not
necessarily optimal strategy. From the sides of the network, from where a navigation task starts, humans tend towards their
scaffold where they switch to other sides of the network. It is quite specific how this particular scaffold is built up. Panel (c)
shows the words in the middle of the scaffold. “Aim”, “art”, “arm” and “are” words where consonants and vowels can be
changed very effectively. In this case, the scaffold is used to switch between regimes of the network based on the location of
vowels and consonants.

Panels a and b in Figure 2 shows how differently an algorithm implementing shortest paths and a human subject use the
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Figure 3. Properties of individual human scaffolds. Panel (a) shows the size of the human scaffolds compared to the shortest
path case. Human subjects’ behavior clearly deviates from the shortest path algorithm as they form sizeable navigational
scaffolds compared to shortest paths. The average degree of the scaffolds is closely around 2 as shown in panel (b), thus the
structure is very close to trees. Panel (c) confirms that the scaffold is heavily used by human subjects when completing the
navigation tasks. Panel (d) shows, that the individual human scaffolds are indeed “individual” as the observed overlaps between
the subjects’ scaffolds is only 2.6% on average.

word-morph network to solve the navigational tasks. The plots show only edges traversed more than two times in the course of
solving 1000 tasks. In the case of the shortest path algorithm, the usage of edges is homogeneous. The algorithm has no clear
concept or deeper interpretation of the word-morph network, thus picks the paths mechanically without any sign of favoring
specific regions of the network. Human subjects behave quite differently. Humans seem to have a clear concept of the network.
They structure the network in a subjective manner by identifying various regions and put a larger emphasis on nodes and
edges connecting these regions. The clear sign of this is that from human solutions a hierarchical scaffold structure is formed
(see Figure 2-b for an example). For capturing this behavior we have investigated subjects having more than 200 completed
navigation tasks (9 subjects qualified for this). For these subjects, we have processed all the solutions of the navigational
tasks and assigned weights to the edges of the word-morph network reflecting how many times they have been used in the
solutions. We have dropped the edges having used less than 2 times. From the remaining graph we took the largest component
as the scaffold. In 90% of the cases, the scaffolds of the human subjects were at least two times bigger in size compared to the
random case, but in the majority of the cases the human scaffolds were found to be an order of magnitude bigger (see Panel a in
Figure 3).

Panel b of Figure 3 shows that the average degree of the scaffolds is around 2 in case of all the subjects. This means that
the scaffolds are tree-like connected sub-networks of the original word-morph network. This result is fully in-line with the
assumptions of existing hierarchical human navigational models6, 16, 17, 19. Compared to shortest paths the edges of the scaffolds
are heavily used by the subjects (see Figure 3-c) with a very specific usage pattern. The scaffold has a definite core of a few
nodes between which the usage of the edges can go above 50 in the particular example of Figure 2-b. This core behaves as a
switching device among different parts of the network and abstracts the concept of the individual about the structure of the
whole network. The scaffold is built up in a hierarchical, tree-like fashion as edge utilization clearly drops when receding from
the core. In the course of navigating between words, subjects use the scaffold as a guiding framework. Figure 2-c shows the
words residing in the scaffold. In this example, the network is clearly divided into regions based on the position of consonants
and vowels in the words and the core words are picked by the human subject in order to switch effectively among these regions.
Our results show that although these individual scaffolds may have some similarities, every subject used a fairly unique set of
nodes and edges forming their own hierarchical scaffolds (see supplementary Figure 1 for additional examples of personal
scaffolds). This finding is readily supported by Figure 3-d, which shows the percentage of overlap between all possible pairs of
scaffolds. The overlap for scaffolds i and j is computed as E(Gi)

⋂
E(G j)

E(Gi)
⋃

E(G j)
, i.e. the ratio of edges present in both scaffolds and the

edges in the union of the scaffolds, thus a network’s overlap with itself is practically 100%. One can see, that in the case of the
scaffolds of our subjects the average of the overlaps is very small, around 2.6% and in 90% of the cases do not exceed 7%.

Discussion
The identification of the individual scaffold hierarchies as core switching devices in the human interpretation of the word-morph
network poses an intriguing question: Why do we use them even after mastering ourselves in the navigation task? Why do
we settle with sub-optimal paths through these scaffold hierarchies and not combat for shorter paths? Recall, that detours in
our subjects’ paths persisted even after completing 100 navigation tasks. We argue that the reason behind this is related to
our capabilities of information encoding and processing. In short, we build scaffold hierarchies while being satisfied with
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sub-optimal paths because this way we don’t have to process every bit of information about a large and complex system and
we can get away with an order of magnitude simpler interpretation. For showing this we will use the following minimalist
information-theoretic model inspired by our results above. The word-morph network is represented by a graph G(N,E) defining
its nodes N and edges E. For modeling human behavior we use a simple tree hierarchy as a scaffold for navigation. The
construction of the hierarchy goes by picking the node with the highest closeness centrality35 and building the breadth-first
search (BFS) tree emanating from it. This BFS tree will be used as the scaffold. Inspired by the information exchange algorithm
well-fitted for hierarchically structured organizations16, we define human navigation based on the scaffold hierarchy as follows:
(i) if the destination node is below the current node or its neighbors in the hierarchy, then we step to its closest superior or the
destination itself provided that the destination and the current nodes are connected, (ii) if the destination node is not below the
current node in the hierarchy, then we step to the current node’s direct superior in the hierarchy. With an analogy, this simple
navigation mechanism captures that if somebody is my subordinate in the hierarchy or someone’s subordinate that I know, then
I know who is the closest to it among my acquaintances. If I know nothing about the target, then I turn to my direct superior.
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Figure 4. Comparison of stretch and entropy of various paths. Shortest paths clearly have a stretch of 1, but this optimality
comes at a price of high entropy, i.e. high memory requirement to store. Hierarchy 1-7 shows the very efficient stretch-entropy
tradeoff if we memorize only 1-7 uplinks in the most simple BFS hierarchy. The decentralized In-and-Out hierarchy with one
direct superior, based on highest closeness centrality, is a sweet spot in this tradeoff space. This simulates the case, when
people know all subordinates in the network, but remember only one superior closest to the center of the network. It gives a
realistic stretch, but the required entropy is an order of magnitude lower than in the shortest path case.

For characterizing the complexity of implementing the paths provided by the shortest path algorithm and human navigation,
we will approximate the required minimum information in every node to decide where to take the next step towards all
destinations in the word-morph network. Let’s assign positive integers, i.e. 1,2,3 . . . as IDs to the nodes of the network. At each
node x, we can represent the amount of information needed to make the right choice by a node table Tx. At node x, this node
table has |N|−1 entries (where |N| is the number of nodes in the word-morph network) belonging to all the nodes other than
x, and each entry contains the ID of a neighbor to take next heading towards a given destination. For example a node table
T5 = (1,2,1,2) tells us that at node 5, if we want to go to node 1,2,3,4 we should take nodes 1,2,1,2 as next steps respectively.
This node table implicitly tells us, that node 5 is connected to nodes 1 and 2 and that, in this example, the network has five
nodes. Supplementary Note 1 provides a more detailed example of how to compute these node tables for a concrete network
and set of paths. Now tables Tx,∀x ∈ N contain all the information required to implement the given paths between arbitrary
pairs of nodes in the word-morph network. To approximate how many bits of information are needed to store these tables
in memory, we compute their empirical Shannon-entropy36, defined as H0(Tx) = ∑c∈Σ

nc
n log n

nc
, where Σ denotes the set of

different numbers in Tx, while n and nc represents the length of TX and the number of occurrences of each number c ∈ Σ in Tx

respectively. Then ∑x∈N H0(Tx)
n gives the global per-node entropy to implement the paths. In Supplementary Note 2 we supply

asymptotically optimal results for the empirical entropy of some well-known graph families.
In Figure 4 the required information for implementing shortest paths and hierarchical paths in the word-morph network

is shown. Shortest paths clearly have a stretch of one, but the price of this is high entropy as around 3.18 bits per node is
required to store the shortest paths in the node tables (see the Shortest Path column on the left of Figure 4). Navigation with
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Figure 5. Shortest and hierarchically guided paths in the word network. Learning only the shortest paths between the words
pit and aye and between pit and emu makes us conclude that the word aye is 7 nodes away from emu. However, with a
hierarchical scaffold a four-node path between aye and emu can be found even though both the paths between pit and aye and
between pit and emu are longer through the scaffold than the shortest possible path.

the simple BFS scaffold has an order of magnitude less (around 0.83 bits per node) entropy (see the Hierarchy 1 column of
Figure 4), but hierarchically guided paths are much longer, they have a stretch of 1.46. Recall that our results with human
subjects indicate a stretch slightly below 1.2. Hierarchy 2,3 and 7 columns in Figure 4 stand for a slightly modified version of
the BFS hierarchy in which we do not have strictly 1 direct superior but can have links to at most 2,3 and 7 superiors in the BFS
tree respectively. These hierarchies are not trees anymore, but they are still sparse as the human scaffolds. These modifications
readily illustrate that there is a clear tradeoff between stretch and entropy. Having to remember more superiors reduces stretch
but surely increases complexity. Nevertheless, with Hierarchy 7, a stretch of 1.14 is achievable for the price of only 2.32 bits
of memory per node. These results readily illustrate that even the most rudimentary scaffold guiding navigation can achieve
an effective stretch-entropy tradeoff. However, BFS scaffolds are constructed in a centralized fashion and rely upon global
information about the network which is not realistic. A more realistic decentralized scaffold with only one direct superior gives
a sweet spot in this tradeoff space while computable with local algorithms37. In this hierarchy, called In-or-Out, every node’s
superior is the neighbor lying in the most central location in the network in terms of closeness centrality. This simple, local
strategy can give a very low stretch for an order of magnitude less entropy compared to shortest paths. This is because In-or-Out
hierarchy is aware of the neighbors’ centrality, thus every node’s direct superior is a neighbor that is closest on average to any
other node in the network. Interestingly, In-or-Out hierarchy’s stretch is close to what we have observed with human subjects.

Besides simplifying the process of navigation, scaffold hierarchies can boost learning the structure of a totally unknown
network through observing its paths. For showing this we will use a very simple incremental model where every step we show a
single path connecting randomly chosen nodes and compare the reconstructed network structure and the efficiency of navigation
based solely on the given paths to the original network. Fig. 5 illustrates the steps of this learning process for the cases if we
show paths according to shortest or hierarchical scaffolds from the word-morph network. In the first case, we show the shortest
paths between the words “aye” and “pit” (green) and between “pit” and “emu” (olive), and based solely on that knowledge one
may implicitly deduce a path from “aye” to “emu” taking 6 nodes to traverse. Alternatively, showing paths using a hierarchical
scaffold yields somewhat longer paths (red). However, one can see that the newly gained path between “aye” and “emu” adds
up to a substantially shorter path requiring only 3 intermediate nodes. On Fig. 6, the integrity and the stretch and entropy
footprint of the various learning scaffolds are shown when we continue simulating the learning process to 2000 paths with a
computer program (see Methods for details). On panel (a), the size of the giant component in the network reconstructed from
the paths is shown as the function or learned paths. The shortest path scaffold provides only very sporadic knowledge about
the network in the initial (0−120) learning steps as the size of the giant component hardly grows with the number of learned
paths. The most integrated knowledge is provided by the most simple scaffold of Hierarchy 1. On panel (b) we can clearly
distinguish between two phases of the learning process. Until around 700 paths the rough exploration of the nodes and possible
connections in the network happens. According to the inset of the panel, by the end of this exploration phase, one can connect
more than 90% of all possible node pairs in case of all scaffolds. Using the shortest paths as learning scaffolds, we can find
only very long paths in the exploration phase, as the average stretch can go up to even above 3. Interestingly, if paths are picked
according to a hierarchical scaffold, we can obtain paths with a lower stretch as the scaffold becomes more and more simple, i.e.
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the number of direct superiors is decreasing. In case of the simplest one-superior case, the stretch is very stable around 1.5. So
in the exploration phase, one can learn reasonable paths much faster if paths are given according to a hierarchical scaffold.
After the exploration phase, we do not explore new territories of the word-morph network, what we do is only improving our
knowledge. In this improvement phase, the shortest path scaffold takes the lead over the hierarchical scaffolds yielding the best
stretch values. The price of being better in stretch is paid on entropy as it can be seen in panel (c): The entropy of the scaffolds
is similar in the exploration phase, however, as the number of paths learned increases, the entropy of the simplest Hierarchy 1
scaffold starts to decrease substantially, while the shortest path one continues to increase almost linearly.
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Figure 6. Learning curves in the word-morph network. Panel (a) shows the size of the giant component vs. the number of
paths learned according to various learning scaffolds. Using the shortest paths as scaffold gives sporadic knowledge about the
network, especially in the initial steps of learning, since the size of the giant component is very low, compared to the other
scaffolds. The most integrated knowledge about the network is given by the most simple Hierarchy 1 in the initial steps of
learning. The inset of panel (b) shows that after learning only around 700 paths one can infer valid paths between 90% of all
possible node pairs using either the shortest path or hierarchical scaffolds. In this exploration phase, learning based on shortest
paths seems to be quite inefficient too, as stretch can go up to even 3. In that phase, the simplest hierarchical scaffold gives the
shortest established path on average. Only in the improvement phase, in which no significant new parts of the word-morph
network is explored, the relation is reversed. The entropy of the paths is shown in panel (c). The exploration phase shows no
difference among the scaffolding schemes, however, in the improvement phase, the entropy of the hierarchical scaffolds is
much lower compared to the shortest paths.

Methods
Data collection – The collection of the results of the navigational tasks in the word-morph network was carried over by a
smartphone application called “fit-fat-cat” running on Android platform. The application is available from the Google Play
store34 and the installation is as easy as any other apps. By using the application, the subjects give their consent to openly
use their anonymized data without restrictions. When a subject starts a navigational task, the source and destination words
are generated randomly from the all possible three-letter English words. The source and destination words are displayed in a
box. Below this box, a list of words the subject visited so far in that particular task is shown. When starting a new task, the
list contains only the source word. The subject can enter the consecutive words in a user-friendly manner by using a virtual
keyboard of the phone. First, the subject selects the letter to change than choose the new letter with the keyboard. After
changing a letter, the app automatically adds the new word to the list. This way the subjects can see which words they have
already tackled when solving a particular navigation task. A task may end in three ways. If the subject reached the target word
through such one-letter transformations the task is solved. In this case, the word becomes green-colored to show the end of the
task. Secondly, the subject can give up the task by pressing the “new game” button. In this case, the subject gets the next task
automatically. Finally, the subject can press the “magic wand” button. In this case, a possible (shortest path) solution of the
task is shown before starting a new task. No matter how the task is ended, the list of words is anonymously submitted to our
database stored in the cloud.
Computer simulations – For investigating the incremental learning of a network via its paths we have written a simulator in
the Python programming language. In the beginning, the simulator reads the network N. After that, iteratively picks random
pairs from the network and compute the shortest and hierarchical paths between them according to the given BFS hierarchy. At
each iterative step, the current knowledge about the network is the union nodes and edges contained in the previous iterations.
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So in at step t, the knowledge about the network is a graph Gt(V,E), then after adding a path Pt it is extended to Gt+1 = Gt
⋃

Pt .
The simulator computes the required entropy and stretch of the paths in Gt compared to the shortest paths in N at every 50 step.
Data Availability – The data supporting the findings of this study is available from the “fit-fat-cat” public Open Science
Framework data repository38.
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