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Abstract

A packing of translates of a convex body in the d-dimensional Euclidean space Ed is said to be totally
separable if any two packing elements can be separated by a hyperplane of Ed disjoint from the interior
of every packing element. We call the packing P of translates of a centrally symmetric convex body C
in Ed a ρ-separable packing for given ρ ≥ 1 if in every ball concentric to a packing element of P having
radius ρ (measured in the norm generated by C) the corresponding sub-packing of P is totally separable.
The main result of this paper is the following theorem. Consider the convex hull Q of n non-overlapping
translates of an arbitrary centrally symmetric convex body C forming a ρ-separable packing in Ed with
n being sufficiently large for given ρ ≥ 1. If Q has minimal mean i-dimensional projection for given i
with 1 ≤ i < d, then Q is approximately a d-dimensional ball. This extends a theorem of K. Böröczky
Jr. [Monatsh. Math. 118 (1994), 41–54] from translative packings to ρ-separable translative packings
for ρ ≥ 1.

1 Introduction

We denote the d-dimensional Euclidean space by Ed. Let Bd denote the unit ball centered at the origin o
in Ed. A d-dimensional convex body C is a compact convex subset of Ed with non-empty interior int C. (If
d = 2, then C is said to be a convex domain.) If C = −C, where −C = {−x : x ∈ C}, then C is said to be
o-symmetric and a translate c + C of C is called centrally symmetric with center c.

The starting point as well as the main motivation for writing this paper is the following elegant theorem
of Böröczky Jr. [8]: Consider the convex hull Q of n non-overlapping translates of an arbitrary convex
body C in Ed with n being sufficiently large. If Q has minimal mean i-dimensional projection for given i
with 1 ≤ i < d, then Q is approximately a d-dimensional ball. In this paper, our main goal is to prove an
extension of this theorem to ρ-separable translative packings of convex bodies in Ed. Next, we define the
concept of ρ-separable translative packings and then state our main result.

A packing of translates of a convex domain C in E2 is said to be totally separable if any two packing
elements can be separated by a line of E2 disjoint from the interior of every packing element. This notion was
introduced by G. Fejes Tóth and L. Fejes Tóth [9] . We can define a totally separable packing of translates
of a d-dimensional convex body C in a similar way by requiring any two packing elements to be separated
by a hyperplane in Ed disjoint from the interior of every packing element [6, 7].

Definition 1. Let C be an o-symmetric convex body of Ed. Furthermore, let ‖·‖C denote the norm generated
by C, i.e., let ‖x‖C := inf{λ | x ∈ λC} for any x ∈ Ed. Now, let ρ ≥ 1. We say that the packing

Psep := {ci + C | i ∈ I with ‖cj − ck‖C ≥ 2 for all j 6= k ∈ I}
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of (finitely or infinitely many) non-overlapping translates of C with centers {ci | i ∈ I} is a ρ-separable
packing in Ed if for each i ∈ I the finite packing {cj + C | cj + C ⊆ ci + ρC} is a totally separable packing
(in ci + ρC). Finally, let δsep(ρ,C) denote the largest density of all ρ-separable translative packings of C in
Ed, i.e., let

δsep(ρ,C) := sup
Psep

(
lim sup
λ→+∞

∑
ci+C⊂Wd

λ
vold(ci + C)

vold(Wd
λ)

)
,

where Wd
λ denotes the d-dimensional cube of edge length 2λ centered at o in Ed having edges parallel to the

coordinate axes of Ed and vold(·) refers to the d-dimensional volume of the corresponding set in Ed.

Remark 1. Let δ(C) (resp., δsep(C)) denote the supremum of the upper densities of all translative packings
(resp., totally separable translative packings) of the o-symmetric convex body C in Ed. Clearly, δsep(C) ≤
δsep(ρ,C) ≤ δ(C) for all ρ ≥ 1. Furthermore, if 1 ≤ ρ < 3, then any ρ-separable translative packing of C in
Ed is simply a translative packing of C and therefore, δsep(ρ,C) = δ(C).

Recall that the mean i-dimensional projection Mi(C) (i = 1, 2, . . . , d − 1) of the convex body C in Ed,
can be expressed ([13]) with the help of mixed volume via the formula

Mi(C) =
κi
κd
V (

i︷ ︸︸ ︷
C, . . . ,C,

d−i︷ ︸︸ ︷
Bd, . . . ,Bd),

where κd is the volume of Bd in Ed. Note that Mi(B
d) = κi, and the surface area of C is S(C) =

dκd
κd−1

Md−1(C) and in particular, S(Bd) = dκd. Set Md(C) := vold(C). Finally, let R(C) (resp., r(C))

denote the circumradius (resp., inradius) of the convex body C in Ed, which is the radius of the smallest
(resp., largest) ball that contains (resp., is contained in) C. Our main result is the following.

Theorem 1. Let d ≥ 2, 1 ≤ i ≤ d − 1, ρ ≥ 1, and let Q be the convex hull of the ρ-separable packing

of n translates of the o-symmetric convex body C in Ed such that Mi(Q) is minimal and n ≥ 4dd4d

δsep(ρ,C)d−1 ·(
ρR(C)
r(C)

)d
. Then

r(Q)

R(Q)
≥ 1− ω

n
2

d(d+3)

, (1)

for ω = λ(d)
(
ρR(C)
r(C)

) 2
d+3

, where λ(d) depends only on the dimension d. In addition,

Mi(Q) =

(
1 +

σ

n
1
d

)
Mi(B

d)

(
vold(C)

δsep(ρ,C)κd

) i
d

· n i
d ,

where − 2.25R(C)ρdi
r(C)δsep(ρ,C) ≤ σ ≤

2.1R(C)ρi
r(C)δsep(ρ,C) .

Remark 2. It is worth restating Theorem 1 as follows: Consider the convex hull Q of n non-overlapping
translates of an arbitrary o-symmetric convex body C forming a ρ-separable packing in Ed with n being
sufficiently large. If Q has minimal mean i-dimensional projection for given i with 1 ≤ i < d, then Q is
approximately a d-dimensional ball.

Remark 3. The nature of the analogue question on minimizing Md(Q) = vold(Q) is very different. Namely,
recall that Betke and Henk [4] proved L. Fejes Tóth’s sausage conjecture for d ≥ 42 according to which the
smallest volume of the convex hull of n non-overlapping unit balls in Ed is obtained when the n unit balls
form a sausage, that is, a linear packing (see also [2] and [3]). As linear packings of unit balls are ρ-separable
therefore the above theorem of Betke and Henk applies to ρ-separable packings of unit balls in Ed for all ρ ≥ 1
and d ≥ 42. On the other hand, the problem of minimizing the volume of the convex hull of n unit balls
forming a ρ-separable packing in Ed remains an interesting open problem for ρ ≥ 1 and 2 ≤ d < 42. Last
but not least, the problem of minimizing Md(Q) for o-symmetric convex bodies C different from a ball in Ed
seems to be wide open for ρ ≥ 1 and d ≥ 2.
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Remark 4. Let d ≥ 2, 1 ≤ i ≤ d − 1, n > 1, and let C be a given o-symmetric convex body in Ed.
Furthermore, let Q be the convex hull of the totally separable packing of n translates of C in Ed such that
Mi(Q) is minimal. Then it is natural to ask for the limit shape of Q as n → +∞, that is, to ask for an
analogue of Theorem 1 within the family of totally separable translative packings of C in Ed. This would
require some new ideas besides the ones used in the following proof of Theorem 1.

In the rest of the paper by adopting the method of Böröczky Jr. [8] and making the necessary modifica-
tions, we give a proof of Theorem 1.

2 Basic properties of finite ρ-separable translative packings

The following statement is the ρ-separable analogue of the Lemma in [5] (see also Theorem 3.1 in [2]).

Lemma 1. Let {ci + C | 1 ≤ i ≤ n} be an arbitrary ρ-separable packing of n translates of the o-symmetric
convex body C in Ed with ρ ≥ 1, n ≥ 1, and d ≥ 2. Then

nvold(C)

vold (∪ni=1ci + 2ρC)
≤ δsep(ρ,C) .

Proof. We use the method of the proof of the Lemma in [5] (resp., Theorem 3.1 in [2]) with proper modi-
fications. The details are as follows. Assume that the claim is not true. Then there is an ε > 0 such that

vold (∪ni=1ci + 2ρC) =
nvold(C)

δsep(ρ,C)
− ε (2)

Let Cn = {ci | i = 1, . . . , n} and let Λ be a packing lattice of Cn + 2ρC = ∪ni=1ci + 2ρC such that Cn + 2ρC
is contained in a fundamental parallelotope of Λ say, in P, which is symmetric about the origin. Recall that
for each λ > 0, Wd

λ denotes the d-dimensional cube of edge length 2λ centered at the origin o in Ed having
edges parallel to the coordinate axes of Ed. Clearly, there is a constant µ > 0 depending on P only, such
that for each λ > 0 there is a subset Lλ of Λ with

Wd
λ ⊆ Lλ + P and Lλ + 2P ⊆Wd

λ+µ . (3)

The definition of δsep(ρ,C) implies that for each λ > 0 there exists a ρ-separable packing of m(λ) translates
of C in Ed with centers at the points of C(λ) such that

C(λ) + C ⊂Wd
λ

and

lim
λ→+∞

m(λ)vold(C)

vold(Wd
λ)

= δsep(ρ,C) .

As limλ→+∞
vold(Wd

λ+µ)

vold(Wd
λ)

= 1 therefore there exist ξ > 0 and a ρ-separable packing of m(ξ) translates of C in

Ed with centers at the points of C(ξ) and with C(ξ) + C ⊂Wd
ξ such that

vold(P)δsep(ρ,C)

vold(P) + ε
<
m(ξ)vold(C)

vold(Wd
ξ+µ)

and
nvold(C)

vold(P) + ε
<
nvold(C)card(Lξ)

vold(Wd
ξ+µ)

, (4)

where card(·) refers to the cardinality of the given set. Now, for each x ∈ P we define a ρ-separable packing
of m(x) translates of C in Ed with centers at the points of

C(x) := {x + Lξ + Cn} ∪ {y ∈ C(ξ) | y /∈ x + Lξ + Cn + int(2ρC)} .

Clearly, (3) implies that C(x) + C ⊂ Wd
ξ+µ. Now, in order to evaluate

∫
x∈Pm(x)dx, we introduce the

function χy for each y ∈ C(ξ) defined as follows: χy(x) = 1 if y /∈ x + Lξ + Cn + int(2ρC) and χy(x) = 0
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for any other x ∈ P. Based on the origin symmetric P it is easy to see that for any y ∈ C(ξ) one has∫
x∈P χy(x)dx = vold(P)− vold(Cn + 2ρC). Thus, it follows in a straightforward way that

∫
x∈P

m(x)dx =

∫
x∈P

(
ncard(Lξ)+

∑
y∈C(ξ)

χy(x)
)
dx = nvold(P)card(Lξ)+m(ξ)

(
vold(P)−vold(Cn+2ρC)

)
.

Hence, there is a point p ∈ P with

m(p) ≥ m(ξ)

(
1− vold(Cn + 2ρC)

vold(P)

)
+ ncard(Lξ)

and so
m(p)vold(C)

vold(Wd
ξ+µ)

≥ m(ξ)vold(C)

vold(Wd
ξ+µ)

(
1− vold(Cn + 2ρC)

vold(P)

)
+
nvold(C)card(Lξ)

vold(Wd
ξ+µ)

. (5)

Now, (2) implies in a straightforward way that

vold(P)δsep(ρ,C)

vold(P) + ε

(
1− vold(Cn + 2ρC)

vold(P)

)
+

nvold(C)

vold(P) + ε
= δsep(ρ,C) (6)

Thus, (4), (5), and (6) yield that
m(p)vold(C)

vold(Wd
ξ+µ)

> δsep(ρ,C) .

As C(p) + C ⊂Wd
ξ+µ this contradicts the definition of δsep(ρ,C), finishing the proof of Lemma 1.

Definition 2. Let d ≥ 2, ρ ≥ 1, and let K (resp., C) be a convex body (resp., an o-symmetric convex
body) in Ed. Then let νC(ρ,K) denote the largest n with the property that there exists a ρ-separable packing
{ci + C | 1 ≤ i ≤ n} such that {ci | 1 ≤ i ≤ n} ⊂ K.

Lemma 2. Let d ≥ 2, ρ ≥ 1, and let K (resp., C) be a convex body (resp., an o-symmetric convex body) in
Ed. Then (

1 +
2ρR(C)

r(K)

)−d
vold(C)νC(ρ,K)

δsep(ρ,C)
≤ vold(K) ≤ vold(C)νC(ρ,K)

δsep(ρ,C)
.

Proof. Observe that Lemma 1 and the containments K +2ρC ⊆
(

1 + 2ρR(C)
r(K)

)
K yield the lower bound

immediately.
We prove the upper bound. Let 0 < ε < δsep(ρ,C). By the definition of δsep(ρ,C), if λ is sufficiently

large, then there is a ρ-separable packing {ci + C | 1 ≤ i ≤ n} such that Cn := {ci | 1 ≤ i ≤ n} ⊂Wd
λ and

nvold(C)

vold(Wd
λ)
≥ δsep(ρ,C)− ε. (7)

Sublemma 1. If X and Y are convex bodies in Ed and C is an o-symmetric convex body in Ed, then

νC(ρ,Y) ≥ vold(Y)νC(ρ,X)

vold(X−Y)
. (8)

Proof. Indeed, consider any finite point set X := {x1, . . . ,xN} ⊂ X. Observe that the following are equiva-
lent for a positive integer k:

• k is the maximum number a point of X−Y is covered by the sets xi−Y, xi ∈ X,

• k is the maximum number such that card((z +Y) ∩X) = k for some point z ∈ X−Y.
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Thus, N vold(Y) ≤ card((z +Y) ∩X) vold(X−Y) for some z ∈ X−Y. Hence, if {xi + C | 1 ≤ i ≤ N}
is an arbitrary ρ-separable packing with X = {x1, . . . ,xN} ⊂ X, then

νC(ρ,Y) ≥ card((z +Y) ∩X) ≥ vold(Y)N

vold(X−Y)
,

which implies (8).

Applying (8) to X = Wd
λ and Y = −K and using (7), we obtain

νC(ρ,K) ≥ n vold(K)

vold(Wd
λ + K)

≥ vold(K)

vold(Wd
λ+R(K))

· vold(W
d
λ)(δsep(ρ,C)− ε)
vold(C)

,

which finishes the proof of Lemma 2.

Definition 3. Let d ≥ 2, n ≥ 1, ρ ≥ 1, and let C be an o-symmetric convex body in Ed. Then let RC(ρ, n)
be the smallest radius R > 0 with the property that νC(ρ,RBd) ≥ n.

Clearly, for any ε > 0 we have νC(ρ, (RC(ρ, n)−ε) Bd) < n, and thus, by Lemma 2 (for K = RC(ρ, n) Bd),
we obtain

Corollary 1. Let d ≥ 2, n ≥ 1, ρ ≥ 1, and let C be an o-symmetric convex body in Ed. Then

RC(ρ, n)d ≤ vold(C)n

δsep(ρ,C)κd
≤ (RC(ρ, n) + 2ρR(C))

d
. (9)

Lemma 3. Let n ≥ 4dδsep(ρ,C)ρdR(C)d

r(C)d
and i = 1, 2, . . . , d− 1. Then for R = RC(ρ, n),

Mi((R+ ρR(C)) Bd) ≤Mi(B
d)

(
vold(C)n

δsep(ρ,C)κd

) i
d

(
1 +

2δsep(ρ,C)
1
d ρR(C)

r(C)
· 1

n
1
d

)i
.

Proof. Set t = R+ 2ρR(C). Then the first inequality in (9) yields that

R+ ρR(C) ≤ t− ρR(C)

t− 2ρR(C)

(
vold(C)n

δsep(ρ,C)κd

) 1
d

.

Thus, by the second inequality in (9) and the condition that n ≥ 4dδsep(ρ,C)ρdR(C)d

r(C)d
≥ 4dδsep(ρ,C)ρdR(C)dκd

vold(C) ,

we obtain that

t− ρR(C)

t− 2ρR(C)
= 1 +

(
t

ρR(C)
− 2

)−1

≤ 1 +
2δsep(ρ,C)

1
d ρR(C)κ

1
d

d

vold(C)
1
d

· 1

n
1
d

≤ 1 +
2δsep(ρ,C)

1
d ρR(C)

r(C)
· 1

n
1
d

.

3 Proof of Theorem 1

In the proof that follows we are going to use the following special case of the Alexandrov-Fenchel inequality
([13]): if K is a convex body in Ed satisfying Mi(K) ≤Mi(rBd) for given 1 ≤ i < d and r > 0, then

Mj(K) ≤Mj(rBd) (10)

holds for all j with i < j ≤ d. In particular, this statement for j = d can be restated as follows: if K is a
convex body in Ed satisfying Md(K) = Md(rBd) for given d ≥ 2 and r > 0, then Mi(K) ≥ Mi(rBd) holds
for all i with 1 ≤ i < d.
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Let d ≥ 2, 1 ≤ i ≤ d− 1, ρ ≥ 1, and let Q be the convex hull of the ρ-separable packing of n translates
of the o-symmetric convex body C in Ed such that Mi(Q) is minimal and

n ≥ 4dd4d

δsep(ρ,C)d−1
·
(
ρ
R(C)

r(C)

)d
. (11)

By the minimality of Mi(Q) we have that

Mi(Q) ≤Mi(RBd + C) ≤Mi((R+ ρR(C)) Bd) (12)

with R = RC(ρ, n). Note that (12) and Lemma 3 imply that

Mi(Q) ≤

(
1 +

2δsep(ρ,C)
1
d ρR(C)

r(C)
· 1

n
1
d

)i
Mi(B

d)

(
vold(C)

δsep(ρ,C)κd

) i
d

· n i
d .

We examine the function x 7→ (1+x)i, where, by (11), we have x ≤ x0 = 1
2d4 . The convexity of this function

implies that (1 + x)i ≤ 1 + i(1 + x0)i−1x. Thus, from the inequality
(
1 + 1

2d4

)d−1 ≤ 33
32 < 1.05, where d ≥ 2,

the upper bound for Mi(Q) in Theorem 1 follows.
On the other hand, in order to prove the lower bound for Mi(Q) in Theorem 1, we start with the

observation that (10) (based on (12)), (11), and Lemma 3 yield that

S(Q) ≤ S((R+ ρR(C)) Bd) ≤ dκd
(

n vold(C)

δsep(ρ,C)κd

) d−1
d

(
1 +

2δsep(ρ,C)
1
d ρR(C)

r(C)
· 1

n
1
d

)d−1

. (13)

Thus, (13) together with the inequalities S(Q)r(Q) ≥ vold(Q) (cf. [11]) and vold(Q) ≥ n vold(C) yield

r(Q) ≥

(
1 +

2δsep(ρ,C)
1
d ρR(C)

r(C)
· 1

n
1
d

)−(d−1)
vold(C)

1
d δsep(ρ,C)

d−1
d

dκ
1
d

d

· n 1
d . (14)

Applying the assumption (11) and vold(C) ≥ κdr(C)d to (14), we get that

r(Q) ≥
(

1 +
1

2d4

)−(d−1)
δsep(ρ,C)

d−1
d r(C)

d
n

1
d ≥ 4d3

(1 + 1
2d4 )d−1

R(C) ≥ 31R(C). (15)

Let P denote the convex hull of the centers of the translates of C in Q. Then, (15) implies

r(P) ≥ r(Q)−R(C) ≥ 30

31
r(Q) ≥ 8δsep(ρ,C)

d−1
d r(C)

9d
· n 1

d . (16)

Hence, by (16) and Lemma 2,

vold(Q) ≥ vold(P) ≥

(
1 +

9dρR(C)

4δsep(ρ,C)
d−1
d r(C)

· 1

n
1
d

)−d
· n vold(C)

δsep(ρ,C)
, (17)

which implies in a straightforward way that

vold(Q) ≥
(

1 +
9dρR(C)

4δsep(ρ,C)r(C)
· 1

n
1
d

)−d
· n vold(C)

δsep(ρ,C)
. (18)

Note that (10) (see the restated version for j = d) implies that Mi(Q) ≥
(

vold(Q)
κd

) i
d

κi. Then, replacing

vold(Q) by the right-hand side of (18), and using the convexity of the function x 7→ (1 + x)−i for x > −1
yields the lower bound for Mi(Q)in Theorem 1.

6



Finally, we prove the statement about the spherical shape of Q, that is, the inequality (1). As in [8], let

θ(d) =
1

2
d+3
2

√
2π
√
d(d− 1)(d+ 3)

min

{
3

π2d(d+ 2)2d
,

16

(dπ)
d−1
4

}
.

Using the inequality κd−1

κd
≥
√

d
2π (cf. [1]) and (6) of [10], we obtain

(
S(Q)

S(Bd)

)d(
vold(B

d)

vold(Q)

)d−1

− 1 ≥ θ(d) ·
(

1− r(Q)

R(Q)

) d+3
2

(see also (5) of [8]). Substituting (13) and (17) into this inequality, we obtain(
1 +

2δsep(ρ,C)
1
d ρR(C)

r(C)
· 1

n
1
d

)d(d−1)(
1 +

9dρR(C)

4δsep(ρ,C)
d−1
d r(C)

· 1

n
1
d

)d(d−1)

≥
(
S(Q)

S(Bd)

)d(
vold(B

d)

vold(Q)

)d−1

.

By the assumptions d ≥ 2 and (11), it follows that

4d2(d− 1)
ρR(C)

δsep(ρ,C)r(C)
· 1

n
1
d

≥ θ(d)

(
1− r(Q)

R(Q)

) d+3
2

. (19)

Note that by [12], 1
δsep(ρ,C) ≤

2
3d
2 ·

√√√√√
 d(d+1)

2
d


(d+1)

d
2 π

d
2 Γ( d2 +1)

. This and (19) implies (1), finishing the proof of Theorem 1.
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