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RANDOM BASES FOR COPRIME LINEAR GROUPS

HÜLYA DUYAN, ZOLTÁN HALASI, AND KÁROLY PODOSKI

Abstract. The minimal base size b(G) for a permutation group G, is a widely
studied topic in the permutation group theory. Z. Halasi and K. Podoski [8]
proved that b(G) ≤ 2 for coprime linear groups. Motivated by this result and
the probabilistic method used by T. Burness, M.W. Liebeck and A. Shalev, it
was asked by L. Pyber [19] that for coprime linear groups G ≤ GL(V ), whether
there exists a constant c such that the probability of that a random c-tuple
is a base for G tends to 1 as |V | → ∞. While the answer to this question
is negative in general, it is positive under the additional assumption that G

is even primitive as a linear group. In this paper, we show that almost all
11-tuples are bases for coprime primitive linear groups.

1. Introduction

For a finite permutation group G, a subset B of Ω is called a base for G, if the
pointwise stabilizer ofB inG is trivial. The concept of base plays a fundamental role
in the development of the algorithms for permutation groups and these algorithms
are significantly faster if the size of the base is small (see the book of Á. Seress [22]).
The minimal size of a base for G acting on Ω is denoted by b(G). L. Pyber ([18])
showed that there exists a universal constant c > 0 such that almost all subgroups
G of Sym(n) satisfy that b(G) > cn.

On the other hand, there are several important group classes where the minimal
base size b(G) can be bounded by a fixed constant c. Á. Seress [21] showed that
b(G) ≤ 4 for a solvable primitive group G. For an almost simple primitive permu-
tation group G, a famous conjecture of P. J. Cameron and W. M. Kantor [2] states
that there exists an absolute constant such that b(G) ≤ c for all non-standard prim-
itive permutation groups G. In [3], P. J. Cameron suggested that c can be chosen
to 6 apart from the Mathieu group M24 with its natural action, where the minimal
base size is 7. The Cameron–Kantor conjecture was proved by M. W. Liebeck and
A. Shalev in [15]. However, this was an existence result for c, using probabilistic
method without yielding any explicit value for this constant. Finally, T. C. Bur-
ness, M. W. Liebeck and A. Shalev [1] proved that if G is a finite almost simple
group in a primitive faithful non-standard action, then b(G) ≤ 7, with equality if
and only if G is the Mathieu group M24 in its natural action of degree 24.
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Furthermore, they proved that if G is a finite almost simple group, and Ω is a
primitive faithful non-standard G-set then the probability that a random 6-tuple
in Ω is a base for G tends to 1 as |Ω| → ∞. For a finite vector space V , a linear
group G ≤ GL(V ) is called coprime, if (|G|, |V |) = 1. D. Gluck and K. Magaard [7]
proved that for such a group the minimal base size of G is bounded by an absolute
constant that is b(G) ≤ 94. Z. Halasi and K. Podoski [8] improved this result
by showing that b(G) ≤ 2 and this estimation is sharp. Based on this result and
the random base result of T. C. Burness, M. W. Liebeck and A. Shalev, L. Pyber
[19] asked whether for a coprime linear group G ≤ GL(V ) there exists an absolute
constant c such that a random c-tuple in V is a base for G tends to 1 as |V | → ∞.
We answer this question affirmatively by showing that

Theorem 1.1. Let V be a finite vector space and G ≤ GL(V ) be a coprime prim-
itive linear group, i.e. (|G|, |V |) = 1. Then the probability that a random 11-tuple
in V is a base for G tends to 1 as |V | → ∞.

In fact, we also give lower bounds for this probability in terms of the base field
and the dimension of V . Our bounds highly depends on the structure of G. As
a part of our argument, we give a general structure theorem for maximal coprime
primitive linear groups in Theorem 4.1.

For any positive integer c let us define the probability

Pb(c,G, V ) := P (random v1, . . . , vc ∈ V is a base for G).

The main goal of this paper is to prove the following

Theorem 1.2. Let V be an n-dimensional vector space over the finite field Fq and
let G ≤ GL(V ) be a coprime primitive linear group. Then for any c ≥ 11, the
probability Pb(c,G, V ) is close to zero if |V | is large enough. More precisely, one
of the following holds.

(1) Pb(c,G, V ) ≥ 1− 3

q(
c
2
−5)

√
n ;

(2) There is an F
k
q vector space structure on V for some field extension F

k
q ≥ Fq

(possibly k = 1) and a tensor product decomposition V = V1 ⊗Fk
q
U over Fk

q

with 1 ≤ dim(U) < dim(V1) ≤ n/k such that G ≤ ΓL(Fk
q , n/k) and H =

G∩GL((Fk
q , n/k) preserves this tensor product decomposition. Furthermore,

H = H1 ⊗H2 with H1 ≤ GL(V1), H2 ≤ GL(U) are absolutely irreducible
linear groups, and S1 = Soc(H1/Z(H1)) is a non-Abelian simple group.
(a) If S1 is not an alternating group, then

Pb(c,G, V ) ≥ 1−
( 1

q(c−4)
√

dim(V )
+

2

|V |(c−10)/80

)
;

(b) If S1 ≃ Am for some m and V1 is not an irreducible component of the
natural permutation Fk

qAm-module, then

Pb(c,G, V ) ≥ 1− 3

q
c−10
16

√
dim(V )

;

(c) If S1 ≃ Am for some m and V1 is the non-trivial irreducible component
of the natural permutation Fk

qAm-module, then

Pb(c,G, V ) ≥ 1− 3

nc−2
.
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Remark 1.3.

(1) Let Z = Z(GL(V )) ≃ F×
q denote the group of scalar transformations on V .

If G ≤ GL(V ) is a coprime linear group on V , then so is GZ ≥ G and we
have Pb(c,G, V ) ≥ Pb(c,GZ, V ). Therefore, for the rest of this paper we
will always assume that G contains Z.

(2) The assumption “primitive” is necessary here. To see this, letH ≤ GL(n, q)
be the group of all invertible diagonal matrices, so H ≃ (F×

q )
n. Then

v1, . . . , vc ∈ F
n
q is a base for H if and only if for each 1 ≤ i ≤ n the i-th

component of some vj is non-zero. For any fixed i, this has probability
(1 − 1/qc), so we have

Pb(c,H,Fn
q ) =

(
1− 1

qc

)n

,

which is close to zero for any fixed c and big enough n. If (q, n) = 1, then
one can add the regular permutation action of Cn on the components of
Fn
q to get the coprime irreducible linear group G = H ⋊ Cn ≤ GL(n, q)

satisfying limn→∞ Pb(c,G,Fn
q ) = 0.

2. Bounds on Pb(c,G, V ) in terms of supports and character ratios

In order to prove Theorem 1.2, our primary tool will be the concept of support
for elements of a linear group.

Definition 2.1. For a linear group G ≤ GL(V ) and a g ∈ G the fixed-point space
and the support of g are defined as

Fix(g) := {v ∈ V | g(v) = v} and Supp(g) := dim(V )− dim(FixV (g)).

Furthermore, let the minimum support of G be defined as

MinSupp(G) := min
16=g∈G

Supp(g).

We use the notation FixV (g), SuppV (g) and MinSuppV (G) if we also want to high-
light the vector space on which the group acts.

Remark 2.2. If G strictly contains Z, then MinSupp(G) equals

min
g∈G\Z

(
dim(V )− max

λ∈F
×
q

(dim(ker(g − λ · idV )))
)
.

In order to get bounds for MinSuppV (G) in case of G ≤ GL(V ) is a quasisimple
coprime linear group, we will use results from character ratios of complex irreducible
characters of such groups.

Definition 2.3. For a finite group G and χ ∈ Irr(G) with χ(1) 6= 1 let us define
the maximal character ratios

mr(G,χ) := max
g/∈Z(χ)

|χ(g)|
χ(1)

and mr(G) := max
χ∈Irr(G), χ(1) 6=1

mr(G,χ).

Clearly, mr(G) < 1 for every finite group G.

The connection between minimal support and maximal character ratio is de-
scribed in the following Lemma.
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Lemma 2.4. Let V be an n-dimensional vector space over the finite field Fq and
let G ≤ GL(V ) be a non-Abelian coprime irreducible linear group. Then we have

MinSuppV (G) ≥ dim(V )

2

(
1−mr(G)

)
.

Moreover, if χ ∈ Irr(G) is any irreducible component of the Brauer character
associated to V , then

MinSuppV (G) ≥ 1

2

(
χ(1)− max

g/∈Z(χ)
|χ(g)|

)
.

Proof. Let Fq be the algebraic closure of Fq and let V = V ⊗Fq be the FqG-module

arising from the FqG-module V . Let V = V1 ⊕ . . . ⊕ Vt be the decomposition

of V into irreducible FqG-modules. Then the corresponding representations G 7→
GL(Vi) form a single Galois conjugacy class by [10, Theorem 9.21], so SuppVi

(g) =
1
t SuppV (g) holds for every g ∈ G. Let χi : G 7→ C be the irreducible Brauer
character associated to Vi for each 1 ≤ i ≤ t. Since (q, |G|) = 1, we get χi ∈ Irr(G)
by [10, Theorem 15.13]. Furthermore,

χi(1) = dim(Vi) and [χi〈g〉, 1〈g〉] = dim(FixVi
(g)).

For any g ∈ G we have χ1(g) = (χ1(1)−k) ·1+ε1+ . . .+εk where k = SuppV1
(g)

and ε1, . . . , εk are o(g)-th root of unity. Then |χ1(g)| ≥ χ1(1) − 2k = χ1(1) −
2 SuppV1

(g) holds, so 2MinSuppV1
(G) ≥ χ1(1) − maxg/∈Z(χ1) |χ1(g)|. (Note that

the assumption that G is non-Abelian implies that the χi are non-linear characters.
Furthemore, if 1 6= g ∈ Z(χ1), then SuppV (g) = dim(V ), so MinSuppV (G) =
ming/∈Z(χ1) SuppV (g) must hold.)

It follows that

2MinSuppV (G) = 2tMinSuppV1
(G) ≥ t(χ1(1)− max

g/∈Z(χ1)
|χ1(g)|)

= tχ1(1)(1 −mr(G,χ1)) ≥ dim(V )(1−mr(G)).

Now, the first inequality proves the second claim, while the second inequality
proves the first claim. �

Lemma 2.5.

Pb(c,G, V ) ≥ 1−
∑

16=g∈G

1

qc·Supp(g)
≥ 1− |G|

qc·MinSupp(G)
≥ 1− 1

|V |c(1−mr(G))/2−2
.

In particular, Pb(c,G, V ) ≥ 1− 1
|V |ε for c ≥ 4+2ε

1−mr(G) .

Proof.

P ({v1, . . . , vc} ⊆ V is not a base for G) ≤
∑

16=g∈G

P (g(vi) = vi, ∀ 1 ≤ i ≤ c)

=
∑

16=g∈G

( |Fix(g)|
|V |

)c

=
∑

16=g∈G

1

qc·Supp(g)
≤ |G|

qc·MinSupp(G)

≤ |V |2
(qn)c(1−mr(G))/2

=
1

|V |c(1−mr(G))/2−2
,

and the claim follows. �
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3. Bounds for character ratios and for minimal supports of
quasisimple linear groups

The goal of this section is to give lower bounds for minimal supports of coprime
quasisimple groups G ≤ GL(V ) in terms of |G| and dim(V ).

First we handle the case when G is a sporadic group or a finite quasisimple
group of Lie type. For such groups, we use bounds for their maximal character
ratios mr(G).

Theorem 3.1. Let G be a finite quasisimple group such that G/Z(G) is not an
alternating group.

(1) If G/Z(G) is a sporadic simple group, then mr(G) < 0.54.
(2) If G = G(r) is a finite quasisimple group of Lie type over the field Fr, then

mr(G) ≤
{

max
(

1√
r−1

, 9
r

)
if r > 9;

19
20 if r ≤ 9.

Proof. We checked part (1) for the covering groups of the sporadic simple groups by
using the GAP [4] Character table library and also the undeposited GAP package
FUtil to turn cyclotomic complex numbers into floating ones in order to be able to
compare the values of |χ(g)| for various g and χ.

Regarding part (2), it is a simplified version of a result of Gluck [6]. (For a
summary of his results, see also [14, Theorem 2.4]). �

Remark 3.2. For simple groups of alternating type there is no general upper bound
for mr(G) smaller than 1. Moreover it can be shown that for every ε > 0, the number
of irreducible characters χ ∈ Irr(Sm) (or χ ∈ Irr(Am)) satisfying mr(Sm, χ) > 1− ε
is not bounded if m is large enough.

Corollary 3.3. Let V be a vector space over the finite field Fq and let G = Z ·G0 ≤
GL(V ) where G0 is a coprime quasisimple irreducible linear group which is not of
alternating type. Then MinSuppV (G) ≥ 1

40 dim(V ).

Proof. By Theorem 3.1, we have mr(G) = mr(G0) ≤ 19
20 , so the claim follows from

Lemma 2.4. �

Now, we handle the case when Soc(G/Z(G)) is an alternating group.

Theorem 3.4. Let G = Sm and χ = χ(λ) ∈ Irr(G) corresponding to the partition
λ = (λ1 ≥ . . . ≥ λk) of [m]. Then χλ(1)− χλ((123)) ≥ 1

m−1χ
λ(1) unless

λ ∈ {(m); (1, . . . , 1)}.

Proof. First, we introduce some notation. Let λ = (λ1 ≥ . . . ≥ λk) be a partition
of m, different from the two exceptional ones given in the theorem. For any natural
numbers i1, . . . , ik let χλ−{i1,...,ik} be the character of Sm−k corresponding to the
Young diagram obtained from the diagram of λ by deleting the last cells of the
i1-th,. . . ,ik-th row in that order with the assumption that λ−{i1, . . . , is} is a valid
Young diagram for each 1 ≤ s ≤ k. Otherwise, we define χλ−{i1,...,ik} as the
constant zero function on Sm−k.
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By the Murnaghan-Nakayama rule (see [11, 21.1]),

χλ((123)) ≤
∑

ν∈{λ−rh(3)}
χν(1) +

∑

ν∈{λ−rh(1,1,1)}
χν(1)

=
∑

ν∈{λ−rh(3)}
χν(1) +

∑

ν∈{λ−rh(3)}

χν(1)

where {λ− rh(∗)} denotes the set of partitions of m− 3 which we can get from the
Young-diagram of λ be removing a rim 3-hook of type (∗) such that the remaining
cells form a valid Young diagram.

On the other hand, by using the branching rule (three times) one gets

χλ(1) =
∑

i,j,k

χλ−{i,j,k}(1).

Let ν ∈ {λ − rh(3)}. Then ν = λ − {i, i, i} for some (unique) i. Now, there is
a j 6= i such that τ = λ − {i, i, j} is a valid Young diagram. Then both induced
characters (χτ )Sm−2 and (χν)Sm−2 contain χλ−{i,i} as a component which results
χν(1) ≤ χλ−{i,i}(1) ≤ (m − 2)χτ (1). The same argument can be applied to any

ν ∈ {λ− rh(3)}. It follows that

χλ(1) ≥
∑

i

χλ−{i,i,i}(1)
(
1 +

1

m− 2

)
+
∑

i

χλ−{i,i,i}(1)
(
1 +

1

m− 2

)

≥ m− 1

m− 2
χλ((123)).

Hence χλ(1)− χλ((123)) ≥ 1
m−1χ

λ(1) which proves the claim. �

This result will be adequate for our purposes only if the degree of χ is large
enough. In order to get an overall picture about the form of Young diagrams
defining characters of small degree, we will use a result of Rasala [20]. In what
follows, we use the terminology from Rasala’s paper. For any partition λ of m, let
|λ| = m be the order of λ and let λ∗ be the partition dual to λ. The partition λ is
called primary, if λ ≥ λ∗, where ≥ denotes the standard ordering on partitions. If
λ = (λ1 ≥ . . . ≥ λk) is a partition of k and m ≥ λ1 + k, then let m/λ denote the
partition of m defined asm/λ = (m−k ≥ λ1 ≥ . . . ≥ λk) and let ϕλ(m) := χm/λ(1)
be the degree of the character of Sm associated to m/λ. (Note that ϕλ(m) is a
polynomial in m by [20, Theorem A].) For any set P of partitions of k and for m
large enough, let L(P,m) := {ϕλ(m) |λ ∈ P} and let δ(P,m) be the largest degree
in L(P,m). Then P is said to be m-minimal, if for every primary partition µ of m
either χµ(1) > δ(L, P ) or µ = m/λ for some λ ∈ P .

By [20, Main Theorem 1.] (for k = 3) we have

Theorem 3.5. Let P3 be the set of all partitions of order at most 3, that is, P3 =
{∅; (1); (2); (1, 1); (3); (2, 1); (1, 1, 1)}. Then P3 is m-minimal for every m ≥ 15.

Thus, by using the hook length formula and the Murnaghan-Nakayama rule
we can calculate the exact values of χλ(1) and χλ((123)) when χλ(1) is among
the first seven smallest character degrees of Sm for m ≥ 15. Otherwise, we get
a reasonably large lower bound for χλ(1). (Note that λ or λ∗ is primary and

χλ(1) = χλ∗
(1), χλ((123)) = χλ∗

((123)) holds for every partition λ of m.)
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Corollary 3.6. Let λ be a partition of m for m ≥ 15 and let χλ ∈ Irr(Sm) be the
character of Sm associated to λ. Then χλ(1) and χλ((123)) are as given in Table
1 or χλ(1) > 1

3m(m− 2)(m− 4).

λ or λ∗ χλ(1) = χλ∗
(1) χλ((123)) = χλ∗

((123))

(m) 1 1

(m− 1, 1) m− 1 m− 4

(m− 2, 2) 1
2m(m− 3) 1

2 (m− 3)(m− 6)

(m− 2, 1, 1) 1
2 (m− 1)(m− 2) 1

2 (m− 4)(m− 5)

(m− 3, 3) 1
6m(m− 1)(m− 5) 1

6 (m− 3)(m− 4)(m− 8) + 1

(m− 3, 2, 1) 1
3m(m− 2)(m− 4) 1

3 (m− 3)(m− 5)(m− 7)− 1

(m− 3, 1, 1, 1) 1
6 (m− 1)(m− 2)(m− 3) 1

6 (m− 4)(m− 5)(m− 6) + 1

Table 1. Character values of Sm when the degree is small.

Now, we give an analogue of Corollary 3.3 for alternating-type groups.

Corollary 3.7. Let V be a vector space over the finite field Fq and let G = Z ·G0 ≤
GL(V ) where G0 is a coprime irreducible linear group and G0/Z(G0) ≃ Am for
some m ≥ 5. Let us assume that V is not a component of the natural permutation
FqAm-module. Then MinSuppV (G) ≥ 1

16

√
dim(V ).

Proof. As in the proof of Lemma 2.4, MinSuppV (G) = t · MinSuppV1
(G) and

dim(V ) = t · dim(V1) where V1 is an (absolutely) irreducible component of FqG-

module V ⊗ Fq. Then the claim clearly follows if we prove that MinSuppV1
(G) ≥

1
16

√
dim(V1). In other words, we can assume that V is absolutely irreducible. First

let us assume that G0 ≃ Am for some m ≥ 9. Let ϕ ∈ Irr(Am) be the Brauer
character associated to V and χ ∈ Irr(Sm) above ϕ, i.e. [χAm

, ϕ] 6= 0. Then ei-
ther χAm

= ϕ (if χ is not self-dual) or χAm
= ϕ + ϕ(12) (if χ is self-dual). In

the latter case ϕ((123)) = χ((123))/2, since the conjugacy class (123)Sm does not
split in Am. Let ǫ be 1 or 1/2 according to these cases, so ϕ(1) = ǫχ(1) and
ϕ((123)) = ǫχ((123)). By [20, Result 2.], we have dim(V ) = ǫχ(1) ≥ 1

2m(m − 3).

If ϕ((123)) < 0, then SuppV ((123)) ≥ 1
2 dim(V ) ≥ 1

4

√
dim(V ) holds trivially. Oth-

erwise, by using Lemma 2.4 and Theorem 3.4 we get that

SuppV ((123)) ≥
1

2
(ϕ(1) − |ϕ((123))|) = ǫ

2
(χ(1)− χ((123))) =

ǫχ(1)

2(m− 1)

=
dim(V )

2(m− 1)
≥

√
m(m− 3)/2

√
dim(V )

2(m− 1)
≥ 1

4

√
dim(V ).

For any element 1 6= g ∈ Am there are x, y ∈ Am such that [g, x, y] is a three-
cycle. Applying Lemma 4.2 twice, we get that SuppV (g) ≥ 1

4 SuppV ((123)) ≥
1
16

√
dim(V ).

Now, let us assume that m > 7 and G0 is the universal covering group of Am,
so G0 ≃ 2.Am. Let z ∈ G0 be the generator of Z(G0) ≃ C2 and let ḡ ∈ Am denote
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the image of any g ∈ G0 under the natural surjection by G0 7→ Am. Then z acts
on V as a scalar transformation z(v) = −v for all v ∈ V , so SuppV (z) = dim(V ).
Let t ∈ G0 such that t̄ = (12)(34). By Theorem [9, Theorem 3.9], t and tz are
conjugate, so z = [h, t] for some h ∈ G0. It follows that SuppV (t) ≥ 1

2 SuppV (z) =
dim(V )

2 by Lemma 4.2. (In fact, by using this argument to tz instead of t one
can prove equality here.) Now, for any g ∈ G0 \ Z one can choose x, y ∈ G
such that [ḡ, x̄, ȳ] is conjugate to t̄. Using again Lemma 4.2 twice, we get that

SuppV (g) ≥ 1
4 SuppV (t) =

1
8 dim(V ) ≥ 1

16

√
dim(V ).

For the remaining cases, dim(V ) ≤
√
|G0| < 162, so 1

16

√
dim(V ) < 1 ≤

MinSuppV (G) follows. �

The next result gives a bound to the order of most coprime quasisimple linear
groups similar to that of |G| ≤ |V |2 = q2 dim(V ) but using the minimal support
MinSuppV (G) instead of dim(V ).

Theorem 3.8. Let V be a vector space over the finite field Fq and let G = Z ·G0 ≤
GL(V ) where G0 is a coprime quasisimple irreducible linear group.

Then one of the following holds:

(1) logq |G| ≤ d ·MinSuppV (G) with d = 5.
(2) G0 ≃ Am and V is the non-trivial irreducible component of the natural

permutation module of Am over Fq.
(3) G0 = G0(r) is a finite quasisimple group of Lie type over the finite field Fr

with r ≤ 43, and |V | is bounded by an absolute constant.

Proof. For any sporadic group S, let Ŝ be its universal covering group and let q(S)
be the smallest prime not dividing the order of S. By using GAP [4], we checked

that for every χ ∈ Irr(Ŝ), the inequlity

logq(S) |Ŝ| < d · (χ(1)− max
g∈Ŝ−Z(χ)

|χ(g)|)/2

holds with d > 4.22. (The largest value is attained for 2.J2.) Now, if G ≤ GL(V )
is any finite quasisimple group with sporadic simple quotient S = G/Z(G), then

G is a homomorphic image of Ŝ, and we can view V as an irreducible FqŜ-module

(where q ≥ q(S)). Now, if χ ∈ Irr(Ŝ) is any irreducible component of the Brauer
character corresponding to V ⊗ Fq, then

logq |G| ≤ logq(S) |Ŝ| < d · (χ(1)− max
g∈Ŝ−Z(χ)

|χ(g)|)/2

≤ d ·MinSuppV (Ŝ) ≤ d ·MinSuppV (G)

also holds with d > 4.22 by Lemma 2.4.
Next, let G ≃ Am for some m ≥ 15. Then we have m < q by the coprime

assumption. Let us assume that V is not a component of the natural permutation
FqAm-module. Let ϕ ∈ Irr(Am) be an irreducible component of the Brauer char-
acter associated to V and χ ∈ Irr(Sm) above ϕ. By the proof of Corollary 3.7, we
have ϕ(1) = εχ(1), and ϕ((123)) = εχ((123)), where ε is 1/2 or 1 if χ is self-dual
or not.

If χ is one of the characters given in Table 1, then χ is not self-dual. In that
case we have

SuppV ((123)) ≥
1

2
(χ(1)− |χ(123)|) ≥ 3

2
(m− 3)
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by using Lemma 2.4 and the last five rows of Table 1. Otherwise, χ(1) > 1
3m(m−

2)(m− 4), so we have

SuppV ((123)) ≥
1

2
(ϕ(1)− |ϕ(123)|) ≥ 1

4
(χ(1)− |χ(123)|)

≥ χ(1)

4(m− 1)
>

m(m− 2)(m− 4)

12(m− 1)
≥ m− 3

holds if ϕ(123) ≥ 0. However, if ϕ(123) < 0, then SuppV ((123)) ≥ 1
2 dim(V ) ≥

m − 3 holds trivially. Thus, SuppV ((123)) ≥ m − 3 holds in any case. Now, for
any element 1 6= g ∈ Am there are x, y ∈ Am such that [g, x, y] is a three-cycle.
Applying Lemma 4.2 twice, we get that SuppV (g) ≥ 1

4 SuppV ((123)) ≥ m−3
4 holds

for any 1 6= g ∈ Am. Thus, d ·MinSuppV (G) ≥ d(m−3)
4 ≥ m ≥ logm(m!) ≥ logq |G|

holds for d ≥ 5.
Now, letm ≥ 12 and letG0 be the universal covering group of Am, soG0 ≃ 2.Am.

By the proof of Corollary 3.7, we have MinSuppV (G) ≥ 1
8 dim(V ). Using [13, Main

Theorem] we get that

d ·MinSuppV (G) ≥ d

8
dim(V ) ≥ d

8
min{χ(1) |χ ∈ Irr(G), χ(z) 6= χ(1)}

≥ d · 2⌊m/2⌋−4 ≥ m ≥ logq |G|
holds for d ≥ 3.25. For the remaining members of Alternating groups and their
covers (i.e for Am, 12 ≤ m ≤ 14), for 2.Am(m = 5 or 8 ≤ m ≤ 11) and for
6.A6, 6.A7 we used the same algorithm as for sporadic groups.

Finally, let G0 = G0(r) be a quasisimple group of Lie type over a finite field Fr

with (r, q) = 1. First, suppose that r ≥ 47. By part (2) of Theorem 3.1, we have

mr(G) ≤ max
( 1√

r − 1
,
9

r

)
<

1

5
.

By using [17, Theorem 1.] and Lemma 2.4,

logq |G| ≤ 2n = 5 · 2n
5

≤ 5 ·MinSuppV (G)

For the rest of the proof, suppose that r ≤ 43. Since χ(1)− 2 Supp(g) ≤ |χ(g)| for
any χ ∈ Irr(G), we have that

1

2
χ(1)

(
1− |χ(g)|

χ(1)

)
≤ Supp(g).

Using that mr(G) ≤ 19
20 also holds for all quasisimple groups of Lie-type by part (2)

of Theorem 3.1, we obtain that

dim(V )

8
≤ 5MinSuppV (G)

by using Lemma 2.4 again. Since (see [12, Table 5.3.A]) dim(V ) ≥ rO(m) (where
m denotes the rank of G0(r)) and logq |G| = O(m2 log r), there exist only finitely
many possible pairs (m, r) such that logq |G| > 5MinSuppV (G). Furthermore, for
any fixed (m, r), the inequality logq |G| ≤ 5MinSuppV (G) still holds provided that
|V | is large enough. �

We close this section by handling the case (2) in Theorem 3.8. In this case
MinSuppV (G) is bounded. (It is 1 and 2 for G0 ≃ Sm and G0 ≃ Am, respectively.)
Therefore, we give a direct proof for Theorem 1.2 in this case.
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Theorem 3.9. Let U be an m-dimensional vector space over Fq, and let G = Sm

with its natural permutation action on U . Assuming that (|G|, |U |) = 1, we have

P (random u ∈ U c is a base for G) > 1− 1

mc−2
for any c ≥ 3.

Hence three random vectors form a base for G with high probability if m is large.

Proof. The FqG-module V c can be naturally identified with Mm×c(q), the space of
m×c-matrices over Fq. Under this identification, G acts on Mm×c(q) by permuting
the rows of each element of Mm×c(q) in a natural way. Hence, a matrix a ∈
Mm×c(q) is a base for G if and only if the rows of a are pairwise different elements
of M1×c(q), the space of c-dimensional row vectors over Fq. Thus, the probability
in question is equal to the probability that m random elements of M1×c(q) are
pairwise different, which is

m−1∏

i=0

qc − i

qc
>

(
qc − q

qc

)m

≥
(
1− 1

mc−1

)m

≥ 1− 1

mc−2
,

where the first and second inequalities follows since m < q by the coprime assump-
tion. The claim follows. �

Corollary 3.10. Let V be an n dimensional vector space over the finite field Fq

and let G = Z ·G0 ≤ GL(V ) be a coprime linear group, where G0 ≃ Sm or G0 ≃ Am

and V is the non-trivial irreducible component of the natural FqG0-module. Then
we have

P (random v ∈ V c is a base for G) > 1− 1

nc−2
for any c ≥ 3.

Proof. First, note that Fix(g) = 0 for every g ∈ G \G0, so a v ∈ V c is a base for
G if and only if it is a base for G0. Second, let U = V ⊕U0, where U0 is the trivial
module for G0. For any random vectors u1, . . . , uc ∈ U let vi be the projection of
ui to V along U0. Then u1, . . . , uc is a base for G0 if and only if v1, . . . , vc is a base
for G0, so the claim follows from Theorem 3.9. �

4. Proof of Theorem 1.2

Let V be an n-dimensional vector space over the finite field Fq and let G ≤
GL(V ) = GL(n, q) be a coprime primitive linear group, which is maximal, i.e.
there is no coprime subgroup L ≤ GL(V ) strictly containing G. In the following,
we give a structure theorem of such groups very similar to a result about maximal
solvable primitive linear group (see [21, Lemma 2.2] and [23, §§19–20]). Our proof
uses ideas similar to those can be found in [5], [8], and [23]. For the convienience
of the reader, we give a self-contained proof here.

In the following, we extend the vector space structure on V by defining multipli-
cation on V with elements from a (possibly) larger field Fqk ≥ Fq for some k | n. In
that way, V will be both an Fq-vector space and an Fqk -vector space at the same
time.

We will use the notation V = Vn(q), V = Vd(q
k) or V = V (qk) if we would like

to highlight the base field and/or the dimension of V .

Theorem 4.1. Let V = Vn(q) be an n-dimensional vector space over the finite
field Fq and let G ≤ GL(V ) be a maximal coprime primitive linear group. Then
the following statements hold.
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(1) There is a unique maximal Abelian subgroup Z ≤ GL(V ), which is nor-
malised by G. Moreover, Z is contained in G.

(2) Z is cyclic and Z ∪ {0} ≃ Fqk for some k | n.
(3) There is a (unique and maximal) Fqk vector space structure V = Vd(q

k) on

V for d = n/k such that G ≤ ΓL(d, qk)).
(4) Let H := G ∩ GL(d, qk). Then Z ≤ H = CG(Z) ⊳ G, furthermore Z =

Z(GL(d, qk)) is the group of scalar transformations on Vd(q
k) and G/H is

included into the Galois group Gal(Fqk ,Fq).
(5) Let N = F ∗(H) be the generalised Fitting subgroup of H. Then N/Z is

the socle of H/Z. Furthermore, Vd(q
k) is an absolutely irreducible FqkN -

module.
(6) Let N1, . . . , Nt be the set of minimal normal subgroups of H above Z. Then

there is an absolutely irreducible FqkNi-module Vi for every i such that
V ≃ V1 ⊗F

qk
. . . ⊗F

qk
Vt. Furthermore, N = N1 ⊗ N2 ⊗ . . . ⊗ Nt and

H = H1 ⊗H2 ⊗ . . .⊗Ht where Ni ⊳ Hi ≤ GL(Vi(q
k)) for every i.

(7) If Ni/Z is Abelian, then Ni = ZRi where Ri ≤ Ni is an extraspecial ri-

group for some prime ri of order r2li+1
i . Furthermore, |Ni/Z| = r2lii and

dimF
qk
(Vi) = rlii .

(8) If Ni/Z is a direct product of s many isomorphic non-Abelian simple groups,
then there is a tensor product decomposition Vi = W1 ⊗ . . .⊗Ws preserved
by Ni. Then Ni = K1 ⊗ . . .⊗Ks where Ki = SiZ for each i, and the Si ≤
GL(Wi) are isomorphic quasisimple absolutely irreducible groups. Finally,
Hi permutes the Ki-s and the Wi-s in a transitive way.

Proof. Let A ≤ GL(V ) be any Abelian subgroup normalised by G and P is the
(unique) Sylow-p subgroup of A for p = char(Fq). Then P is normalised by G.
Then 0 6= FixV (P ) = ∩p∈P FixV (p) ≤ V is G-invariant. Since V is an irreducible
FqG-module, we get that P = 1, so |A| is coprime to |V |. Therefore, GA ≥ G is a
coprime linear group, so A ≤ G by the maximality of G and part of (1) is proved.

Let Z ≤ GL(V ) be a maximal Abelian subgroup normalised by G. By the pre-
vious paragraph, Z ⊳ G. Since G ≤ GL(V ) is primitive linear, V is a homogeneous
FqZ-module. If V = V1 ⊕ . . .⊕ Vd is a decomposition of V into (isomorphic) irre-
ducible FqZ-modules, then Z ≃ ZVi

≤ EndZ(Vi) ≃ Fqk for some k ≥ 1 by using
Schur Lemma. Then 〈Z〉Fq

(the subalgebra of End(V ) generated by Z) is isomor-

phic to the field Fk
q , and it is invariant under the conjugation by elements of G. It

follows that 〈Z〉Fq
\ {0} ≃ F

∗
q is an Abelian subgroup of GL(V ) normalised by G.

Therefore, (2) follows by the maximality of Z.
Identifying Z ∪ 0 ≤ End(V ) with F

k
q , it defines an Fqk vector space structure

on V . The conjugation action of G on Z ∪ {0} = Fqk defines a homomorphism

σ : G 7→ Gal(Fqk ,Fq). Now, for any g ∈ G, α ∈ Fk
q and v ∈ V we have g(αv) =

(gαq−1)g(v) = ασ(g)(v), so G is included into the semilinear group ΓL(Vd(q
k)) =

ΓL(d, qk). The subgroup H is just the kernel of σ, so (4) and part of (3) follows.
Let B ⊳ G be any Abelian normal subgroup, α ∈ Z a generator of Z and b ∈ B.

Then bαb−1 = ασ(b) = αqs for some 0 ≤ s < k, so [b, α] = αqs−1 ∈ B is centralised
by b. Changing b to b−1 if necessary, we can assume that 0 ≤ s ≤ k/2. This
means (αqs−1)q

s

= αqs−1, so qk − 1 | (qs − 1)2 < qk − 1. Therefore, s = 0. Thus,
B ≤ CG(Z), so BZ ≥ Z is an Abelian normal subgroup in G. By the maximality
of Z, we get B ≤ Z, which completes the proof of both (1) and (3).
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Let M = F (H) be the Fitting subgroup of H . Then Z(M) is an Abelian normal
subgroup of G, so Z(M) = Z by the maximality of Z. Let n by the nilpotency
class of M . If n = 1 then M = Z. Otherwise, we claim that n = 2. Assuming that
n ≥ 3, we have 1 6= γn(M) ≤ Z, and [γn−1(M), γn−1(M)] ≤ [γ2(M), γn−1(M)] ≤
γn+1(M) = 1, so γn−1(M) is an Abelian normal subgroup of G, so it must contained
in Z. This forces γn(M) = 1, a contradiction. Therefore, n ≤ 2, that is, M/Z is
Abelian.

Let R be a Sylow-r-subgroup of M for some prime r dividing |M/Z|. The
commutator map defines a symplectic bilinear function from R/Z into Z(R) =

R ∩Z. Therefore, for any x, y ∈ R we have [xr, yr] = [x, y]r
2

= [xr2 , y]. If rs is the

exponent of R/(R∩Z) for some s ≥ 2, then Rrs−1

Z is an Abelian normal subgroup

of G, so Rrs−1 ≤ Z, a contradiction. Thus, we get R/(R ∩ Z) is an elementary
Abelian r-group. Using this and the above commutator identity it also follows that
R′ ≤ Z is of exponent r. It follows that R = (R ∩ Z)R0 for some extraspecial
r-group R0.

Be the previous two paragraphs, F (H)/Z is exactly the direct product of the
minimal Abelian normal subgroups of H , so F (H)/Z is contained in Soc(H/Z).
Since N = F ∗(H) is the central product of F (H) and the layer E(H), where
E(H)/Z is the direct product of the minimal non-Abelian normal subgroups of
H/Z it follows that N/Z = Soc(H/Z) as claimed. By [5, Lemma 12.1], Vd(q

k)
is an absolutely irreducible FqkH-module. If the irreducible FqkN -components of

Vd(q
k) were not be absolutely irreducible, then Z(CGL(Vd(qk))(N)) would be the

multiplicative group of a proper field extension of Fqk normalised by G, which

again contradicts with the maximility of Z. Now, let us assume that Vd(q
k) =

U ⊕ . . . ⊕ U is a direct sum of s many isomorphic absolutely irreducible FqkN -
modules for some s ≥ 2. By [12, Lemma 4.4.3(ii)], there is a tensor product
decomposition U ⊗F

qk
W of Vd(q

k) such that N ≤ GL(U)⊗1W ≤ GL(U)⊗GL(W )

and G ≤ NΓL(V )(N) ≤ NΓL(V )(GL(U) ⊗ GL(W )). Let L = {1U ⊗ hW | ∃hU ∈
GL(U) such that hU ⊗ hW ∈ H}. If L = Z, then Vd(q

k) is not irreducible as an
FqkH-module, a contradiction. We have L ≤ GL(V ) is a coprime linear group
normalised by G, so LG ≤ GL(V ) is coprime. Using the maximality of G we get
that L < G. But then Z < L ≤ H clearly centralises N = F ∗(H), a contradiction.
So, Vd(q

k) is an absolutely irreducible FqkN -module, and (5) is proved. Now, (6)
follows by a combined use of [16, Corollary 18.2/(a)] and [12, Lemma 4.4.3(iii)].

If Ni/Z is Abelian, then it is a minimal Abelian normal subgroup of H/Z so it
is elementary Abelian ri-group for some prime ri. Using the same argument as in
paragraph 6 of this proof, one can find the extraspecial ri-groupRi by taking the full
inverse image of a maximal non-degenerate subspace of R/R′ where R is the Sylow-
ri subgroup of Ni. For this subgroup, it clearly follows that Ni = ZRi, and |Ri| =
r2li+1
i for some integer. Furthermore, since Vi is an absolutely irreducible FqkNi-
module, it must be an absolutely irreducible FqkRi-module. It is well-known that

extraspecial ri-group of order r2li+1
i has a unique faithfull absolutely irreducible

ordinary representation, and this representation has degree rlii , which finishes the
proof of (7).

Finally, (8) can again be deduced from [16, Corollary 18.2/(a)] and from the fact
that Ni/Z is a minimal normal subgroup in Hi/Z. �
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Lemma 4.2. Let G be a group, K be a field and let V be an arbitrary finite
dimensional KG-module.

(1) For any g, h ∈ G we have Supp([g, h]) ≤ 2 Supp(g).
(2) If N ⊳ G such that V is absolutely irreducible as a KN -module, then

MinSupp(N) ≤ 2MinSupp(G).

Proof. Let us consider the subspaces U = Fix(g) and W = Fix(h−1gh) of V . Then
we have

dim(U) + dim(W )− dim(U ∩W ) = dim(U +W ) ≤ dim(V ).

Using that dim(U) = dim(W ) = dim(V )−Supp(g) we get dim(U ∩W ) ≥ dim(V )−
2 Supp(g). On the other hand U ∩W ≤ Fix([g, h]) holds trivially, so

Supp([g, h]) = dim(V )− dim(Fix([g, h])) ≤ dim(V )− dim(U ∩W )

≤ dim(V )− (dim(V )− 2 Supp(g)) = 2 Supp(g),

and part (1) follows.
For part (2), let 1 6= g ∈ G be any element. If [g,N ] = 1, then g acts as a scalar

transformation on V by [10, Theorem 9.2], so Supp(g) = dim(V ) ≥ MinSupp(N).
Otherwise, there is an element n ∈ N such that [g, n] 6= 1. Then we have
MinSupp(N) ≤ Supp([g, n]) ≤ 2 Supp(g). Thus, MinSupp(N) ≤ 2 Supp(g) for
every 1 6= g ∈ G, which proves that MinSupp(N) ≤ 2MinSupp(G). �

Lemma 4.3. Let V1, . . . , Vk be finite dimensional vector spaces over the field Fq

and Z < G1 ≤ GL(V1), . . . , Z < Gk ≤ GL(Vk) be coprime linear groups. Consider
the group G := G1 ⊗ . . .⊗Gk acting on the tensor product V := V1 ⊗ . . .⊗ Vk in a
natural way.

(1) Let g = g1 ⊗ . . . ⊗ gk ∈ G with gj ∈ Gj for each j and let us assume that
gi /∈ Z for some i. Then

SuppV (g) ≥ MinSuppVi
(Gi) ·

dim(V )

dim(Vi)

or SuppV (g) ≥ 1
2 dim(V ).

(2) As a consequence

MinSuppV (G) = min
i

{
MinSuppVi

(Gi) ·
dim(V )

dim(Vi)

}
,

or MinSuppV (G) ≥ 1
2 dim(V ).

Proof. To prove part (1), first we consider the case k = 2. Let n1 = dim(V1), n2 =
dim(V2), so n = dim(V ) = n1n2. Furthermore, let 1 6= g = g1⊗g2 ∈ G1⊗G2 be an
element of G with g1 /∈ Z. Since the action is coprime, g1 and g2 are diagonalisable
over Fq. Let α1, . . . αs ∈ Fq be the different eigenvalues of g1 with multiplicity
k1, k2, . . . , ks. We can assume that k1 is the largest among the ki. Let l1, . . . , ls be
the multiplicities of α−1

1 , . . . , α−1
s in the characteristic polynomial of g2 (Some of

them can be zero). Then

SuppV (g) = SuppV (g1 ⊗ g2) = n− dim(FixV (g1 ⊗ g2))

= n−
s∑

i=1

kili ≥ n−
s∑

i=1

k1li ≥ (n1 − k1)n2.
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If α1 ∈ Fq, then we can substitute g1 by α−1
1 g1 and g2 by α1g2 (since both G1 andG2

contains all the scalar transformations), so we can assume that α1 = 1. Now, since
g1 6= 1, we get SuppV (g) ≥ (n1−k1)n2 = SuppV1

(g1)n2 ≥ MinSuppV1
(G1)·dim(V2).

Now, let us assume that α1 /∈ Fq. Then there is an algebraic conjugate element

of α1 (different from α1) under the action of Gal(Fq,Fq) which is also an eigenvalue
of g1 with the same multiplicty as α1. In particular, k1 ≤ n1/2. Thus,

SuppV (g) ≥ (n1 − k1)n2 ≥ (n1/2)n2 =
dim(V )

2
.

By changing the role of g1 and g2 in the proof and by using induction on k, we get
the claim of part (1).

Finally, if SuppVi
(gi) = MinSuppVi

(Gi) for some gi /∈ Z, then

SuppV (1⊗ . . .⊗ 1⊗ gi ⊗ 1⊗ . . .⊗ 1) = MinSuppVi
(Gi) ·

dim(V )

dim(Vi)
,

so part (2) follows by using part (1). �

Proof of Theorem 1.2. Let G ≤ GL(V ) be a coprime primitive linear group. With-
out loss of generality we can assume that G is maximal among such subgroups
of GL(V ). Let Z be the unique maximal Abelian subgroup in GL(V ) which is
normalised by G and H be the intersection of G and GL(d, qk) as in Theorem
4.1. If g ∈ G \ H then there is a z ∈ Z such that [g, z] 6= 1. By Lemma 4.2,
SuppV (g) ≥ 1

2 SuppV ([g, z]) =
1
2 dim(V ). Therefore if c > 4, then

∑

g∈G\H

1

qc·SuppV (g)
≤ |G \H |

q
c
2 dim(V )

≤ |V |2
|V | c2 ≤ 1

|V | c2−2
.

Now let g be an element of H = H1 ⊗ . . . ⊗ Ht. So g = (g1, . . . , gt) where
gi ∈ Hi for all i ∈ [t] and g preserves the tensor product decomposition V =
V1 ⊗ . . .⊗ Vt over F

k
q as in Theorem 4.1 (6) and dimF

qk
(Vi) = di for all i (therefore

d = dimF
qk
(V ) =

∏t
i=1 di and dim(V ) = dimFq

(V ) = k ·∏t
i=1 di). We can assume

that in this decomposition the dimensions of the vector spaces are decreasing, i.e.
d1 ≥ d2 ≥ . . . ≥ dt ≥ 2. Let gi /∈ Z for some i 6= 1. Then by Lemma 4.3,

SuppV (g) ≥ MinSuppVi
(Hi) ·

dim(V )

dim(Vi)
≥ k

∏

j 6=i

dj .

Since 2
∏

j 6=i dj ≥ 2t−1d1 ≥ ∑t
i=1 d1 and k

∏
j 6=i dj ≥ k

√∏t
j=1 dj ≥

√
dim(V ) we

get that

c · SuppV (g) ≥ 2k

t∑

i=1

di + (c− 4)
√
dim(V ).

Hence,

∑

g∈H\H1

1

qc·SuppV (g)
≤

∏t
i=1 |Hi|

q2k
∑

t
i=1 di+(c−4)

√
dim(V )

≤ q2k
∑

t
i=1 di

q2k
∑

t
i=1 di+(c−4)

√
dim(V )

=
1

q(c−4)
√

dim(V )
.
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Now assume that g ∈ H1. In this case SuppV (g) = SuppV1
(g) · d

d1
. By Theorem

4.1, Z ≤ N1 ≤ H1 ≤ GL(V1(q
k)) where N1 is a minimal normal subgroup above Z

and N1/Z is characteristically simple. Therefore, it is either an elementary Abelian
group, a direct product of non-Abelian simple groups, or a non-Abelian simple
group.

First, if N1/Z is elementary Abelian, then N1 = Z ·P where P is an extraspecial
r-group for a prime r with r | qk − 1. Then V1(q

k) is an absolutely irreducible
FqkP -module. If n ∈ P \ Z then n has exactly r different eigenvalues on V1 (or on

V ) each with the same multiplicity. It follows that MinSuppV (N1) ≥ r−1
r dim(V ) ≥

1
2 dim(V ), so MinSuppV (H1) ≥ 1

4 dim(V ) by Lemma 4.2. In this case,

∑

g∈H1

1

qc·SuppV (g)
≤ |H1|

q
c
4 dim(V )

≤ |V |2
q2 dim(V )+( c

4−2) dim(V )
≤ 1

|V | c4−2
.

Next, let N1/Z is a direct product of s ≥ 2 many isomorphic non-Abelian simple
groups. By Theorem 4.1 (8), the action of N1 = K1 ⊗ . . . ⊗Ks on V1 preserves a
tensor product decomposition V1 = W1 ⊗ . . .⊗Ws over Fk

q , where dimF
qk
(Wi) =

s
√
d1 ≥ 2 for every i. Using [17, Theorem 1], we get that

|N1| ≤
s∏

i=1

|Ks| ≤
s∏

i=1

|Wi|2 = q2ks
s
√
d1 .

On the other hand, H1/N1 acts faithfully on {W1, . . . ,Ws} and |H1/N1| is coprime

to q, so |H1/N1| ≤ qs by [8, Corollary 2.4]. Therefore, |H1| ≤ q2ks
s
√
d1+s. By

Lemma 4.2 and by Lemma 4.3,

SuppV1
(g) ≥ 1

2
MinSuppV1

(N1) ≥
k

2
· d1

s
√
d1

.

Therefore,

c SuppV (g) ≥ 5kd1
(s−1)/s +

( c
2
− 5

)
k
√
d1 ·

d

d1
≥ 2ks s

√
d1 + s+

( c
2
− 5

)√
dim(V ).

So,

∑

16=g∈H1

1

qc·SuppV (g)
≤ |H1|

qc·MinSuppV (H1)
≤ q2ks

s
√
d1+s

q2ks
s
√
d1+s+( c

2−5)
√

dim(V )

≤ 1

q(
c
2−5)

√
dim(V )

.

Finally, let N1/Z be a non-Abelian simple group. If d1 ≤
√
d, then we can use the

same argument as in the previous paragraph to get that
∑

16=g∈H1

1

qc·SuppV (g)
≤ 1

q(c−2)
√

dim(V )
.

Summarizing the bounds given until this point, we get that

Pb(c,G, V ) ≥ 1−
∑

16=g∈G

1

qc·SuppV (g)
≥ 1−

( 1

|V | c2−2
+

1

q(c−4)
√

dim(V )

+
1

q(
c
2−5)

√
dim(V )

)
≥ 1− 3

q(
c
2−5)

√
dim(V )

,
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which is case (1) of Theorem 1.2.

Now, let us assume that d1 ≥
√
d. If |V1| = qkd1 is bounded by the constant

appearing in part (3) of Theorem 3.8, then |V | is also bounded. Hence we can
assume that either part (1) or part (2) of Theorem 3.8 holds. By Lemma 4.2, we
also have MinSuppV (H1) ≥ 1

2 MinSuppV (N1).

If N1/Z is not an alternating group, then MinSuppV (N1) ≥ 1
40 dim(V ) and

5 ·MinSuppV (N1) ≥ logq |H1| by using Corollary 3.3, Theorem 3.8/(1) and Lemma
4.3/(2). Thus, we have

∑

16=g∈H1

1

qc·SuppV (g)
≤ 1

|V |(c−10)/80
.

So, in this case we get that

Pb(c,G, V ) ≥ 1−
( 1

|V | c2−2
+

1

q(c−4)
√

dim(V )
+

1

|V |(c−10)/80

)

≥ 1−
( 1

q(c−4)
√

dim(V )
+

2

|V |(c−10)/80

)
,

which is case (2)/a of Theorem 1.2.
Finally, let N1/Z ≃ Am for some m. If V1 is not an irreducible component of the

natural Fk
qAm permutation module, then we have MinSuppV (N1) ≥ 1

16

√
dim(V )

and 5 · MinSuppV (N1) ≥ logq |H1| by using Corollary 3.7, Theorem 3.8/(1) and
Lemma 4.3/(2). Thus, we have

∑

16=g∈H1

1

qc·SuppV (g)
≤ 1

q
c−10
16

√
dim(V )

and

Pb(c,G, V ) ≥ 1−
( 1

|V | c2−2
+

1

q(c−4)
√

dim(V )
+

1

q
c−10
16

√
dim(V )

)

≥ 1− 3

q
c−10
16

√
dim(V )

.

Finally, if V1 is the non-trivial irreducible component of the natural Fk
qAm-module,

then with the use of Corollary 3.10 we get that

Pb(c,G, V ) ≥ 1−
( 1

|V | c2−2
+

1

q(c−4)
√

dim(V )
+ 1− Pb(c,H1, V )

)
≥ 1− 3

nc−2
,

which completes the proof of Theorem 1.2. �
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