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Abstract

We consider a multi-sided assignment game with the following characteristics: (a) the agents
are organized in m sectors that are connected by a graph that induces a weighted m-partite
graph on the set of agents, (b) a basic coalition is formed by agents from different connected
sectors, and (c) the worth of a basic coalition is the addition of the weights of all its pairs that
belong to connected sectors. We provide a sufficient condition on the weights to guarantee
balancedness of the related multi-sided assignment game. Moreover, when the graph on the
sectors is cycle-free, we prove the game is strongly balanced and the core is fully described
by means of the cores of the underlying two-sided assignment games associated with the
edges of this graph. As a consequence, the complexity of the computation of an optimal
matching is reduced and existence of optimal core allocations for each sector of the market
is guaranteed.

Keywords Cooperative games - Multi-sided assignment games - Core

Mathematics Subject Classification 91A12 - 91A43

1 Introduction

Two-sided assignment games (Shapley and Shubik 1972) have been generalized to the multi-
sided case. In this case, agents are distributed in m disjoint sectors. Usually it is assumed that
these agents are linked by a hypergraph defined by the (basic) coalitions formed by exactly one
agent from each sector (see for instance Kaneko and Wooders 1982; Quint 1991). A matching
for a coalition § is a partition of the set of agents of S in basic coalitions and, since each
basic coalition has a value attached, the worth of an arbitrary coalition of agents is obtained
by maximizing, over all possible matchings, the addition of values of basic coalitions in a
matching. When there are at least three sectors, the problem of finding an optimal matching
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in this multi-sided assignment market is known to be NP-hard. See for instance Burkhard
et al. (2009) for a survey on some special cases, together with its applications, algorithms,
and asymptotic behavior.

If we do not require that each basic coalition has exactly one agent of each side but allow
for coalitions of smaller size, as long as they do not contain two agents from the same sector,
we obtain a larger class of games, see Atay et al. (2016) for the three-sided case. But in
both cases, the classical multi-sided assignment market and this enlarged model, the core
of the corresponding coalitional game may be empty, and this is the main difference with
the two-sided assignment game of Shapley and Shubik (1972), where the core is always
non-empty.

A two-sided assignment game can also be looked at in another way. There is an underlying
bi-partite (weighted) graph, where the set of nodes corresponds to the set of agents and the
weight of an edge is the value of the basic coalition formed by its adjacent nodes. From
this point of view, the generalization to a market with m > 2 sectors can be defined by a
weighted m-partite graph G. In an m-partite graph the set of nodes N is partitioned in m

sets Ny, Na, ..., N, in such a way that two nodes in a same set of the partition are never
connected by an edge. Each node in G corresponds to an agent of our market and each set N;,
fori € {1, 2, ..., m}, toadifferent sector. We do not assume that the graph is complete but we

do assume that the subgraph determined by any two sectors N; and N;, with i # j, is either
empty or complete. Because of that, the graph G determines a quotient graph G, the nodes
of which are the sectors and two sectors are connected in G whenever their corresponding
subgraph in G is non-empty.

For each pair of sectors N, and Ny, r # s, that are connected in G, we have a bilateral
assignment market with valuation matrix A%}, For eachi € N, and j € Ny, entry af;"v} is
the weight in G of the edge {i, j}, and represents the value created by the cooperation of i
and j.

Given the m-partite graph G, a coalition of agents in N is basic if it does not contain two
agents from the same sector and its members are connected in G. Then, the worth of a basic
coalition is the addition of the weights of the edges in G that are determined by nodes in the
coalition. An optimal matching in this market is a partition of N in basic coalitions such that
the sum of values is maximum among all possible such partitions.

We show that if there exists an optimal matching for the multi-sided m-partite market that
induces an optimal matching in each bilateral market determined by the connected sectors,
then the core of the multi-sided market is non-empty. Moreover, some core elements can
be obtained by merging of one core element from each of the underlying bilateral markets
associated with the connected sectors.

Secondly, if the quotient graph G is cycle-free, then the above sufficient condition for a
non-empty core always holds and, moreover, the core of the multi-sided assignment game
is fully described by “merging” or “composition” of the cores of the underlying bilateral
games. A first consequence is that when G is cycle-free, an optimal matching can be found in
polynomial time. Secondly, for each sector there exists a core allocation where all agents in
the sector simultaneously get their maximum core payoff. This means that, although agents in
a same sector compete for the best partners in the other sectors, there is still some coincidence
of interests among them.

This model of multi-sided assignment market on an m-partite graph G where the quotient
graph G is cycle-free can be related to the locally-additive multi-sided assignment games of
Stuart (1997), where the sectors are organized on a chain and the worth of a basic coalition
is also the addition of the worths of pairs of consecutive sectors. However, in Stuart’s model
all coalitions of size smaller than m have null worth. It can also be related with a model in
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Quint (1991) in which a value is attached to each pair of agents of different sectors and then
the worth of an m-tuple is the addition of the values of its pairs. Again, the difference with
our model is that in Quint (1991) the worth of smaller coalitions is zero. In particular, the
worth of a two-player coalition is taken to be zero instead of the value of this pair. Notice
that in these models the cooperation of one agent from each side is needed to generate some
profit. Compared to that, in our model, any set of connected agents from different sectors
yields some worth that can be shared.

The assumption that one agent from each sector is needed to make any profit makes sense
for instance in a supply chain network where some agents supply basic inputs for the industry,
other agents purchase the final outputs and the rest are intermediaries who get their inputs
from some agents in the industry, convert them into outputs at a cost and sell the outputs to
some other agents (Ostrovsky 2008). In this setting, agents in excess in the large sectors of
the market may not be able to find partners to complete a connected coalition between the
suppliers of basic inputs and the final consumers, and hence get no reward in this market
(see an example in Sect. 6). But there are other network situations in which the activity an
agent carries out with one neighbour is independent of the activity this agent implements
with other neighbours. Take as an example the network of European countries for road
merchandise transport. A transport company can make a profit by its own by carrying goods
to a neighbour country, but if it makes an agreement with a similar company in this second
country, they both can reduce costs and hence make a larger profit, even if they are not part
of a larger coalition that covers all the continent.

For arbitrary coalitional games, cooperation restricted by communication graphs was
introduced by Myerson (1977) and some examples of more recent studies are Granot and
Granot (1992), van Velzen et al. (2008), Grabisch and Skoda (2012), Grabisch (2013), and
Khmelnitskaya and Talman (2014). The difference with our work is that in the multi-sided
assignment game on an m-partite graph there exist well-structured subgames, the two-sided
markets between connected sectors, that provide valuable information about the multi-sided
market. This fact allows to find simple conditions for non-emptiness of the core, compared
to other games defined on graphs (see for instance Deng et al. 1999).

Section 2 introduces the model. In Sect. 3, for an arbitrary m-partite graph, we provide a
sufficient condition for the non-emptiness of the core. Section 4 focuses on the case in which
the quotient graph is cycle-free. In that case, we completely characterize the non-empty core
in terms of the cores of the two-sided markets between connected sectors. From that fact,
additional consequences on some particular core elements are derived in Sect. 5. Finally,
Sect. 6 concludes with some remarks.

2 The multi-sided assignment problem on an m-partite graph and its
related coalitional game

Let N be the finite set of agents in a market situation. The set N is partitioned in m sets

N1, N2, ..., Ny, each sector maybe representing a set of agents with a specific role in the
market. There is a graph G with set of nodes {Ny, N2, ..., Ny}, that we simply denote
{1, 2, ..., m} when no confusion arises, and we will identify the graph with its set of edges.l

The graph G induces another graph G on the set of agents N such that {i, j} € G if and only

LA graph consists of a (finite) set of nodes and a set of edges, where an edge is a subset formed by two
different nodes. If {r, s} is an edge of a given graph, we say that the nodes r and s belong to this edge or are
adjacent to this edge.
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if there exist 7, s € {1,2,...,m} such thatr # s,i € N,, j € N, and {r, s} € G. Notice
that the graph G is an m-partite graph, that meaning that two agents on the same sector are
not connected in G. We say that graph G is the quotient graph of G.?

For any pair of connected sectors {r, s} € G, there is a non-negative valuation matrix
AV and for all i € N, and j € Ny, v({i, j}) = ai{;’S} represents the value obtained by

the cooperation of agents i and j. Notice that these valuation matrices, A = {A5}) (r.s)€G
determine a system of weights on the graph G, and for each pair of connected sectors {r, s} €
G, (N,, Ny, A5}y defines a bilateral assignment market. Sometimes, to simplify notation,
we will write A™, with r < s, instead of A5},

Then, y = (N1, N2, ..., Np; G; {A{"S}}{m}eg) is a multi-sided assignment market on
an m-partite graph. When necessary, we will write G to denote the weighted graph with
the nodes and edges of G and the weights defined by the matrices {A"*}} ir.s)eg- Given any
such market y, acoalition S C N defines a submarket |5 = (SONy, ..., SN Ny; Gis; Ajs)
where G|s is the subgraph of G defined by the nodes in S and A g consists of the values of
A that correspond to edges {i, j} in the subgraph Gs.

We now introduce a coalitional game related to the above market situation. To this end,
we first define the worth of some coalitions that we name basic coalitions and then the worth
of arbitrary coalitions will be obtained by just imposing superadditivity. A basic coalition £
is a subset of agents belonging to sectors that are connected in the quotient graph G and with
no two agents of the same sector. That is, £ = {i1, i2,...,ix} € N is a basic coalition if
(i1,i2,...,0) € Niy X Ni, x -+ x Ny, and the sectors {l1, I, ..., [;} are all different and
connected in G. Sometimes we will identify the basic coalition £ = {iy, ia, ..., ix} with
the k-tuple (i1, iz, . . ., ix). To simplify notation, we denote by BY the set of basic coalitions
of market y, though we should write BN1--Nnsince which coalitions are basic depends
heavily on the partition in sectors of the set of agents. Notice that all edges of G belong to
BN . Moreover, if S C N, we denote by B5 the set of basic coalitions that have all their agents
inS:BS={EeB"|ECS).

The valuation function, until now defined on the edges of G, is extended to all basic
coalitions by additivity: the value of a basic coalition E € B" is the addition of the weights
of all edges in G with adjacent nodes in E. For all E € BY,

wE)= Y w(i.jh= Y.  alh (1)

i.j}eGE i€ENN;,j€ENN;
{r,s}eG

A matching j for the market y is a partition of N = Ny UN, U- - -U Ny, in basic coalitions
in BN, We denote by M(Ny, Na, ..., Ny) the set of all matchings. Similarly, a matching for
a submarket y|s with S C N is a partition of S in basic coalitions in B5.

A matching u € M(Ny, Na, ..., Ny) is an optimal matching for the market y =
(N1, Nay oo Ny G AV} ) if it holds Y- pe, v(T) = Yop, v(T) for all other
matching &' € M(Ny, Na, ..., Ny). We denote by My (N1, Na, ..., Ny) the set of opti-
mal matchings for market y .

Then, the multi-sided assignment game associated with the market y is the pair (N, w, ),
where the worth of an arbitrary coalition S C N is the addition of the values of the basic
coalitions in an optimal matching for this coalition S:

2 Equivalently, we could introduce the model by first imposing a (weighted) m-partite graph on N = Ny U
Ny U ...U Ny, with the condition that its restriction to N U Ny, fogill r,s € {l,...,m} and different, is
either empty or a bi-partite complete graph. Then, the quotient graph G is easily defined.
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Fig. 1 2-partite and 3-partite graphs, and their quotient representation

wy, (S) = max v(T), 2
r(S) ueM(SﬂNl,...,SﬁNm)TZE;L (T 2)

with w,, (J) = 0. Notice thatif § € N is a basic coalition, w), (S) = v(S), since no partition
of S in smaller basic coalitions can yield a higher value, because of its definition (1) and the
non-negativity of weights.? Trivially, the game (N, w, ) is superadditive since it is a special
type of partitioning game as introduced by Kaneko and Wooders (1982).

Multi-sided assignment games on m-partite graphs combine the idea of cooperation struc-
tures based on graphs (Myerson 1977) and also the notion of (multi-sided) matching that only
allows for at most one agent of each sector in a basic coalition. It is clear that for m = 2,
multi-sided assignment games on bi-partite graphs coincide with the classical Shapley and
Shubik (1972) assignment games. Notice also that for m = 3, multi-sided assignment games
on 3-partite graphs are a particular case of the generalized three-sided assignment games in
Atay et al. (2016), with the constraint that the value of a three-person coalition is the addition
of the values of all its pairs.

As for the related quotient graphs, for m = 2 the quotient graph G consists of only one
edge while, for m = 3, G can be either a complete graph® or a chain. Figure 1 illustrates
both the graph G and its quotient graph G for the cases m = 2 and m = 3.

As in any coalitional game, the aim is to allocate the worth of the grand coalition in such
a way that it preserves the cooperation among the agents. Given a multi-sided assignment
market on an m-partite graph y = (Ny, Na, ..., Ny; G; {A{r’”}{r,s}eﬁ)’ a vector x € RV,
where N = N{UN, U- - -UN,,, is a payoff vector. An imputation is a payoff vector x € RV
that is efficient, ZieN x; = wy(N), and individually rational, x; > w,, ({i}) = 0 for all
i € N. Then, the core C(w,) is the set of imputations that no coalition can object to, that is
D ies Xi = wy, (S) forall § € N. Because of the definition of the characteristic function w,,
in (2), given any optimal matching u € M, (N, ..., Ny,), the core is described by

3 If we allow for negative weights, then the valuation fuction might not be superadditive. Consider for instance
G = {(N1, N2), (N2, N3)}; take S = {1,2',2"}, T = {1,2'} and assume the weights are a;,y = 6 and
ayyn = —2. Then, according to our definition, S is a basic coalition and v(S) = 6 —2 = 4. But S = T U {2"}
and v(S) =4 < v(T) + v({2”}) = 6. Moreover, v(S) # wy (5). In this case, we should keep T and {2} as
basic coalitions, and obtain wy, (S) by superadditivity. But then, which are the basic coalitions would depend
on the weights, not only on the network.

‘A graph is complete if any two of its nodes are connected by an edge. Hence, an m-partite graph with more
than one node in some of the sectors is never complete in this sense. A complete m-partite graph is an m-partite
graph such that any two nodes from different sectors are connected by an edge.
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C(wy) = [x e RN

in =v(E) forall E € u, in > v(E), forall E € BN } .
icE ieE

A multi-sided assignment game on an m-partite graph is balanced if it has a non-
empty core. Moreover, and following Le Breton et al. (1992), we will say an m-partite
graph (N1, Na, ..., Ny; G) is strongly balanced if for any set of non-negative weights
{Almsh) ir.s)ec the resulting multi-sided assignment game is balanced. Recall from Shapley
and Shubik (1972) that bi-partite graphs are strongly balanced. Our aim is to study whether
this property extends to m-partite graphs or whether balancedness depends on properties of
the weights or the structure of the graph.

3 Balancedness conditions

The first question above is easily answered. For m > 3, m-partite graphs are not strongly
balanced. Take for instance a market with three agents on each sector. Sectors are con-
nected by a complete graph: N; = {1,2,3}, N, = {1',2/,3}, N3 = {1”7,2”,3"}, and
G = {(N1, N2), (N1, N3), (N2, N3)}. From Le Breton et al. (1992) we know that a graph is
strongly balanced if any balanced collection’ formed by basic coalitions contains a partition.
In our example, the collection

C={{1, 1} {1,2"} {2/, 17}, {2,3'}, (3,27}, (3", 1"}, {3, 3"}, (2. I'}. {2, 3"}

is balanced (notice each agent belongs to exactly two coalitions in C) but we cannot extract
any partition. To better understand what causes the core to be empty we complete the above
3-partite graph with a system of weights and analyse some core constraints.

Example 1 Let us consider the following valuations on the complete 3-partite graph with
three agents in each sector:

1/ 2/ 3/ l// 2// 3// ]// 2// 3//

1/1 0 0 1/0 5 0 /0 0 0
A2=219 0 4| AB=2]10 0 0o| A =24 0 6
3\0 0 0 3\0 2 4 ¥y\2 0 o

In boldface we show the optimal matching for each two-sided assignment market. Now,
applying (1), the reader can obtain the worth of all three-player basic coalitions and check
that the optimal matching of the three-sided market is

w={@2,1,1",1,3,2"),3,2,3")}.

Notice that v({2,1,1"}) = 9+0+0 = 9, v({1,3,2"}) = 0+5+0 = 5 and
v({3,2,3"h) =0+4+6=10.

Take x = (u, v, w) € RN xRM xRV Ifx = (u, v, w) € C(wy ), from core constraints
ur + vy +w; =9 and uy + vy > 9 we obtain w; = 0. Then, from vz + w; > 2 we deduce
v3 > 2. Hence, u1 +v3 +wy = 5 implies 1 + wy < 3, which contradicts the core constraint
uy + wy > 5. Therefore, C(wy,) = .

We observe that the optimal matching s in the above example induces a matching u>* =
(1,17, (3,2"), (2, 3")} for the market (N2, N3, A?3}) which is not optimal. Let us relate

5 Given a player set N, a collection of coalitions C = {Sy, S3, ..., Sg} with §; € N foralll € {1,2,...,k},
is balanced if there exist positive numbers dg, > 0 such that, for all i € N, it holds Yie s;cc 8g = 1.
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more formally the matchings in a multi-sided assignment market on an m-partite graph with
the matchings of the two-sided markets associated with the edges of the quotient graph.

Definition 1 Given y = (N1, Na, ..., Ny; G; {AU)) | =), for each matching pu €

M(Ny, ..., Ny) and each pair adjacent sector {r, s} € G, we define a matching pc{”} €
M(N;, Ns) by
(i, j} € u*V if and only if there exists E € u such that {i, j} C E. 3)

We then say that p is the composition of wlst for {r, s} € G and write

p= @ u".

{r.s}eG

Conversely, given a set of matchings, one for each underlying two-sided market, there
may not exist a matching p of the multi-sided assignment market that is the composition of
that given set of matchings. Take for instance matchings {12} = {(2, 1), (1, 3), (3,2},
w3 = ((1,27), 2,17, (3,37} and 23 = {(1/,2"), (2/,3"), (3, 17)} in Example 1.
Since (1,2") € u®3, 2,1) € pu!"2 and (1,2”) e u!b3}, there is no matching u =
w2t @ 3 @ 1123} gince both 1 and 2 should be in the same coalition of partition .

Next proposition states that whenever the composition of optimal matchings of the under-
lying two-sided markets results in a matching of the multi-sided market on an m-partite
graph, then that matching is optimal and the core of the multi-sided assignment market is
non-empty. To show this second part we need to combine payoff vectors of each underlying
two-sided market (N, , Ny, AVsh), with {r, s} € G, to produce a payoff vector x € RV forthe
multi-sided market y. We write C(w4(-.s)) to denote the core of these two-sided assignment
games.

Definition 2 Given y = (N1. N2..... N3 G (A eg)s let x5 e RN x RMs for
all {r, s} € G. Then,

X = @ x"1 € RN is defined by
{r.s}eG

X; = Z xi{m}, foralli € N.,r € {1,2,...,m}.
{(r.s}eG

We then say that the payoff vector x = P {r.s}€G x5} € RN is the composition of the payoff

vectors x5} € RV x RNs . Similarly, we denote the set of payoff vectors in RV that result
from the composition of core elements of the underlying two-sided assignment markets by

®{r,s}66 C(U)A(r,s)).

Proposition1 Ler y = (N{, N3, ..., Ny; G; {A{”S]}{m}eg) be a multi-sided assignment

market on an m-partite graph. If there exists p € M(Ny, ..., Ny) such that w5t is an
optimal matching of (N, N, A{”})for all {r, s} € G, then

1. w is optimal for y and
2. vy is balanced and moreover @{r,S}EE Cwyirs)) S Cwy).
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Proof To see that u = @{V,S}EE w5t is optimal for y, take any other matching i €

M(Ny, ..., Ny) and let ,11{”} € M(N,, Ny), for {r, s} € G, be the matching f induces in
each underlying two-sided market. Then, i = P 751G st Now, applying (1),

DwEY =Y > vl ih= Y. Y, i D

E Ecu ieN,NE G {i,jlentrs
en €n }GENXOE {r.steGli,jlen
{r.s}eG
Yo > iy =) v,
{r,S}EE{i,./'}E,‘Z{r'S} Eefi

where the inequality follows from the assumption on the optimality of "%} in each market
(N,, Ny, Ash, for {r,s} € G. Hence, /,L is optimal for the multi-sided market y .

Take now, for each {r, s} € E x{’ 1€ C(wyur.s1). Define the payoff vector x € RY as
in Definition 2, x; = Z{r 51eG l , foralli € N, r € {1,2,...,m}. We will see that

x € C(wy). Given any basic coahtlon E e BV,

Yr=y Yow=y ¥ ¥

icE r=1ieENN, r=1i€eENN; {r 5}eG
m
S N D I CRE
r=Li€ENNy {r s}eG {r,s}eG LEENN,
ENN;#£6 ENN, #0 JEENN;
ENN; £
= Y i jh =),
(r.s}eG
i€ ENN,
JEENN;

where both inequalities follow from xrst e € (wyr.s) for all {r, s} € G. Notice also that
if E € u the above inequalities cannot be strict and hence Zie g Xi = v(E). Indeed, if
i€ ENN,, {r,s} € Gand EN Ny = @, then i is unmatched by u{”} and, because of the
optimality of 12/}, x!"*) = 0. Similarly, if i € EN N, and j € E NN, then {i, j} € {5

{r,s} {r,s} PR
and hence x; + x;m = v({i, j}). o

The above proposition gives a sufficient condition for optimality of a matching and for bal-
ancedness of a multi-sided assignment game on an m-partite graph. However, this condition
is not necessary. The matching . in Example 1 is optimal while 1¢!>3} is not. The core of the
market in Example 1 is empty, but one can find similar examples with non-empty core (see
Example 5).

Finally, even under the assumption of the proposition, that is, when the composition of
optimal matchings of the two-sided markets leads to a matching of the multi-sided market,
the core may contain more elements than those produced by the composition of the cores of
(Ny, Ny, AT for {r, s} € G (see Atay et al. 2016 for an example in the three-sided case).

In the following section we see that the inclusion € C(wyirst) € C(wy ) becomes
an equality for some particular graphs.

(r.s}eG
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4 When G is cycle-free: strong balancedness

In this section we assume that the quotient graph G of the m-partite graph G does not contain
cycles. We will assume without loss of generality that it is connected, since the results in that
case are easily extended to the case of a finite union of disjoint cycle-free graphs.

We selectanode of G as a source, that is, we select a spanning tree of G. Define the distance
d = d(1, r) of any other node r as the number of edges in the unique path that connects this
node to the source. Then, without loss of generality, we rename the nodes of G in such a way
that the source has label 1 and, given two other nodes r and s, if d(1,r) < d(1, s) thenr < s.
Notice that the labels of nodes at the same distance to the source are assigned arbitrarily.

A partial order is defined on the set of nodes of a tree in the following way: given two
nodes r and s, we say that s follows r, and write s > r, if given the unique path in the
tree that connects s to the source, {s; = 1,s2,...,5; = s}, it holds r = s, for some
pefl,...,q—1}.If r =s,_1 we say that s is an immediate follower of r. We denote by

S,G the set of followers of r € {1, 2, ..., m}, we write 3,6 ={rju 8,6 when we need to

include sector r, and we denote by Z,E the set of immediate followers of r € {1;2, e, mb.
Our main result states that an m-partite graph G where the quotient graph G is a tree is
strongly balanced.

Theorem1 Lety = (Ny, Na, ..., Np; G, {A{”S}}{r’s}eg) be a multi-sided assignment mar-
ket on an m-partite graph. If G is cycle-free, then (N, wy ) is balanced and

C(wy) = @ C(wyirs).

{r.s}eG

Proof Notice first that when G is a tree, there is a matching u € M(Ny,..., Ny)
that is the composition of optimal matchings u{"*! of each underlying two-sided market
(N,, Ny, ATSH for {r, s} € G. To see that, we define a binary relation on the set of agents
N =N UN,U.--UN,. Two agents i € N, and j € Ny, with r < s, are related if

either i = j or there exist sectors {r = s1,52,...,8 = s} € {1,2,...,m} and agents
ix € Ny, fork € {1,2,...,t} such that {s, sg41}) € G and {ix, i1} € p!%s+1}, for all
k € {1,2,...,t— 1}. This is an equivalence relation and, because G is a tree, in each equiv-

alence class there are no two agents of the same sector. Hence, the set & of all equivalence
classes is a matching and by its definition it is the composition of the matchings u{"*! of the
two-sided markets: © = P (r.s1G w5t Now, by Proposition 1, 14 is an optimal matching for
the multi-sided market y and EB{r’ s}<G C(wyirst) € C(wy), which guarantees balanced-
ness. Since all two-sided assignment games have a non-empty core (Shapley and Shubik
1972), the above inclusion guarantees balancedness of the multi-sided assignment market y .

We will now prove that the converse inclusion also holds.

Letu = (u',u?,...,u") € C(wy ). We will define, for each {r, s} € G, a payoff vector
(x{rsh ylrshy ¢ RN- % RNs| Take the optimal matching p = @{r,s}eﬁ ustand E € p.
Let us denote by E = G| the subtree in G determined by the sectors containing agents in
E and take as the source of E its sector s; with the lowest label. Take any leaf® s, of E and
let {s1,52...,54,Sg+1,---,S—1, 5} be the unique path in E connecting s, to the source s7.
Let s, be the sector in this path with the highest label among those that have more than one
immediate follower in E (let us assume for simplicity that 54 has two immediate followers,
sq+1 and sy 1). Figure 2 depicts such a subtree E.

6 Given a tree, a leaf is a node with no followers.
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‘,/.57,/

Spr—1

Sq+3

Sq—1

S1

Fig.2 A subtree E for E € p

For each sector s; with ¢ € {1, 2, ..., r} we denote by i, the unique agent in E that belongs
to this sector. Then, we define

yl{rsr 1,57} — uf:7 (4)
{sr—1.80) _ {sr—1.5} {sr—157}

X =a ;" =y , and 5)

{sr—2,5r—-1} — usr—l _ x{sr—lvsr}' (6)

ir—1 ir—1 i1

Tteratively, forallz € {g + 1, ..., r — 2}, we define

{seose41} _ {seose41) {55041}
it — g ylt+l , and M
{sr—1,8¢} St {se,8041}
o) s o), ®)
{sq.5g+1} {8g:5q+1} {5g:5q+1} . {5g.5,/ 41}
while for sector s, we define x; """ = a4, +"l+ -y :’rl ! and, assuming x; 7"
qlq q q

has been defined analogously from the branch {s,/ 11, 5442, ..., 87_1, 5}, we also define

{sq—1.54} Sq (
. = U. — X
qu lq

followers in E, then

{84:5¢-+1} + xl{sq Sq/+1}

; ; ) More generally, if s, has several immediate
q q

{sg—1.5¢} s {sq.s1}
yiqq = ui;l — E xiqq . 9)
{Sq,S/}EE
Sq <51

We proceed backwards until we reach xi{f‘ W for all {5, s} € E withs) < .
In addition, if i € N, and for some {r, s} € G, r < s, i is unmatched by /L{”}, define

x"*) = 0. Similarly, if i € N, and forall {s, r} € G, s < r, i is unmatched by "), define
{Y r}
yi =0

We will first check that the payoff vectors (x5}, y{"s}) we have defined are non-negative

for all {r, s} € G. From (4) to (9) above, it follows that for all maximal path in E starting

{se,s041)

atsy, {s1,s$2,...,8:},andallr € {1,2,...,r — 1}, we can express X; in terms of the

payoffs in u to agents in following sectors in E:
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{Vz sietd _ Aseseqy 0 Asosid 0 Asosie} s {sr41.0}
Xi, = i ir41 - alrlz+1 (u ir41 Z 7xl't+1 )
{si+1.1}€E
[>s141
o dsesen) {r s} 10
_.'._aitil+l + Z Z uk’ (10)
ieEN.NE keN,NE
JeENsNE rESE
{r.s\eE.r, YGSV_H gas
where the first equality follows from (7) and the second from (9).
Hence, it T = {i;}U{i e E|i € Ny, r 685 |}, we have
xS — o (T) — u(T\fir}). (11)

17
Notice that for r = 1, because of efficiency of u € C(w) ), we obtain

s1,1
ool =vE) - 3w =l (12)

s1.1\eE ke ENN,
{s1.0} ki r

Equation (10), together with (9) gives, forall t € {2, ..., r},

{s1—1,8¢} St {sr.51}
Yi, =u;, - 2 : X,

{si.s1)€E
5t <S]

st {sr,s1} {r s}
CEEDDN [ DS > up| =0,
{s;.51)€E iEN,NE keN,NE
St <] JEN;NE rESSE

ol SE
{r,s}eE,r,seS:]

where the inequality follows from the core constraint satisfied by u € C(w,, ) for coalition
T ={i;}U{i € E|i € Ny, r € SE}, thatis,

= (1) = o(T) = 0. (13

lr

{se,5041) -

Now, again making use of (4) to (12), we express x; in terms of the payoffs in u to

agents in sectors that do not follow s, in E:

{st,5041} S5t {sr—1,8¢} {s.1}
X =i, =Y - 2 5

(s:.[eE
I>s¢,1#814+1

— b gl +x{5t—lasr} _ Z el

it lr—11t -1
(si.}€E
I>s1,0#s41

=} —al T T =Y ) — w\D),
{st,}eE
se<l#si41

{?/ VH—I}

where the first equality follows from (9), the second from the definition of x; , the last

equality from (11), and 7; = {i;}U{i € E | i € N,, r € S[E}. Recurswely applying the

{Stlr

same argument (in first place to x; ), we eventually obtain
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) = g ((T\NT) U i) — o(T'\T) U {ir)) = 0, (14)
with T/ = {i;)}U{i €e E | i € Ny, r € SE} T as defined above, and where the inequality
also follows from u € C(wy).

Once proved that for all {r, s} € G (x{’ s}, yi5}) is a non-negative payoff vector, let us
checkitisin C(wyr.01). If {7, j} e n {r.s} for some {r, s} € G,theni and j belong to the same
{r.s} + yjr S {r s follows by definition from Eqgs. (5) and (7).

Since by construction of (b tr A}) see (5) this vector satisfies x s + y{r = al{j s}

foralli € Ny, j € Ny and {r,s} e G, it only remalns to prove that 1fz € N,, j € Ng,
with {r,s} € G, r < s, and {i, j} ¢ u'"s}, thenx s +ny > az, . Since i and j are
not matched in (N, Ny, Alrshy, they belong to different basic coalitions in u. Let E and
E’ be the basic coalitions ‘containing i and j respectively. Let us consider a maximal path
{s1,82,...,8,...,5p)in E with orlgm in the node in E with the lowest label (that we will
name the source of the subtree E) and such that there exists t € {1, ..., g} with r = s;.

We write ij € E N Ny,. Similarly, let {s{,s5,...,5/,..., s;} be the maximal path in E’

basic coalition £ of y and x;

with origin in the node in E’ with the lowest label (the source) and such that there exists
le{l,..., p}withs =g

Recall from (13) that y\"**) = u(R) —v(R), where R = {j}U{b € E' | b € Ni. k € SF'},
1

and from (14) that x"*) = u((T'\T) U {i}) — v((T'\T) U {i}), where T = {i} U {b € E |
beNi.keSEyandT' = {i|}U{b € E| b e Ny, k € SE}. Since ENE’ = 0, (T'\T) U{i}
and R are also disjoint. Then,

3"y = u((@NT) Ui + u(R) = o(TNT) U i) = v(R) = af]
since v((T'\T)U{i}UR) = v(T'\T)U{i}) +v(R)+a/]*) andu € C(w, ). This completes
the proof of C(w,) = EB{”}GE C(wyirs))- O

A first remark on the computation of an optimal matching for multi-sided assignment
markets is appropriate. Although the solution of the two-sided assignment problem is solvable
in polynomial time, the solution of its multi-sided extension is NP-hard (see Garey and
Johnson 1979). However, for a multi-sided assignment market on an m-partite graph where
the quotient graph that connects the sectors is cycle-free, an optimal matching is computed
in polynomial time. Indeed, from Theorem 1 it follows that the composition of optimal
matchings of each underlying two-sided market yields an optimal matching of the multi-
sided assignment market. Since in a market with m sectors any tree connecting the sectors
has m — 1 edges, we have m — 1 underlying two-sided markets and we only need to solve
m — 1 bilateral assignment problems to build an optimal matching for the multi-sided market.

Now, we ask whether the class of m-partite graphs with cycle-free quotient graph is a
maximal domain for strong balancedness.

A multi-sided market on a 3-partite graph with two agents in each sector is strongly
balanced, that is, it has a non-empty core given any possible system of weights, even if
the quotient graph contains a cycle. To prove this we only need to check that balancedness
conditions in Lucas (1995) for 2 x 2 x 2 assignment games are satisfied.

But if an m-partite graph has a cycle in its quotient graph and all sectors in the cycle
contain at least three agents, then we are always able to find a system of weights such that
the corresponding multi-sided assignment game has an empty core.
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Corollary 1 An m-partite graph, with at least three nodes on each sector; is strongly balanced
if and only if the quotient graph has no cycles.

Proof The “if” part follows from Theorem 1. To prove the “only if” part take an m-partite
graph G such that the quotient graph Ghasa cycle: (N1, N2, N3, ..., Np).Define the weights
ailjz, ai1k3 and ajzz, for i, j,k € {1,2,3} as in Example 1, and a;fq = 0 elsewhere. It is
straightforward to see that if x € C(w,, ), where y = (Ni, ..., Ny; G; {A{V’S}}(r,s)eé)v then
the restriction of x to the coalition formed by the three first agents of Ny, N and N3 should
be in the core of the game in Example 1, which is a contradiction since it has an empty core.

[}

The supply chain networks in Ostrovsky (2008) constitute a more general model that can be
inscribed in the theory of matching with contracts, where utility may not be fully transferable
among agents. These networks are somehow directed (vertical networks): each agent needs
to buy some input from a preceding agent to transform it in some kind of output that serves as
an input for the activity of a following agent, until the final consumer is reached. Hence, by
definition, the network contains no cycles. In a generalized model in Hatfield and Kominers
(2012), the network is determined by the set of feasible bilateral contracts between agents,
and cycles are allowed. Nevertheless, acyclicity is needed to guarantee existence of stable
allocations. Compared to that, in our model the graph that connects the agents is undirected
and may contain cycles. But the main difference is that the set of agents is partitioned in
sectors and it is the abscence of cycles in the quotient graph that connects the sectors what
characterizes the existence of (core) stable allocations.

5 When G is cycle-free: optimal core allocations

In markets where agents are organized in sectors, it has been observed that agents may present
conflict or coincidence of interests depending on whether they belong to the same sector or
to different sectors. The first example is the two-sided assignment market in Shapley and
Shubik (1972). Agents are partitioned in a set of buyers and a set of sellers and although
one could think that there is a competition between buyers to be matched to the best sellers
it turns out that there is a core allocation where all buyers get their maximum core payoff,
which shows some coincidence of interests among buyers (and the same can be said for
the sellers). Moreover, there is opposition of interests between the two sectors, since in this
buyers-optimal core allocation, all sellers get their minimum core payoff. In the two-sided
market of Shapley and Shubik (1972), the existence of the two optimal core allocations
is a consequence of the lattice structure of the core. Nevertheless, Roth (1985) points out
generalized bilateral markets where the same phenomena holds without an underlying lattice
structure.”

The fact that, when G is cycle-free, the core of the multi-sided assignment game on an
m-partite graph is completely described by the cores of all underlying two-sided markets
allows us to deduce some properties of C(w,,) from the known properties of C(w 4r.s}), wWith
{r,s} € G. One of these consequences is that, for each sector r € {1, 2, ..., m}, there is a
core element u € C(w, ) where all agents in sector r simultaneously receive their maximum

7 The idea that the core models competition dates back to Edgeworth (1881) and is also explained by Shubik
(1959). For a given player, the minimum core payoff can be interpreted as the amount of value guaranteed to
this player due to competition and the difference between the minimum and maximum core payoffs can be
interpreted as a residual bargaining problem.
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core payoff, which is their marginal contribution to the grand coalition. This is one property
of two-sided assignment markets that does not extend to arbitrary multi-sided market, but it
is preserved when sectors are connected by a tree and the value of basic coalitions is defined
additively as in (1).

Proposition2 Let y = (N1, Na, ..., Np; G; {A{"S}}{r’s}eg) be a multi-sided assignment

market on an m-partite graph. If G is cycle-free, then for each sectork € {1,2, ..., m} there
exists u € C(wy) such that

1. u; is the maximum core payoff for all i € Ny and moreover
2. ui = wy(N) —wy, (N\{i}) foralli € N.

Proof Let us assume without loss of generality that G is atree. Take any k € {1 2,...,m}.
Forall s € {1,2,...,m} with {k, s} € G.8 take (x*), ylk:s)y = (xthst | y(ksly the element
of C(w4k.s)) thatis opt1ma1 for all agents in Ng. Slmllarly, forall r € {1 , m} such that

{r.k} € G, take the element (x!"-*} ylrkly = (x{rK} y K}y of C(wytr, k}) that is optimal
for the agents in Ny. These optlmal core elements exist in any bilateral assignment market
(see Shapley and Shubik 1972). Moreover, by Demange (1982) and Leonard (1983), it is
known that for all i € Ni, X0 = w4 (Nx U Ny) — w g (N U No\{i}) and 3179 =
W ptrky (Ny U Ni) — w gm0 (N U N \{i}). Finally, for all {r, s} € G withr # kand s # k,
take an arbitrary core element (xtrst ylrshy ¢ C(wyirs)-

Now, if we consider the composition of the core elements defined above, we get, given
ke(l,2,....m}u* =@, gy,

Then, for all i € Ny, if {r, k} € G withr <k,

=30 3 R sy,

(k,s}eG
k<s

for all other u € C(wy), as a consequence of Theorem 1. o
Moreover, if k € {1, 2, ..., m} is such that there exists re {1,2,...,m}with{r,k} € G
and r < k, and there exists s € {1, 2, ..., m} with {k, s} € G and k < s, then

wy (N) = wy (N\{i}) = [w 60 (Ny U Ne) = w400 (Ny U N\ D]

+ Y [waka (Nk UNy) — wyen (Nx U N\ D] = 5,

(k,s}eG
k<s

foralli € Ng. o
Similarly, if k is a leaf of G, then

wy (N) — wy, (N\{i}) = warn (Ny U Ng) — wyirty (Nr U N\ {i}) =

for the only r € {1,2, ..., m} such that {r, k} € G and forall i € Ny. Also, if k is the source
of the tree G, then

wy (N) —wy (N\{i}) = Y [waiwa Nk U Ny) — w g (Ne U N;\(i))] =

(k.s)€G
k<s
foralli € Ny.
Then, forall k € {1,2, ..., m} we haveﬁf = wy (N) —wy, (N\i) forall i € Ng. O

8 Recall that, because of the labeling of the nodes at the beginning of Sect. 4, {k, s} € G implies k < s.
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In multi-sided assignment games on an m-partite graph with G cycle-free, unlike the case
of Shapley and Shubik (1972) two-sided markets, optimal core allocations for a sector kK may
not be unique. Indeed, from the proof of Proposition 2, the reader will realize there is a lot
of freedom of choice of core allocations for those bilateral markets in which sector k is not
involved.

Notice that, for each sector k € {1,2,...,m} there is also a core allocation where all
agents in this sector get their minimum core payoff. The proof is analogous to the one in
Proposition 2: we only need to choose, for each two-sided market in which sector k takes
part, the k-minimum core allocation, and for each two-sided market not involving sector k, an
arbitrary core allocation. Their composition produces a minimum core allocation for sector
k in the multi-sided market on an m-partite graph, as long as the quotient graph is cycle-free.
When G contains cycles, optimal core allocations for all sectors may not exist (see Example 5
in the “Appendix”).

Once proved the existence of sector-optimal core allocations for an assignment market
on an m-partite graph with a cycle-free quotient graph G, the question arises whether some
other extreme core points or some single-valued solutions of the coalitional game can be
obtained in the same way by composition of the corresponding solutions in the underlying
two-sided markets. Next proposition shows that indeed all extreme core allocations of the
multi-sided assignment game are obtained as the composition of extreme core allocations of
the underlying two-sided markets.

Proposition3 Let y = (N1, N2, ..., Np; G; {A{"S}}{m}eg) be a multi-sided assignment
market on an m-partite graph. If G is cycle-free, then any extreme core allocation x €
Ext(C(wy)) is the composition of extreme core allocations of the underlying two-sided
markets, x = @{r,s}egx{””, where x5} € Ext(C(wyur.s))) forall {r,s} € G.
Proof From Theorem 1, it is straightforward to see that x € Ext(C(w,)) satisfies x =
69{“}65 x5} for some x5} € C(w 4irsy). Assume now that x5} ¢ Ext(C(wyy.5)) for
some {r’, s’} € G. Then, there exist two different elements, y"="} and z"'"} in C(w,.5)
such that x "'} = %y{”’” + %z{’/*”.

We now consider two different elements in C(w, ) by composing &P x5} either

{r.s}eG
{ros}#{r 5"}

with y{’/’xr} or 7"},

{r.s}eG {r.s}eG
{r.s)#{r'.s") {r.s)#(r'.s")

It is then straightforward to check that x = %x»" + %xz, which contradicts the assumption
x € Ext(C(wy)). ]

However, the converse implication does not hold, that is, the composition of extreme core
allocations of the underlying two-sided markets provides an element in C(w, ) which may
not be an extreme point (see Example 4 in the “Appendix”).

We now consider single-valued core selections that are not extreme points but usu-
ally interior core points. As a consequence of Theorem 1, the composition n®(wy) =
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®(, 51N (Wars)) of the nucleolus® of the two-sided markets between connected sectors
belongs to C(w, ). Moreover, well-known algorithms to compute the nucleolus of a two-
sided assignment game (Solymosi and Raghavan 1994; Martinez de Albéniz et al. 2014) can
be used to obtain nQB(w},). However, this composition does not coincide with the nucleolus
of the initial m-sided market y = (N1, Na, ..., Np; G; {A{”}}{m}eg), as Example 3 in the
“Appendix” shows.

If we select the T-value or fair-division point!? as the cooperative solution concept to
distribute the profits in each bilateral market, we can propose the composition of the t-values
of all connected two-sided markets, r®(wy) = @{rys}eﬁf(wA{r.x}) as an allocation of the
profit of the multi-sided assignment market with a tree quotient graph. Because of Theorem 1,
this composition belongs to C(w), ) and can be considered as a fair division solution for the
m-sided market. However, different to the two-sided case, it may not coincide with the t-
value of the initial m-sided market y = (Ny, Na, ..., Ny; G; {A{”S}}{m}eg). In fact, the
t-value of a multi-sided assignment market on an m-partite graph may lie outside the core
(see Example 2 in the “Appendix”), even when the quotient graph G is cycle-free.

6 Concluding remarks

We have considered multi-sided markets where agents are on an m-partite graph that induces
a cycle-free network among the sectors. Basic coalitions do not need to have agents from all
sectors, it is enough not to have two agents from the same sector. Moreover, the worth of a
basic coalition is the addition of the worths of all its pairs that are an edge of the m-partite
graph.

A similar situation is considered in Stuart (1997), although restricted to the case in which
the network that connects the sectors is a chain. There, the worth of a basic coalition is
also defined additively, but, as in the classical multi-sided assignment games in Kaneko and
Wooders (1982) and Quint (1991), the set of basic coalitions is smaller since it is required
that a basic coalition contains exactly one agent of each side. Although the core of Stuart’s
multi-sided game is also non-empty, it does not contain the composition of all core elements
of the underlying two sided markets.

Indeed, take Ny = {1,2,3}, N = {1’,2/,3’} and N3 = {1”,2"}, and consider the
chain G = {{Ny, N2}, {N2, N3}}. Assume also that ai{;’S} = 1 forall (i, j)) € N, x N;
such that {N,, Ny} € G, but, unlike the model we present in this paper, only triplets may
have a positive value. It is easy to see that (0.5,0.5,0.5;0.5,0.5,0.5) € C(wyq.2) and
0,0,0; 1, 1) € C(wy23). However,

z=x®y=1(05,05,05;05,05,05;1,1) ¢ C(w,),

since an optimal matching consists of two triplets and hence the unassigned agents in sectors
Nj and N can only receive zero payoff in the core.

9 The nucleolus of a coalitional game (N, v) is the payoff vector n(v) € RN that lexicographically minimizes
the vector of decreasingly ordered excesses of coalitions among all possible imputations (Schmeidler 1969).
An imputation for the game (N, v) is a payoff vector x € RN that satisfies Y ien Xi = v(N)and x; > v({i})
foralli € N. The excess of coalition S € N at x € RY is v(S) — Y ics Xi-

10 The fair-division point of a two-sided assignment market is the midpoint of the buyers-optimal and the
sellers-optimal core allocations Thompson (1981). The t-value is a single-valued solution for coalitional games
introduced in Tijs (1981). It is known that for two-sided assignment games the t-value and the fair-division
point coincide (Nuiiez and Rafels 2002).
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Our paper answers the question about what conditions suffice so that multi-sided markets
inherit the properties of two-sided markets. The answer is a cycle-free network structure with
non-negative weights.
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A Appendix

We first consign to this “Appendix” two examples that show that for a multi-sided assignment
game on a cycle-free quotient graph, the composition of the t-values (or the nucleolus) of
each underlying two-sided market may not coincide with the t-value or the nucleolus of
the initial multi-sided market. Similarly, the third example shows that by composition of
arbitrary extreme core allocations of each two-sided market we may not obtain an extreme
core allocation of the multi-sided market.

Example 2 Letus consider an assignment market y on a 3-partite graph such that the quotient
graphis G = {{1, 2}, {2, 3}} which is cycle-free. The sectors are N1 = {1, 2}, N, = {1/, 2/},
and N3 = {1”, 2"}. The valuation matrices of the two underlying two-sided markets are

1/ 2/ 1// 2//
1 (20 1 (34
2\54 2/\0 3)’

and the value of triplets is given by the following three-dimensional matrix

2 2
1 (50 1 (63
2\8 4 2\97)°

1// 2//

The t-value of this multi-sided market game is 7(y) = (%, %4; 29—9, %5; %, %) which is

not in the core since 1) + 117 + T = 29—4 + % + % = % <9=v({2,1,2"}). Hence, t(y)
cannot coincide with T(w4i1,2)) @ T(Wy3}).

Example 3 Let us consider an assignment market y on the following 4-partite graph related

to the the quotient graph G = {{1, 2}, {2, 3}, {2, 4}} which is cycle free. The sectors are
Ny = {1,2}, N, = {1',2/}, N3 = {1”,2"}, Ny = {1",2""}, and the valuation matrices of
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the two-sided markets are

]/ 2/ l// 2// l/// 2///

1(2 3 ' (3 08 (2 06
1.2 _ 23 _ 24 _
4 _2<0.5 2) 4 _2’(4 2) A _2’<2.4 2)'

The nucleolus of the three underlying two-sided markets are

nth2 = (1.625,0.375: 0.375,1.625), 5'%3 = (0.45, 1.55;2.55, 0.45)
and 7n'>% = (0.55, 1.45; 1.45,0.55)

and their composition is
n® = (1.625,0.375; 1.375, 4.625; 2.55, 0.45; 1.45, 0.55),
while the nucleolus of the six-player game (N, w,,) can be computed and is

n = (1.65,0.4; 1.6,4.75; 2.55,0.45; 1.2,0.4).

Example 4 1etus consider an assignment market y on a 4-partite graph related to the quotient
graph G = {{1,2}, {2, 3}, {2, 4}} which is cycle-free. The sectors are N| = {1,2}, N» =
{1',2}, N3 = {1”,2"}, and Ny = {1””, 2""}. The valuation matrices of the three underlying
two-sided markets are

1/ 2/ 1// 2// 1/// 2///
AT =, ( 1 2) AT =210 2 A=y o 1)

Take respective extreme core allocations of the three underlying two-sided markets A2},
A3 and AZ4:(2,1;0,1), (2,0;0,2), and (1,0; 0, 1). Then, by composition we get a
core allocation for the multi-sided assignment market, x® = (2,1;3,1;0,2;0, 1) € C(wy).
But, there exist two core elements

y=(1.8,08;32,1.2:0,2;0,1) € C(w,)
and

2=1(22,1.2:28,0.8;0,2;0,1) € C(wy)
such that x® = 1y + 1z Hence, x® ¢ Ext(C(w,)).

The last example shows that assumptions of Proposition 1 are not necessary for the non-
emptiness of the core. In this example, the core of the multi-sided assignment game is
non-empty and the matching induced on one two-sided market is not optimal. The same
example shows that when G is not cycle-free, optimal core allocations for each sector may
not exist.

Example 5 Let us consider an assignment market y on a complete 3-partite graph G where
My = {1,2}, My = {1’,2'} and M3 = {1”,2"}. The valuation matrices of the three underly-
ing two-sided markets are

1/ 2/ 1// 2// 1// 2//
1 (4 @ 1(® 0 (@ 3
2\ e o 21 6 >0 ®)
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and the value of triplets is given by the following three-dimensional matrix

12 12
1 (10 6 1 (7 13
2 \10 1 2\13 14)°
1// 2//

Notice first that this market does not satisfy the sufficient condition in Proposition 1. Indeed
the optimal matching is u = {(1, 1’,17), (2,2/,2")} but x12} = {(1, 1), (2,2)} is not
optimal for A{L2} Nevertheless, the core is non-empty. Forinstance, x = (4, 5; 0, 0; 6, 9) and
y=(4,4;1,0;5, 10) belong to C(w,, ). Moreover x|» = 6 and y,» = 10 are respectively the
marginal contributions of agents 1” and 2” and hence these are their maximum core payoffs.
However, there is no core element where agents 1” and 2” simultaneously receive 6 and 10.
Indeed, if (x, y,4—x,4—y, 6, 10) were a core allocation, then core constraints would imply
x+ @ —y)>4and y+ (4 — x) > 5, which lead to the contradiction y <x <y — 1. Asa
consequence, in this market there is no optimal core allocation for the third sector.
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