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We present a computational method to determine the exchange constants in isotropic spin models. The
method uses the Hamiltonian and overlap matrices computed from density functional schemes that are based
on nonorthogonal basis sets. We demonstrate that the proposed method as implemented on top of the SIESTA

code reproduces the Heisenberg interactions of simple metallic bulk ferromagnets as obtained from former
well-established computational approaches. Then we address sp magnetism in graphene nanostructures. For
fluorinated graphene we obtain exchange interactions in fairly good agreement with previous calculations using
maximally localized Wannier functions and we confirm the theoretical prediction of a 120◦ Néel state. Associated
with the magnetic edge states of a zigzag graphene nanoribbon we find rapidly decaying exchange interactions,
however, with an unconventional distance dependence of exp(−√

r/δ). We show that the stiffness constant
derived from the exchange interactions is consistent with a previous estimate based on total energy differences
of twisted spin configurations. We highlight that our method is an efficient tool for the analysis of novel hybrid
nanostructures where metallic and organic components are integrated to form exotic magnetic patterns.
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I. INTRODUCTION

Heisenberg-like spin Hamiltonians form a solid basis for
describing the ground state and thermal behavior of a wide
range of magnetic systems, either characterized by itinerant
electrons or by local moments. The exchange constants enter-
ing the spin model can be derived from first principles. One of
the most frequently used approaches is based on the magnetic
force theorem originally introduced by Liechtenstein and co-
workers [1], referred to as the LKAG formalism as what
follows. Related methods have been developed since then to
tackle correlated systems [2,3], relativistic effects [4,5], or
both of them [2,6].

The use of one-electron Green’s functions is an integral
part of the formalism in Ref. [1]. Therefore, the Korringa-
Kohn-Rostoker Green’s function (KKR-GF) [7] and the tight-
binding linear muffin-tin orbital (TB-LMTO) methods [8,9]
have been particularly successful for calculating magnetic
exchange interactions for bulk materials, surfaces, interfaces,
films, superlattices, and even for finite metallic clusters
[10–12]. Furthermore, the calculation of tensorial exchange
interactions, including two-ion magnetic anisotropy param-
eters and Dzyaloshinskyi-Moriya interactions, has become
available by extending the LKAG formula to relativistic sys-
tems [4,5]. This extension has opened the door to the analysis,
design, and tuning of complex magnetic states like domain

walls [13], spin spirals [14,15], and magnetic skyrmions
[16–19] in ultrathin films. This extension also enables us to
study the recently discovered van der Waals ferromagnets
[20–22], whose magnetic state is stabilized by the anisotropy
barriers that overcome the thermal spin fluctuations standing
behind the Mermin-Wagner theorem [23].

The KKR-GF or TB-LMTO methods are not fully adapted
to describe open systems such as atoms or molecules de-
posited on surfaces or suspended in nanoscale junctions be-
cause they commonly make use of the atomic sphere ap-
proximation (ASA). Such systems are accurately treated by
other methods like the program packages VASP [24], Quantum
Espresso [25], SIESTA [26], or ADF [27]. The first two ex-
pand the eigenstates onto a plane-wave basis [24,25], so a
transformation to maximally localized Wannier functions [28]
is needed to determine an orthogonal tight-binding basis set
requested by the LKAG formalism [29]. In contrast, SIESTA

and ADF conveniently use a basis set of wave functions that
are localized on each individual atom, possess orbital quan-
tum numbers, and are nonorthogonal, hence producing self-
consistent Hamiltonians and overlap matrices that are already
written in the tight-binding language. In order to calculate
exchange constants in the spirit of the magnetic force theorem
orthogonal basis sets, a generalization of the LKAG formula
to nonorthogonal bases is called for. This is the main goal and
accomplishment of the present article. We therefore develop
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a formalism which enables us to use some popular density-
functional codes to evaluate exchange interactions of isotropic
Heisenberg models in a broad range of magnetic systems.
We implement the scheme in the SIESTA code and present
results for conventional bulk metallic magnets as well as for
graphene ribbons and fluorinated graphene sheets displaying
sp magnetism that compare well with those available in the
literature. We outline the main features of our approach in
Sec. II, then we present and discuss our results in Sec. III.
A short summary closes the article. All the algebraic details
of the approach can be found in the Appendices.

II. METHOD

The classical Heisenberg model describes a lattice of lo-
calized classical spins characterized by unit vectors �ei, where
i denotes lattice (or atomic) sites. Within a nonrelativistic
theory, the spin-spin interactions are encapsulated in terms
of isotropic exchange parameters Ji j entering the spin
Hamiltonian,

H = −1

2

∑
i �= j

Ji j �ei�e j . (1)

The magnetic force theorem enables us to extract the
exchange parameters from the effective single-particle Hamil-
tonian Ĥ that results from ab initio calculations [1,4]. We
use a collinear-spin reference frame and write Ĥ in terms
of a basis set of localized orbitals centered at lattice sites.
Consequently, the tight-binding Hamiltonian matrix H and
the overlap matrix S are diagonal in the spin indices. Col-
lecting all the basis functions assigned to a given site i,
the corresponding spin-dependent and site-indexed blocks of
the Hamiltonian are denoted by Hσ

i j and, similarly, Si j for the
overlap matrix which is independent on the spin index since
in practice for both spin channels the same basis functions are
considered. We then find that the exchange parameters can be
derived from the expression

Ji j = 2

π

∫ εF

−∞
dε ImTrL

[
Hs

iiG̃
↑
i j (ε)Hs

j jG̃
↓
ji(ε)

]
, (2)

where εF is the Fermi energy, TrL denotes the trace of matrices
in orbital space,

Hs
ii = H↑

ii − H↓
ii

2
, (3)

and

G̃
σ

i j (z) = [(zS − H )−1]σi j (4)

is the appropriate site off-diagonal block of the matrix
of expansion coefficients of the resolvent operator Ĝ(z) =
(zÎ − Ĥ )

−1
with z = ε + iδ. A detailed derivation of Eq. (2)

is given in the Appendices. These expressions are a general-
ization of the seminal work of Liechtenstein et al. [1] to the
case of a nonorthogonal tight-binding basis set.

We implemented the above equations by using the self-
consistent Hamiltonian and overlap matrices provided by the
SIESTA code [26]. This can be achieved with the assistance of
the sisl tool [30]. We devote the next section to validate our

approach by giving three examples [31] by comparing the re-
sults of our proposed methodology with previous calculations.
Moreover, we give a detailed description of the sp magnetism
in low-dimensional graphene systems in terms of exchange
interactions and analyze their asymptotic behavior.

III. RESULTS

A. Bulk ferromagnets

In this section we present the exchange interactions of
selected bulk ferromagnets using our proposed approach and
compare our results with former ones obtained from the
screened KKR (SKKR) method [7] in the framework of the
atomic sphere approximation. We considered ferromagnetic
bcc Fe, hcp Co, as well as fcc Ni. For both the SIESTA

and SKKR calculations we used the same approximations
for the exchange-correlation density functional and the same
geometrical parameters. In case of Fe the generalized gradient
approximation (GGA) as parametrized by the PBE scheme
[32], while for Co and Ni the local spin density approximation
(LSDA) [33] were employed. The lattice constants 2.87, 2.50,
and 2.49 Å were chosen for bcc Fe, hcp Co, and fcc Ni,
respectively. In addition, for Co we considered the ratio of
c/a = 1.633 of an ideal hcp structure. scheme. However, we

found that choosing a k-space cutoff of 50 Å
−1

and a real
space mesh cutoff of at least 500 Ry ensured reliable accuracy
for the SIESTA results. We noticed, however, that the choice
of the pseudopotential parameters had a considerable impact
on the results for the ground state obtained from SIESTA and,
subsequently, also on the calculated exchange parameters. We
present a comparison of results obtained with different pseu-
dopotentials in the Appendix D. In our calculations we used
the pseudopotential generation scheme described in Ref. [34].

The calculated spin magnetic moments of the three bulk
ferromagnets are summarized in Table I for the two self-
consistent schemes. The data in this table show an almost
perfect agreement between the spin moments obtained from
the two ab initio methods for bcc Fe, and relative differences
of about 3% and 8% for hcp Co and for fcc Ni, respectively.

Next we calculated the isotropic exchange parameters for
the three bulk ferromagnets by using the relativistic torque
method within the SKKR [4] and via the formula in Eq. (2)
with the tight-binding Hamiltonian and overlap matrices ob-
tained from SIESTA. It should be mentioned that in the latter
case we needed a 100 k-point mesh in each direction of the
full Brillouin zone to ensure adequate convergence for the real
space Green’s function expansion coefficient matrices G̃

σ

i j .
Also note that the relativistic torque method accounts for the

TABLE I. Spin magnetic moments in units of μB for the bulk
ferromagnets under consideration, as calculated using the SKKR
method and the SIESTA code.

SKKR SIESTA

bcc Fe 2.365 2.356
hcp Co 1.542 1.580
fcc Ni 0.675 0.626
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FIG. 1. Isotropic exchange interactions Ji j as a function of in-
tersite distances ri j measured in units of the lattice constants a,
calculated using three different computational approaches: (a) bcc
Fe; (b) hcp Co from SIESTA and SKKR, fcc Co from TB-LMTO; and
(c) fcc Ni. Blue circles, black ×, and orange + symbols stand for the
SKKR, TB-LMTO [11], and SIESTA calculations, respectively.

effect of spin-orbit coupling which is however negligible for
the isotropic exchange interactions of transition metals.

The exchange parameters Ji j obtained from the two meth-
ods are plotted in Fig. 1. For a more extensive comparison we
also included the corresponding values reported in Ref. [11]
in terms of the TB-LMTO approach. Note that the spin model
considered in Ref. [11] misses the factor of 1/2 in Eq. (1),
therefore, the exchange interactions presented there should be
multiplied by a factor of 2 in order to compare with those
calculated from Eq. (2). Apparently the three methods provide
isotropic exchange interactions in remarkably good agreement
with each other for all three bulk ferromagnets. Considering
mainly the large ferromagnetic nearest neighbor interactions,
but also in case of some farther couplings, the SIESTA and
TB-LMTO values compare more precisely than those and
the SKKR values, which is not surprising as the former two
methods rely on the tight-binding scheme. As can be seen in
Fig. 1(b), the exchange interactions derived from the SIESTA

and SKKR calculations also compare remarkably well with
those obtained from the TB-LMTO method for fcc Co.

The Curie temperature TC of ferromagnetic materials is one
of the measurable quantities closely related to the exchange
interactions. While the transition temperature can accurately
be obtained from Monte Carlo or spin-dynamics simulations,

TABLE II. Mean-field Curie temperatures T MFA
C for elementary

ferromagnets calculated using Eq. (5) with exchange parameters
obtained from different ab initio methods. Note that the TB-LMTO
results for Co correspond to an fcc structure. For comparison, exper-
imental Curie temperatures are also presented in the last column.

T MFA
C (K) SKKR TB-LMTO [11] SIESTA Experiment [37–40]

bcc Fe 1478 1414 1330 1044–1045
hcp Co 1504 1645 1490 1388–1398
fcc Ni 348 397 389 624–631

here we present theoretical estimates based on the mean-field
approach which is extracted from the spin model parameters
Ji j as

T MFA
C = 1

3kB

∑
j

J0 j, (5)

with the Boltzmann constant kB. We calculated T MFA
C sum-

ming up the exchange parameters up to a distance of r0 j =
10 Å for hcp Co and fcc Ni, while r0 j = 25 Å for bcc Fe,
reducing the numerical error of the results below 20 K. The
data obtained within the SIESTA and SKKR methods shown
in Table II are in fairly good agreement with each other and
with those reported in Ref. [11], also presented in Table II.
The somewhat large deviation of T MFA

C of Co within the
TB-LMTO method from the very similar values obtained
using the SIESTA and SKKR codes can mainly be attributed
to the different crystal structures used in these calculations.
The mean-field approximation is known to overestimate the
exact transition temperatures, which might explain the higher
values of T MFA

C as compared with the experimental TC in case
of Fe and Co. The considerably lower mean-field estimates for
the Curie temperature with respect to the experimental value
in case of Ni is most possibly the consequence of the highly
itinerant nature of the magnetism of bulk Ni [35,36].

B. Fluorinated graphene

We turn now to sp magnetism in the context of graphene.
First we present results for the exchange interactions in single-
side fluorinated graphene C2F and compare them to earlier
calculations by Rudenko et al. [29], who used a maximally lo-
calized Wannier function basis [28] which was mapped from a
plane-wave basis [25]. Wannier orbitals form an orthonormal
basis representation, thus Eq. (A28) can simply be evaluated
using the corresponding matrices with respect to this represen-
tation. However, Wannier orbitals are not necessarily localized
to a single atom. Therefore, local degrees of freedom like
the atomic spin cannot be unambiguously described in terms
of a Wannier basis. In our approach, every nonorthogonal
orbital is explicitly localized to a given atom in the system.
The nonorthogonality of these orbitals can be handled by
using appropriate local projection operators, as discussed in
Appendix B. Hence, these orbitals describe properly atomic
degrees of freedom.

In Ref. [29] it was found that a row-wise antiferromag-
netic (AFM) spin alignment is preferred with respect to the
ferromagnetic (FM) state. In our self-consistent calculations
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performed with SIESTA we also considered a row-wise AFM
configuration. For better comparison, we used the exchange-
correlation functional and geometry parameters of Ref. [29].
Note that the F atoms are placed above the C atoms in only
one of the two sublattices of graphene (say, in sublattice
A), forming thus a triangular lattice. We found that the car-
bon atoms at sublattice B have a total magnetic moment of
0.736 μB, with a contribution of 0.65 μB coming from their
pz orbitals and that the carbon atoms at sublattice A have
negligible magnetic moments. This is in good agreement with
the results of Ref. [29], where considerable spin polarization
was found only for the pz type Wannier orbitals associated
with the carbon sites at the B sublattice, with a magnitude of
0.59 μB.

Choosing the row-wise AFM configuration as a reference,
we calculated the exchange parameters of C2F by using
Eq. (2) with G̃

σ

i j evaluated on a k mesh of 200 points in
each direction of the two-dimensional Brillouin zone. The
resulting exchange interactions are shown in Fig. 2(a). Note
that we label the interactions between the moments of the
same and opposite orientations with different symbols. Since
a row-wise AFM spin configuration does not respect the point
symmetry of the triangular lattice, these two sets of inter-
actions significantly differ from each other: the first nearest
neighbor interactions between moments with the same ori-
entation are much stronger antiferromagnetic than those be-
tween opposite moments. Notably, the exchange interactions
reported in Ref. [29], labeled by triangles in Fig. 2(a), show
a good agreement with those calculated by SIESTA between
moments of the same orientation at positions along a row
of the row-wise AFM pattern. Moreover, farther couplings
decrease exponentially as shown in Fig. 3(a). This can be
understood as a consequence of the quasiparticle gap that is
manifested in the total density of states shown in Fig. 3(c).

As mentioned above, the chosen reference state and, con-
sequently, the calculated exchange parameters do not respect
the C3v symmetry of the underlying lattice. For this reason,
we also chose the ferromagnetic state shown as an alternative
reference state, and we recalculated the exchange parameters.
The results are shown in Fig. 2(b). We found that the exchange
parameters are now consistent with the C3v symmetry of the
lattice and that they are characterized by large antiferromag-
netic first nearest neighbor and ferromagnetic next-nearest
neighbor couplings. The decay of the exchange interactions
shows the expected power law [41] ∝ r−2 as depicted in
Fig. 3(b) and is corroborated by the absence of a gap in the
density of states that we show in Fig. 3(d).

It should be mentioned that both the first nearest neighbor
antiferromagnetic and second nearest neighbor ferromagnetic
couplings are consistent with the 120◦ Néel ground state sug-
gested in Ref. [29]. We evaluated the Fourier transform J ( �q)
of the exchange interactions obtained from the ferromagnetic
reference state and plotted it in Fig. 4 along the high symmetry
directions of the hexagonal Brillouin zone. Indeed we obtain a
clear maximum at the K point, which indicates the 120◦ Néel
state as ground state.

In light of this we performed a final self-consistent calcula-
tion with a noncollinear Néel configuration as well. The total
energy differences per atom for the Néel, row-wise antiferro-
magnetic and ferromagnetic configurations were obtained as

FIG. 2. (a) Isotropic exchange interactions Ji j for a fluorinated
graphene sample calculated using a Wannier basis [29] (triangles)
and extracted from a nonorthogonal basis using the SIESTA code.
For both calculations a row-wise antiferromagnetic spin configura-
tion was used as reference. Circles and crosses represent couplings
between spins of parallel and antiparallel orientations, respectively.
The inset shows the atomic arrangement of the carbon atoms in
this system. Here black circles label carbon atoms bound to a
fluorine atom. Arrows in the white circles represent the orientation
of local moments, displaying a row-wise antiferromagnetic state.
Color-coded disks denote the relative magnitude and sign (red pos-
itive, blue negative) of the exchange couplings between the central
site and other magnetic carbon sites. (b) Exchange interactions Ji j

calculated from a nonorthogonal basis set using the SIESTA code and
a ferromagnetic state as reference. The inset demonstrates that in this
case the exchange parameters respect the symmetry of the underlying
lattice.

EAFM
Tot − ENéel

Tot = 1 meV and EFM
Tot − ENéel

Tot = 24 meV, respec-
tively. These values confirm the Néel state as the true ground
state of the system as expected.
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FIG. 3. (a) and (b) Magnitudes of the exchange interactions
between magnetic carbon atoms as a function of the distance in
fluorinated graphene in the row-wise AFM and in the FM states,
respectively. Blue circles denote interactions between atoms with
the same magnetic orientation, orange crosses denote interactions
between moments with opposite orientation, while purple triangles
stand for the interactions reported in Ref. [29]. Note that (a) is plotted
on a log-linear scale, while (b) on a log-log scale. The total density of
states for the AFM state and the spin-resolved densities of states for
the FM state in the vicinity of the Fermi level are plotted in (c) and
(d), respectively.

C. Graphene ribbon

In this section we analyze the one-dimensional itinerant
ferromagnetic state that arises at the edge of zigzag graphene
ribbons passivated by hydrogen atoms [42–47]. This rather
elusive magnetic state has provoked enormous expectations
in the past 15 years, because of their plausible potential for
spintronics applications [48,49].

We considered a hydrogen-passivated 28-carbon-atom
wide graphene ribbon that extends along the x direction, as
depicted in Fig. 5. In the self-consistent calculations we used
the LSDA [33], we set a mesh cutoff of 200 Ry for the
real-space integrals, and we selected 100 k points in the one-
dimensional (1D) Brillouin zone. The magnetic configuration
was set ferromagnetic along the x direction, that means the
1D unit cell consisted of 28 carbon atoms and 2 H atoms.
The magnetic moments yielded by this choice are indicated
in Fig. 5. We find that the magnetic moments of the A and B
carbon atoms are opposite in sign, implying that the ribbon’s
ground state displays an antiferromagnetic alignment with
respect to the two edges. A total magnetic moment of 0.3 μB

FIG. 4. The Fourier transform J ( �q) of the exchange constants of
the fluorinated graphene sample extracted from the ferromagnetic
configuration plotted along high symmetry directions of the Brillouin
zone.

per 1D unit cell is associated with each edge that we obtain by
adding the individual magnetic moments of the ribbon atoms
from one edge to the center of the ribbon. The two sublattices
A and B contribute 0.36 μB and −0.06 μB to this magnetic
moment, respectively. These findings are in good agreement
with previous calculations [50,51].

We calculated the exchange parameters Ji j in the rib-
bon using the LKAG formula Eq. (2) with the ground-state
Hamiltonian delivered by SIESTA. We found that the leading
interactions occur between those edge carbon atoms on sub-
lattice A that have the largest magnetic moments. Figure 5
demonstrates that these interactions are ferromagnetic and
fairly short ranged. The decay of the interactions is non-
monotonic: a small oscillatory behavior can be observed, but
the interactions remain ferromagnetic for all distances. Our
calculations also indicate non-negligible antiferromagnetic
couplings between the A atoms at the edge and the first nearest
neighbor atoms at the B sublattice.

In order to make a conceptional connection to the calcu-
lation presented in [50], we introduce meta magnetic mo-
ments as large as 0.3 μB associated with one half of the
graphene ribbon. To calculate the interactions between these
meta moments we evaluate Eq. (2) considering all atomic
orbitals in one half of the 1D unit cell of the ribbon containing
14 carbon atoms and 1 hydrogen atom. In Fig. 6 we also
plot these exchange interactions as a function of the distance
along the x direction by orange triangles. The nearest neighbor
interaction between the meta moments is somewhat reduced,
while the farther interactions are enhanced compared to the
corresponding interactions between the edge atoms, as can
be seen in Fig. 6. Consequently, the interactions between the
meta moments show a fairly monotonic decay, with similar
characteristics as in case of the edge atoms for distances above
15 Å. We found that in this region the interactions fit well to
a function ∝ e−√

r/δ , also shown in Fig. 6. In order to better
visualize this unconventional decay we plotted the exchange
parameters on a logarithmic scale against the square root of
the distance in the inset of Fig. 6. Both sets of interactions
display a nearly linear dependence on this graph, though the
aforementioned oscillations for the edge atoms clearly show
up.
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FIG. 5. Atomic arrangement at the edge of a hydrogen-passivated zigzag graphene ribbon. White circles denote the passivating hydrogen
atoms, while gray circles denote carbon atoms on sublattices A and B. The sublattice of a given row is indicated at the left side of the figure,
while the value of the local magnetic moment in the row is shown at the right side in units of μB. Color-coded disks denote the relative
magnitude and sign (red positive, blue negative) of the Ji j exchange interactions between the carbon atom marked by × and the corresponding
sites.

The experimentally accessible magnon spectrum E (q) of a
ferromagnetic system is related to the Fourier transform of the
exchange constants [11],

E (q) = 2μB

M
[J (0) − J (q)], (6)

where M is the magnitude of the magnetic moment per peri-
odic unit. The calculated curves for J (0) − J (q) for the two
considered spin models are plotted in Fig. 7, clearly proving

FIG. 6. Isotropic exchange interactions Ji j calculated for a
graphene ribbon as a function of the x coordinate measured along
the edge. Blue circles correspond to the interactions between carbon
atoms of type A located in the row at the edge, while orange trian-
gles denote exchange interactions between meta magnetic moments
comprising all the atoms from one half of the cross section of the
ribbon. The dashed line is a fitting of the tail of the latter curve to

the function A e−
√

ri j/δ . A log-linear graph of both Ji j curves as a
function of the square root of the distance is depicted in the inset.

that the ferromagnetic state (q = 0) is the ground state of the
half-ribbon system.

The low-energy magnon spectrum

E (q) ≈ Dq2 (7)

of the ribbon was estimated in Ref. [50] from a set of
constrained self-consistent calculations of twisted periodic
spin configurations resulting in a stiffness constant of D =
2100 meV Å

2
. Based on this value of D, an effective first

nearest neighbor Heisenberg model was devised with the
exchange constant J01 = 105 meV.

FIG. 7. Spin-wave spectrum (without the prefactor 2μB
M ) for the

magnetic moments at the edge of the graphene ribbon only (solid
blue line) and for the meta magnetic moments corresponding to half
of the ribbon (orange dashed line).
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The stiffness constant D can be calculated from the ex-
change parameters as

D = μB

M

∑
j

J0 jx
2
j , (8)

where the index j runs over all considered magnetic atoms or
1D unit cells in the system other than the atom indexed by
0 and the x component of the displacement vector between
the sites 0 and j is denoted by x j . Considering only the edge

atoms in the sum we obtain Dedge = 2308 meV Å
2
, while

considering the half-ribbon meta magnetic moments we get

Dhalf = 3406 meV Å
2
. Though these values are larger than

the one reported in Ref. [50], they are reasonably similar in
magnitude and support the observation that sp magnets might
have higher spin stiffness than the conventional d ferromag-
nets. Based on our calculations we conclude that the high
apparent value of the spin stiffness is caused by the almost
monotonic, unconventional decay of magnetic correlations
along the ribbon edge.

IV. SUMMARY

We presented a computational approach that determines
the exchange parameters of isotropic spin models based on the
magnetic force theorem, directly from ab initio calculations
using a nonorthogonal basis set to expand the eigenstates of
the system. We demonstrated that the method accurately re-
produces the Heisenberg interactions of simple metallic bulk
ferromagnets delivered by well-established computational ap-
proaches. We studied the magnetism of two systems based
on graphene. For fluorinated graphene we obtained exchange
constants in fairly good agreement with previous calculations
using maximally localized Wannier functions and we con-
firmed the theoretical prediction of a 120◦ Néel state. The
long-range behavior of the exchange interactions was found
consistent with the electron spectrum of the system around
the Fermi level. For zigzag graphene nanoribbons we found
that the stiffness constant derived from the exchange constants
is consistent with previous estimates based on total energy
differences of twisted spin configurations. We also found
an unconventional exp(−√

r/δ)-like decay of the interaction.
Understanding this exotic behavior poses a challenge for
further investigations. The SIESTA code can easily handle large
nanoscale systems of high chemical complexity, therefore we
are convinced that the presented method is a very efficient
tool for the analysis and design of novel hybrid nanostructures
hosting exotic magnetic patterns.
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APPENDIX A: EXCHANGE INTERACTIONS
IN AN ORTHOGONAL BASIS

In this Appendix we give a detailed derivation of the LKAG
formula for Ji j [1,2] to be evaluated by density functional the-
oretical calculations performed in an orthogonal tight-binding
basis. Andersen’s force theorem [52] states that if the system
is in its ground state then the change of the total energy
Etot due to a small variation in the external potential can be
directly linked to small variations in the Kohn-Sham energy
EKS calculated at fixed density without the need for further
self-consistent calculations. The force theorem thus provides
us with a computationally inexpensive way to obtain response
functions.

Neglecting relativistic effects and longitudinal spin fluctu-
ations, the energy of a spin system is usually mapped to a
classical Heisenberg model,

H = −1

2

∑
i �= j

Ji j �ei�e j . (A1)

Consider now a ferromagnetic ground state where all spins
point in the same direction �e0 that has the energy

E0 = −1

2

∑
i �= j

Ji j . (A2)

If a single spin located at site i is excited to �ei �= �e0, the energy
of this single-spin excitation is given by

δE (�ei ) = E (�ei ) − E0 = (1 − �ei�e0)
∑
k( �=i)

Jik . (A3)

The energy of a two-site excitation �ei �= �e0 and �e j �= �e0 (i �= j)
can be expressed as

δE (�ei, �e j ) = E (�ei, �e j ) − E0 = (1 − �ei�e j )Ji j

+ (1 − �ei�e0)
∑

k( �=i, j)

Jik + (1 − �e j �e0)
∑

k( �=i, j)

Jjk

= δE (�ei ) + δE (�e j ) − (�ei − �e0)(�e j − �e0)Ji j . (A4)

The interaction energy between spins i and j, E int
i j , is then

defined by

E int
i j = δE (�ei, �e j ) − δE (�ei ) − δE (�e j ) (A5)

= −Ji j δ�eiδ�e j, (A6)

with δ�ei/ j = �ei/ j − �e0.
Calculating the energy cost of appropriate local perturba-

tions we can thus extract the classical Ji j parameters from
ab initio Green’s function methods. Applying Lloyd’s formula
[53] in the spirit of the force theorem the energy cost of a
perturbation δV̂ can be cast in terms of the Green’s operator
(resolvent)

Ĝ(z) = (zÎ − Ĥ )−1 (A7)

as

δEKS = 1

π

∫ εF

−∞
dε ImTr ln(Î − δV̂ Ĝ(ε)), (A8)
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where εF is the Fermi energy, Î is the identity operator,
and Ĥ corresponds to a Hamiltonian which self-consistently
determines Etot. Assuming now that δV̂i and δV̂j are operators
that describe the local perturbations corresponding to spin
rotations at sites i and j, respectively, and using the identity

Î − Â − B̂ = (Î − Â)(Î − (Î − Â)−1ÂB̂(Î − B̂)−1)(Î − B̂),
(A9)

we obtain

ln(Î − δV̂iĜ − δV̂jĜ)

= ln(Î − δV̂iĜ) + ln(Î − δV̂iĜ) + ln(Î − T̂iĜT̂iĜ), (A10)

where the scattering operator T̂i is defined as

T̂i = δV̂i(Î − ĜδV̂i )
−1. (A11)

In the spirit of Eq. (A5), the interaction energy for the two-
site perturbation is then given by

E int
i j = 1

π

∫ εF

−∞
dεImTr ln[Î − T̂iĜ(ε)T̂jĜ(ε)]. (A12)

Since we are interested in small perturbations around the
ground state, we can safely use the Born approximation T̂i ≈
δV̂i, and we also expand the logarithm as ln(1 − x) ≈ −x, thus
Eq. (A12) reduces to

E int
i j = − 1

π

∫ εF

−∞
dε ImTr[δV̂iĜ(ε)δV̂jĜ(ε)]. (A13)

Note that so far we have not considered anything specific
about the perturbation operators V̂i/ j .

Within the tight-binding (TB) scheme a matrix representa-
tion of Ĥ is used in an orthogonal basis of localized atomiclike
wave functions centered at sites of the lattice. Thus, the basis
functions are labeled by lattice sites n, composite angular
momentum indices L = (�, m), and the spin index s = ±1/2
(or ↑ and ↓). As what follows, we will note matrices of the
entire site-angular momentum-spin space with boldface let-
ters, double and single underlines will denote block matrices
in common angular momentum-spin space and in only angular
momentum space, respectively:

H = {H
nn′ } = {Hns,n′s′ } = {HnLs,n′L′s′ }, (A14)

HnLs,n′L′s′ = Hc
nL,n′L′δss′ + �HnL,n′L′ �σss′ , (A15)

with the Pauli matrices �σ . For simplicity we shall assume that

�HnL,n′L′ = 0 for n �= n′ (A16)

and spin dependence applies only to the site-diagonal blocks
of the Hamiltonian,

�HnL,nL′ = Hs
nL,nL′ �en. (A17)

When the spin is aligned parallel to the z axis, the form of the
local Hamiltonian is

H
nn

=
(

H↑
nn 0

0 H↓
nn

)
, (A18)

thus

Hc/s
nn = 1

2
(H↑

nn ± H↓
nn). (A19)

In case of a ferromagnetic (in general, collinear) mag-
netic configuration of the host with a magnetic orientation
�e0,

H
nn′ = Hc

nn′ I + Hs
nn′ �e0 �σ , (A20)

where I denotes the unit matrix in spin space. The correspond-
ing matrix representation of the Green’s function is of the
same form,

G
nn′ = Gc

nn′ I + Gs
nn′ �e0 �σ . (A21)

According to Eq. (A17) the change of the Hamiltonian
due to local spin rotations is given by elements defined
as

δV̂i
nn′

= δinδin′Hs
ii δ�ei �σ , (A22)

where Hs
ii denotes the angular momentum representation of

the spin-dependent part of the Hamiltonian confined to site
i. In order to calculate the interaction energy of two spins in
Eq. (A13) we evaluate the trace by substituting Eqs. (A21) and
(A22):

Tr[δV̂iĜδV̂jĜ]

= TrLs
{
Hs

ii(δ�ei �σ )
[
Gc

i jI + Gs
i j (�e0 �σ )

]
Hs

j j (δ�e j �σ )
[
Gc

jiI + Gs
ji(�e0 �σ )

]}
, (A23)

where TrLs denotes the trace of a matrix in both angular
momentum and spin space. Using the algebraic properties of
Pauli matrices the traces can easily be evaluated in spin space
yielding

Tr[δV̂iĜδV̂jĜ]

= 2TrL
[
Hs

iiG
c
i jH

s
j jG

c
ji

− Hs
iiG

s
i jH

s
j jG

s
ji

]
δ�eiδ�e j

+ 4TrL
[
Hs

iiG
s
i jH

s
j jG

s
ji

]
(δ�ei�e0)(δ�e j �e0)

+ 2iTrL
[
Hs

iiG
s
i jH

s
j jG

c
ji

− Hs
iiG

c
i jH

s
j jG

s
ji

]
�e0(δ�ei × δ�e j ), (A24)

where TrL denotes trace in angular momentum space only.
For infinitesimal rotations δ�ei ⊥ �e0, therefore, the second term
will be neglected. The third term can be shown to vanish
in the present nonrelativistic collinear magnetic case. Due
to time-reversal symmetry, the tight-binding basis can be

chosen by unitary transformation such that Hs/c
i j = (Hs/c

ji )
T

,

consequently also Gs/c
i j = (Gs/c

ji )
T

, thus

TrL
[
Hs

iiG
c
i jH

s
j jG

s
ji

]
= TrL

[(
Gs

ji

)T (
Hs

j j

)T (
Gc

i j

)T (
Hs

ii

)T ]
= TrL

[
Gs

i jH
s
j jG

c
jiH

s
ii

]
= TrL

[
Hs

iiG
s
i jH

s
j jG

c
ji

]
, (A25)

that indeed cancels the third contribution to (A24).
Thus, the interaction of two spins can indeed be written as

E int
i j = −Ji, δ�eiδ�e j, (A26)
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with

Ji j = 2

π

∫ εF

−∞
dE ImTrL

[
Hs

iiG
c
i jH

s
j jG

c
ji

− Hs
iiG

s
i jH

s
j jG

s
ji

]
. (A27)

Rewriting Gc/s
i j in terms of G↑/↓

i j the above expression can
be reduced to

Ji j = 2

π

∫ εF

−∞
dε ImTrL

[
Hs

iiG
↑
i jH

s
j jG

↓
ji

]
. (A28)

This expression is the celebrated LKAG formula [1,2]. It is
important to note that if the magnetic orientations at site i and
j are opposite in sign, as happens in case of collinear anti-
ferromagnetic configurations, the Ji j obtained from Eq. (A28)
should be changed in sign as the spin channels at the two sites
are reversed with respect to each other.

APPENDIX B: SOME IDENTITIES IN A
NONORTHOGONAL BASIS

Here we review useful identities related to nonorthogonal
bases, some of them discussed in Ref. [54]. Using these
identities we then generalize Eq. (A28) to nonorthogonal
bases.

A basis formed by states {|i〉} is not orthogonal if its
elements have finite overlap

Si j = 〈i | j〉. (B1)

In practice real valued basis functions are chosen, therefore
the overlap matrix is symmetric. The inverse of the overlap
matrix S defines the dual basis |ĩ〉 as∣∣ĩ〉 =

∑
j

(S−1)i j | j〉, (B2)

whose elements are orthogonal to the original basis,

〈i| j̃〉 = δi j . (B3)

The expansion of a general operator Â with respect to basis
{|i〉} is defined as

Â =
∑

i j

|i〉Ãi j〈 j|, (B4)

while the matrix elements in the original basis can be ex-
pressed as

Apq = 〈p|Â|q〉 =
∑

i j

〈p |i〉Ãi j〈 j |q〉. (B5)

Obviously the expansion coefficients Ãi j are the matrix ele-
ments of the operator in the dual basis,

Ãi j = 〈ĩ|Â| j̃〉. (B6)

As what follows we shall denote the matrix of an operator
Â with respect to the nonorthogonal basis with A, while the
matrix in the dual basis will be denoted by Ã. Note that these
two matrices are connected by the overlap matrix S as

A = SÃS. (B7)

The trace of an operator is calculated with the help of an
orthogonal basis {|α〉},

TrÂ =
∑

α

〈α|Â|α〉

=
∑
αi j

〈α |i〉Ãi j〈 j |α〉

=
∑
αi j

〈 j |α〉〈α |i〉Ãi j

=
∑

i j

S jiÃi j = Tr(SÃ). (B8)

Next we consider matrix elements and traces of operator
products. The trace of a simple product gives

Tr(ÂB̂) =
∑

α

〈α|ÂB̂|α〉

=
∑
αi j pq

〈α |i〉Ãi j〈 j |p〉B̃pq〈q |α〉

= Tr(SÃSB̃), (B9)

which generalizes to

Tr
∏

i

Âi = Tr
∏

i

(SÃi ). (B10)

The matrix element of a simple product is expressed as

〈k|ÂB̂|l〉 =
∑
i j pq

〈k |i〉Ãi j〈 j |p〉B̃pq〈q |l〉

= (SÃSB̃S)kl , (B11)

that can be generalized to

〈k|
∏

i

Âi|l〉 =
(

S
∏

i

(ÃiS)

)
kl

. (B12)

Using the Taylor expansion of an operator function,

f (Â) =
∑

n

fnÂn, (B13)

the corresponding trace gives

Tr f (Â) =
∑

n

fnTrÂn

=
∑

n

fnTr(SÃ)n

= Tr f (SÃ), (B14)

while for the respective matrix elements we obtain

〈k| f (Â)|l〉 =
∑

n

fn〈k|Ân|l〉

=
∑

n

fn(S(ÃS)n)kl

= (S f (ÃS))kl

= ( f (SÃ)S)kl . (B15)
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This identity formally applies to the inverse of an operator,

〈k|Â−1|l〉 = ((SÃ)−1S)kl

= (Ã
−1

S−1S)kl

= (Ã
−1

)kl , (B16)

but it can be also rigorously proved based on Â−1Â = Î . This
means the matrix of the inverse of an operator is the inverse
matrix of the expansion coefficient of the operator.

The density of states �(E ) is related to the resolvent Ĝ(z)
in Eq. (A7) as

�(ε) = − 1

π
lim

δ→+0
ImTr Ĝ(ε + iδ) (B17)

= − 1

π
lim

δ→+0
ImTr[SG̃(ε + iδ)]. (B18)

Using the relation Eq. (B16), the matrix of the expansion
coefficients of the resolvent reads as

G̃(z) = (zS − H )−1, (B19)

thus we can express the density of states with the help of
the overlap matrix S and the matrix of matrix elements H
as

�(ε) = − 1

π
lim
δ→0

ImTr{S[(ε + iδ)S − H]−1}. (B20)

Furthermore, the trace of the product of operators in the
interaction energy for two-site perturbations [Eq. (A13)] can
be calculated as to the correlation kernel for two operators V̂1

and V̂2 defined by

Tr[V̂1Ĝ(z)V̂2Ĝ(z)]

= Tr[SṼ 1SG̃(z)SṼ 2SG̃(z)]

= Tr[V 1G̃(z)V 2G̃(z)]

= Tr[V 1(zS − H )−1V 2(zS − H )−1]. (B21)

APPENDIX C: EXCHANGE INTERACTIONS IN A
NONORTHOGONAL BASIS

In this Appendix we discuss a pragmatic approximation
to treat local spin rotations in a nonorthogonal basis leading
to the generalization of the formula for Ji j (A28) derived for
the orthogonal basis. Restricting our discussion to collinear
magnetic systems, it is natural to choose a basis where the site
and orbital degrees of freedom form the nonorthogonal part
of the basis, while the basis functions are eigenvectors of the
spin operator projected to the orientation of the magnetization.
That is we consider the basis |σ 〉 ⊗ |iL〉 with the property

(〈σ | ⊗ 〈iL|)(|σ ′〉 ⊗ | jL′〉) = 〈σ |σ ′〉〈iL | jL′〉
= δσ,σ ′SiL, jL′ , (C1)

where i and j denote lattice sites, L and L′ stand for orbital
degrees of freedom, and σ , σ ′ label the eigenvectors of the
spin operator.

Let us define the local perturbation operator as

δV̂i = P̂†
i (Ô†

GĤÔG − Ĥ )P̂i, (C2)

where Ĥ is a Hamiltonian whose matrix elements have been
calculated by some self-consistent scheme, ÔG describes a
global rotation of the spin degrees of freedom around direction
�n with angle ϕ,

ÔG = e− 1
2 i �n�σ ϕ ⊗ ÎL, (C3)

and P̂i is a projector built up from all orbital degrees of
freedom associated with site i:

P̂i = ÎS ⊗
∑

L

|iL〉〈 ˜iL | . (C4)

The identity operators ÎL and ÎS act on all orbital degrees
of all atomic positions and in spin space, respectively. Note
that this direct Hermitian projection does not project to a
subspace with integer dimension [54]. The operator δV̂i has
the convenient property that its matrix elements are only finite
between orbitals located at site i, and are equal to the matrix
elements of the Hamiltonian rotated globally in spin space
relative to the reference Hamiltonian δĤ = Ô†

GĤÔG − Ĥ .
Since the global spin rotation and local projection act in-

dependently in the local perturbation, Eq. (C2), the evaluation
of formula (B21) follows the steps as for the orthogonal basis.
Thus, the expression of the Liechtenstein formula is readily
generalized to nonorthogonal bases:

Ji j = 2

π

∫ εF

−∞
dε ImTr

[
Hs

iiG̃
↑
i j (ε)Hs

j jG̃
↓
ji(ε)

]
, (C5)

with the actual expressions of the above matrices in the
nonorthogonal basis.

APPENDIX D: PSEUDOPOTENTIAL AND BASIS
DEPENDENCE OF EXCHANGE INTERACTIONS

In this brief Appendix we discuss how sensitive the pre-
sented results are to the the size of the employed basis set as
well as to the pseudopotential and basis-set parameters used.

We mention first that some of us performed recently an
in-depth analysis of the dependence of pseudopotential and
basis-set parameters within double-ζ polarized (DZP) scheme
for a substantial subset of 20 elements of the periodic table
that can be found summarized in Ref. [34]. It was found
that the choice of pseudopotential parameters was critical
for the accuracy of SIESTA results, while the choice of basis
set parameters was not so relevant. Indeed, we checked in
detail that the default basis set parameters delivered by SIESTA

were sufficient to provide accurate results. We have therefore
picked the standard DZP basis of SIESTA together with the
pseudopotential parameters proposed in Ref. [34] as our first
choice, and have confirmed below that these are also superior
for the calculation of exchange constants to those provided in
the SIESTA web page [55].

We describe shortly the method used in [34] first. We
devised a simplex method whereby the differences in band
structure at many k points in the Brillouin zone, the lattice
constant (and the magnetic moments for 3d magnetic ele-
ments) was minimized against the VASP code (with PAW), as
well as the all-electron full-potential LAPW code ELK. We
chose three sets of minimizing parameters: (1) all pseudopo-
tential + all DZP basis parameters, (2) all pseudopotential
parameters + standard DZP parameters, and (3) all basis
parameters + ab initio pseudopotential parameters. We found
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FIG. 8. The first and second nearest neighbor exchange interaction of simple bcc Fe, calculated with different pseudopotentials and various
basis set sizes compared to KKR and TB-LMTO calculations.

in our extensive analysis that (1) and (2) delivered the same
level of accuracy. Intrigued by this fact, we double checked in
detail and confirmed that the standard DZP basis delivered by
SIESTA needed no further tuning, provided that the right set of
pseudopotential parameters were used.

Concerning the present study, we investigated exchange
interaction between first and second nearest neighbor atoms
of bcc Fe calculated with two different pseudopotential con-
structions and several basis set sizes. The first pseudopotential
construction was obtained from SIESTA’s pseudodatabase [55]
translated from Abinit’s database [56] which we are going to
refer to as original, while the second pseudopotential con-
struction is the construction by Rivero and co-workers [34]
which we label as optimized since it was optimized. In Fig. 8
we depict our results obtained with single-ζ (SZ), single-ζ
polarized (SZP), and DZP basis, with the two considered

pseudopotentials and compare them to the KKR and TB-
LMTO approaches. One can observe that for the case of
the first nearest neighbor exchange couplings the optimized
pseudopotential with a DZP basis set is in good agreement
with both KKR and TB-LMTO values, while the original
construction gives a considerably lower value. In the case of
second nearest neighbors both constructions with a DZP basis
produce values close to previous calculations. We can also
identify a trend where the optimized pseudopotential tends to
yield exchange parameters larger in magnitude.

Since the value of first nearest neighbor exchange constant
is a decisive contributing factor for physical properties we
conclude that the pseudopotential construction of [34] with
a double-ζ polarized basis adequately reproduces KKR and
TB-LMTO calculations, and thus these pseudopotentials are a
good starting point for further calculations.
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