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Abstract 

Question 

Spontaneous succession is the most natural and cost-effective solution for grassland 

restoration. However, little is known about the time required for the recovery of grassland 

functionality, i.e. for the recovery of reproductive and vegetative processes typical of pristine 

grasslands. Since these processes operate at different scales, we addressed the question: do 
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reproductive and vegetative processes require different recovery times during spontaneous 

succession?  

 

Location 

Kiskunság sand region (Central Hungary). 

 

Methods 

As combinations of plant traits can be used to highlight general patterns in ecological 

processes, we compared reproductive (pollination- and dispersal-related) and vegetative 

(growth form) traits between recovered grasslands of different age (<10 yr old; 10–20 yr old; 

20–40 yr old) and pristine grasslands. 

 

Results 

During spontaneous succession the reproductive trait spectra became similar to those of 

pristine grasslands earlier than the vegetative one. In arable land abandoned for ten years, 

pollination- and dispersal-related trait spectra did not show significant difference to those of 

pristine grasslands; anemophily and anemochory were the prevailing strategies. Contrarily, 

significant differences in the growth form spectrum could be observed even after forty years 

of abandonment; in recovered grasslands erect leafy species prevailed, while the fraction of 

dwarf shrubs and tussock-forming species was significantly lower than in pristine grasslands.  

 

Conclusions 

The recovery of the ecological processes of pristine grasslands might require different 

amounts of time, depending on the spatial scale at which they operate. Reproductive trait 

spectrum recovered earlier than the vegetative one, since reproductive attributes first 
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determine plant species sorting at the regional level towards their respective habitats. The 

recovery of the vegetative trait spectrum needs more time as vegetative-based interactions 

operate on a smaller spatial scale. Thus, vegetative traits might be more effective in the long-

term assessment of restoration success than the reproductive ones. 

 

Keywords 

Dispersal; Grassland recovery; Growth form; Old-field succession; Pollination; Reproductive 

traits; Restoration; Spontaneous succession; Vegetative traits 

 

Nomenclature 

Király et al. (2011) 

 

Introduction 

Before the twentieth century, pristine and semi-natural grasslands represented a constant 

element in agro-ecosystems all around Europe (Prach et al., 2014). During the twentieth 

century, socio-economic changes in Europe have led to an increasing loss of grassland 

surface due to either their conversion to arable land (Edwards et al., 2007; Pullin et al., 2009), 

or the abandonment of traditional management practices (Valkó et al., 2012). More recently, 

a renewed interest in pristine and semi-natural grasslands has arisen (e.g., Dengler, Janišová, 

Török, & Wellstein 2014; Wellstein et al., 2014), because their decline has caused the loss of 

many ecosystem services (Bastian, 2013; Kahmen, Perner, & Buchmann, 2005). Indeed, 

pristine and semi-natural grasslands play an important role in nutrient cycling, carbon 

sequestration and balancing of the local climate (Jones, & Donnelly, 2004), they prevent soil 

erosion (Bastian, 2013), and provide pollinators and biological control agents to co-occurring 

croplands (Fantinato, Del Vecchio, Gaetan, & Buffa, 2019; Öckinger, & Smith, 2007). 
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Accordingly, considerable efforts have been devoted to pristine and semi-natural grassland 

conservation and restoration. Because of the recent widespread cessation of formal 

agricultural practices in many European regions, large areas of old-field have become 

available for the restoration of grassland ecosystems, and many restoration programs based 

on technical reclamation and/or on spontaneous succession have been implemented 

(Hedberg, & Kotowski, 2010; Kiehl, Kirmer, Donath, Rasran, L., & Hölzel, 2010; Török, 

Vida, Deák, Lengyel, & Tóthmérész, 2011).  

Grassland recovery by spontaneous succession represents a cost-effective and the most 

natural solution for grassland restoration, and it can effectively substitute technical 

reclamation methods in slightly fragmented landscapes, when propagule sources are nearby 

(Prach, & Hobbs, 2008). Spontaneous grassland succession relies on locally available 

supplies of propagules, which include soil seed bank and seed rain mediated by different seed 

dispersing agents from adjacent plant communities (Prach et al., 2016; Török et al., 2011). 

Studies on spontaneous succession proved that generally the basic grassland species pool is 

reconstituted in a relatively short time-span (e.g., 10–20 years; Albert et al., 2014). Even 

though this approach has received considerable attention, little is known about the 

spontaneous recovery of grassland functionality, i.e. the recovery of fundamental ecological 

processes and structures typical of pristine grasslands, which ultimately assures the provision 

of ecosystem services (Kandziora, Burkhard, & Müller, 2013). 

Processes linked to both sexual reproduction and vegetative growth influence plant 

community functionality by exerting selective pressure on plant species composition and 

assemblage (Armbruster, 1995; Slaviero, Del Vecchio, Pierce, Fantinato, & Buffa, 2016). At 

the regional scale, reproductive processes involving pollination and seed dispersal are crucial 

because the production of seeds is necessary for the colonization of new sites (Escaravage, & 

Wagner, 2004). Furthermore, in some plant communities they also contribute to shaping 
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patterns of species co-occurrence at smaller scales (Fantinato, Del Vecchio, Giovanetti, 

Acosta, & Buffa, 2018; Heystek, & Pauw, 2014). Processes linked to vegetative reproduction 

and growth in plant communities influence species co-occurrence at small spatial scale 

through interactions as competition for light, space and belowground resources (van der 

Maarel, & Sykes, 1993; Kelemen et al., 2015). In this context, combinations of plant traits at 

the community level are considered by several authors as potential predictors of general 

patterns of reproductive and vegetative processes (e.g., Catorci, Cesaretti, Gatti, & Tardella, 

2012; Chelli et al., 2019; Schamp, Hettenbergerová, & Hájek, 2011).  

Since reproductive and vegetative processes operate on different scales and at different 

stages of plant community assembly, we investigated whether their recovery times were 

different during spontaneous succession. We addressed the problem by comparing the spectra 

of reproductive (pollination- and dispersal-related) and vegetative (growth form) traits 

between old-fields of different age and pristine grasslands chosen as reference state. In 

particular, we assessed which of the two sets of plant traits in old-field spontaneous 

succession first showed a spectrum comparable to that of pristine grasslands. 

 

Material and methods 

Site selection and data collection 

The study site is located at the centre of the Pannonian biogeographic region, in the 

calcareous sand region of Kiskunság within a 5 km radius of 46°50'30" N, 19°26'13" E. The 

region has a continental climate with a considerable sub-Mediterranean influence. The mean 

annual temperature is 10° C and the mean annual precipitation is 500–550 mm, with a 

semiarid period in late summer (Kelemen et al., 2016). The region is characterised by 

calcareous sandy soils with low water retention capacity, pH up to 8.1 and CaCO3 content of 

7.3% (Csecserits et al., 2011). The most widespread native grassland vegetation types are 
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open sand grasslands developing near and at the top of sand dunes, and closed sand 

grasslands at lower elevations and in dune slacks. Open sand grassland vegetation belongs to 

Festucetum vaginatae, with Festuca vaginata and Stipa borysthenica as characteristic 

frequent graminoids, while closed sand grassland vegetation belongs to the Galio veri–

Holoschoenetum vulgaris association, with Scirpoides holoschoenus, and Stipa capillata as 

typical species (Borhidi, Kevey & Lendvai, 2012). 

During the socialist regime large areas of sand dunes were ploughed and pristine 

grasslands were substituted with croplands. The abandonment of croplands in Kiskunság 

started in the 1960s and intensified after the collapse of the socialist regime at the end of the 

’80s (Biró et al., 2008; Török et al., 2008). After the abandonment, croplands experienced 

spontaneous succession and nowadays old-fields of different ages can be found in the region. 

Based on historical maps, aerial photographs and local ranger knowledge, twelve old-fields 

have been classified into three age groups (four old-fields per group): young (<10 yr old), 

middle-aged (10–20 yr old) and late succession (20–40 yr old). The studied old-fields were 

grazed or mown occasionally. For a detailed description of the three age groups see Albert et 

al. (2014). During the socialist regime sand dunes were flattened to ease agricultural 

activities, old-fields are now in an intermediate position between open sand grasslands 

developing near and at the top of sand dunes (Festucetum vaginatae association), and closed 

sand grasslands at lower elevations and in dune slacks (Galio veri–Holoschoenetum vulgaris 

association). Therefore, since it is not possible to predict whether succession will proceed 

towards the open or the closed sand grassland association, three open and three closed 

pristine sand grasslands were sampled as baseline vegetation reference. 

We selected one 5 m × 20 m sample site in each old-field and reference grassland, 

avoiding the margins, and we recorded the list of vascular plant species in five 2 m × 2 m 

plots in each site. The plots were evenly distributed within the selected site by placing them 
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in the centre of five, 5 m × 4 m subsections. Overall, 20 plots were recorded in each old-field 

age group (i.e., young, middle-aged and late succession old-fields), summing up to a total of 

60 plots, while 30 plots were surveyed in reference grasslands: 15 in open and 15 in closed 

reference grasslands. The list of vascular plant species was recorded during two surveys in 

early May and in late June 2012. 

 

Plant traits 

For each species we collected data regarding both reproductive (pollination- and dispersal-

related) and vegetative (growth forms) traits (Appendix S1).  

The pollination strategy of angiosperms was derived from their floral morphology, by using 

the Kugler (1970) classification from the BiolFlor database (Kühn, Durka, & Klotz, 2004). In 

fact, angiosperms produce recognisably convergent floral morphologies which recur in 

flowers of different evolutionary origin that share similar pollinator guilds (Fantinato, Del 

Vecchio, Slaviero, Conti, Acosta, & Buffa, 2016; Thomson, & Wilson, 2008). We regrouped 

floral morphology types into five main categories occurring in our study area: inconspicuous 

(i.e., wind-pollinated), disk (including head inflorescences; Pellissier et al., 2010), funnel, 

tube, and bilabiate floral morphology. These floral morphologies represent discrete classes 

along the continuum between specialization and generalization. Specialised species are 

usually characterised by complex (either actinomorphic or zygomorphic) flowers with floral 

resources totally hidden at the bottom of a long corolla tube (e.g., i.e., tube and bilabiate 

flowers; Westerkamp, & Claßen-Bockhoff, 2007), while generalists usually present simple, 

actinomorphic flowers with easily accessible resources (disk and funnel flowers). Even 

though caution is necessary when pollination interactions of a single species are inferred from 

its floral morphology (e.g., Fantinato, Del Vecchio, Baltieri, Fabris, & Buffa, 2017), the 
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spectrum of floral morphologies at the community level may be indicative of prevailing 

trends (Fantinato, Giovanetti, Del Vecchio, & Buffa, 2016). 

Based on the classification of Müller-Schneider (1986) and Vittoz and Engler (2007), species 

were categorised into one of five general dispersal modes: anemochory, autochory, 

endozoochory, epizoochory and hemerochory. Anemochorous species usually present 

diaspores with pappus, wings, or are sufficiently small and light to be dispersed by wind. 

Autochorous species are those with diaspores that exhibit explosive dehiscence or that lack 

an evident dispersal mechanism (Cortés-Flores, Andresen, Cornejo-Tenorio, & Ibarra-

Manriquez, 2013). In endozoochorous and epizoochorous species the dispersion of diaspores 

is mediated by animals, through ingestion and subsequent dispersion (endozoochory) or 

through unintentional transportation (epizoochory). Lastly, in hemerochorous species, the 

vector of diaspore dispersion is represented by humans. In the case of species using more 

than one dispersal vector, we chose the prevailing strategy. 

Growth forms reveal the space occupation strategy of plant species (e.g., Cornelissen et al., 

2003; Liira, Zobel, Mägi, & Molenberghs, 2002; Mason, Pipenbaher, Škornik, & Kaligarič, 

2013), therefore they deeply influence plant community organisation and functioning (Del 

Vecchio, Slaviero, Fantinato, & Buffa, 2016). Following Cornelissen et al. (2003), plant 

species were assigned the following growth forms: creeping (reptant herbaceous species with 

a prostrate), dwarf shrubs (woody plants up to 0.8 m tall), erect leafy (plant essentially erect, 

leaves concentrated in middle and/or top parts), short basal (leaves <0.5 m long concentrated 

very close to the soil surface, e.g. rosette plants), and tussocks (many leaves from basal 

meristem forming prominent tufts), growth). 
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Data analysis 

For each plot, we calculated the percentage of plant species with different (i) pollination 

strategies (ii) dispersal modes, and (iii) growth forms. To test for significant differences in the 

proportions of pollination strategies, dispersal modes and growth forms between recovered 

old-fields and reference grasslands (i.e., young, middle-aged and late-successional fields vs. 

open and closed reference grasslands), we performed one-way PERMANOVA applying the 

Bray-Curtis similarity index with 9999 randomizations and Tukey Test (Anderson, & Ter 

Braak 2003). PERMANOVA and Tukey Test were performed with PAST software 

(Hammer, Harper, & Ryan, 2001). 

 

Results 

Overall, in the study area we identified 103 plant species, of which 48 were present only in 

the old fields, 17 only in the reference grasslands, while 38 were in common between old-

fields and reference grasslands. Only 14 were present in all old-fields and reference grassland 

types. Prevailing strategies arose from the assessment of reproductive and vegetative traits 

(Table 1). Especially, the majority of plant species were pollinated by animals (69 species). 

However, at the plot level inconspicuous flowers were the most represented, regardless of the 

old-field age or reference grassland type (Table 1). Beside pollen dispersal, wind was also the 

most frequent vector of seed dispersal, with 57 anemochorous species recorded. This was 

reflected at the plot level, with anemochorous species prevailing over other dispersal 

strategies in all the old-fields and reference grassland types (Table 1). Lastly, among growth 

forms, erect leafy was the prevalent one (71 species), as reflected also at the plot level (Table 

1). However, though prevailing strategies could be observed, differences in the spectra of 

reproductive and vegetative traits between old-fields and reference grasslands were revealed 

by PERMANOVA (Pseudo-F = 12.74; P = 0.0001). The Tukey test indicated that pollination 
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strategies differed significantly only between young fields and all the other categories (the 

other two old-field age groups and reference grasslands), with the proportion of species with 

inconspicuous flowers being significantly lower in the young fields (Figure 1). No significant 

differences were revealed between old-fields and reference grasslands in the proportion of 

plant species with disk and funnel flowers (i.e., generalist entomophilous species; Figure 1). 

On the other hand, plant species with tube and bilabiate flowers (specialist entomophilous 

species) were more represented in the young fields than in middle-aged and late-successional 

old-fields, and in reference grasslands (Figure 1). 

 

Significant differences were revealed between young and middle-aged old-fields and 

reference grasslands regarding dispersal modes. The proportion of autochorous species 

showed to have already reached the level of open reference grasslands in middle-aged fields; 

meanwhile, the proportion of autochorous species in the young fields was not different from 

that found in closed reference grasslands (Figure 1). The proportion of anemochorous species 

was significantly higher in late-successional old-fields and reference grasslands than in young 

and middle-aged old-fields (Figure 1). On the contrary, young fields showed a significantly 

higher proportion of epizoochorous species than middle-aged and late-successional old-fields 

and reference grasslands. No significant differences were revealed for the endozoochorous 

species (Figure 1). Lastly, the proportion of hemerocorous species was much higher in young 

and middle-aged old-fields than in late-successional old-fields and reference grasslands, 

while no differences could be observed between late-successional old-fields and reference 

grasslands (Figure 1). 
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On the contrary, regardless of age, old-fields significantly differed from reference 

grasslands in the proportions of all vegetative growth forms with the exception of creeping 

species (Figure 1). In particular, erect leafy species prevailed in old-fields (Figure 1), while 

the proportions of dwarf shrubs and tussock forming species were significantly lower (Figure 

1). Furthermore, the proportion of rosette forming species was higher in the young fields than 

in reference grasslands (Figure 1). 

 

Figure 1. Proportions of floral morphologies (left graphs), dispersal modes (central graphs) 

and growth forms (right graphs) in differently aged old-fields and reference grasslands 

(median and percentiles are shown; outliers are represented by asterisks). Proportions are 

based on species number. Different letters indicate significant differences according to Tukey 

test (P < 0.05).  

 

Discussion 

Our results revealed that during spontaneous succession the composition of reproductive 

(pollination- and dispersal-related) traits in recovered grasslands became similar to that of 

pristine grasslands earlier than growth forms did. 

Plant traits related to pollination and seed dispersal assumed proportions comparable to 

those of reference grasslands very early in the succession. With regards to pollination 

strategies, significant differences could be detected only between young fields and reference 

grasslands: The proportion of specialist entomophilous species (i.e., plant species with 

bilabiate and tube-shaped flowers) was significantly higher in the young fields than in 

reference grasslands, while the proportion of wind-pollinated species was significantly lower. 

According to Vamosi, Armbruster & Renner (2014), physiological constraints may act to 

allow for specialization along alternate facets of a species’ life history; namely, an increased 
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specialization for one guild of pollinators or in inhabiting one niche should come at the 

expense of specializing for another aspect of the plant life history. Our observations are in 

line with this hypothesis; in fact, we found that annual weed species, which are well-known 

habitat generalist species and typical of the young fields (Albert et al., 2014), were highly 

specialized for bees (e.g., Lamium amplexicaule, Vicia villosa) or butterflies (e.g., Silene 

latifolia). After the cessation of former agricultural practices, spontaneous succession 

typically leads to the establishment of competitive perennial species (Osbornová, Kovárová, 

Lepš, & Prach, 1990), which ultimately hinders the establishment and persistence of annual 

weed species through competition for light and belowground resources. Given these 

conditions, which see a relatively low number of perennials become dominant in the 

community, wind-pollination becomes the most efficient strategy. In fact, wind-pollination is 

an efficient and straightforward way of moving pollen between plants in open habitats, where 

large stands of a particular species are present (Willmer, 2011).  

Similarly to pollination strategies, dispersal modes also seemed to be influenced by past 

agricultural practices; we observed that hemerochorous species prevailed in young and 

middle-aged old-fields. Humans can either intentionally or unintentionally disperse seeds 

from a wide range of plants over long distances, especially in croplands and urbanised areas 

(Poschlod, Bakker, & Kahmen, 2005). Therefore, after the interruption of agricultural 

practices, these species might face huge decline, resulting in a lower proportion of 

hemerochorous species in late-successional old-fields as well as in reference grasslands. On 

the other hand, anemochory and autochory showed opposite trends. As time passes, 

decreasing nutrients levels in old-fields and increasing community stability might favour the 

establishment of plant species which adopt a more conservative dispersal strategy (i.e., 

autochorous and anemochorous species; Jentsch & Beyschlag, 2003; Prach, 1990). While 

epizoochory, which is widely recognized as an effective long-distance seed dispersal 
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mechanism (Courveur, Vanderberghe, Verheien & Hermy, 2004), is more advantageous 

under the disturbed and unstable conditions typical of the young fields.  

Interestingly, in contrast with pollination- and dispersal-related trait spectra, old-field 

proportions of plant species growth forms (i.e., erect leafy, tussock and dwarf shrub growth 

forms) were still significantly different from reference grasslands even after 20–40 years 

since ploughing has stopped. It has been well documented that in abandoned croplands where 

perennial species can grow, larger plants become dominant over time by producing a dense 

litter layer and shading canopies, thus triggering competitive interactions for space and 

belowground resources (Aarssen, Schamp, & Pither, 2006; Grime, 2001). Moreover, during 

secondary succession, the progressive reduction of belowground resources will ultimately 

lead to more stress-tolerant species becoming dominant, these are generally characterised by 

tussock and dwarf shrub growth forms (e.g., Bakker, & van Diggelen, 2006; Hurst, & John, 

1999). In our case, regardless of old-field age, erect leafy species were still overrepresented, 

while tussocks and dwarf-shrubs were underrepresented, suggesting that competitive 

interactions in old-fields have not yet effectively influenced the community assembly 

structure by means of growth form selection (Pérez-Harguindeguy et al., 2013). Short basal 

plants, which have been proven to be especially sensitive to interspecific competition due to 

their prostrate growth form (Keddy, Nielsen, Weiher, & Lawson, 2002; Reader, & Best, 

1989; Wilson, & Keddy, 1986), showed a proportion comparable to that of reference 

grasslands already in the middle-aged old-fields. Our results confirm the findings of Purschke 

et al. (2013), suggesting that competitive exclusion plays a relatively important role in 

species assemblage dynamics during the late phases of succession; instead, local 

environmental conditions are more influential during early stages, with nitrophilous species 

(e.g., erect leafy like Ambrosia artemisiifolia, Anthemis ruthenica, Secale sylvestre) being 
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favoured over stress-tolerant species (e.g., tussock forming grasses and dwarf-shrubs like F. 

vaginata and Salix rosmarinifolia) by the conspicuous amount of residual soil nutrients.  

In a broader perspective, the presence of a particular plant species in a local community 

can be interpreted as the result of a series of filters operating a selection based on species 

traits from a regional pool into a local community, reflecting their differential ecological 

characteristics (Keddy, 1992). According to the assembly rules hypothesis (Götzenberger et 

al., 2012; Wilson, 1999; Wilson, & Gitay, 1995), the arrival of a species into a local 

community is strongly constrained by its seed production and spatial dispersal; meanwhile 

the establishment of a species is affected by local environmental conditions and by complex 

vegetative interactions with co-occurring species (Armbruster, 1995). We can assume from 

the results that reproductive (pollination- and dispersal-related) community traits recover 

more rapidly than vegetative ones (growth forms), since these attributes first determine plant 

species sorting at the regional level towards their respective habitats. The recovery of the 

vegetative trait spectrum needs more time as interactions based on vegetative growth and 

vegetative spread operate on a smaller spatial scale, in addition to being highly affected by 

local abiotic conditions and by interspecific competition for space and belowground 

resources. In summary, the recovery of the ecological processes which characterise pristine 

grassland communities might require different amounts of time during spontaneous grassland 

succession, depending on the spatial scale at which a particular process operates and on the 

impact of past cropland management practices on the local environmental conditions.  

Certainly, our findings deserve further investigation, but they might contribute with 

original new insights on the understanding of spontaneous succession in sandy old-fields. In 

this context, the most important take home message of the current study is that the analysis of 

trait spectra at the community level may provide a valuable tool for the assessment of 

restoration success in sandy old-fields. Overall, ‘soft’ traits, besides being less difficult and 
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expensive to obtain than ‘hard’ traits, proved effective in detecting different stages of 

assembly processes after cropland abandonment. However, our approach also highlighted that 

vegetative traits are informative on the successful restoration at different timescales. As the 

reproductive trait spectrum (pollination- and dispersal-related) recover more quickly than the 

vegetative trait (growth form) spectrum, vegetative traits might be more effective in the 

assessment of restoration success than the reproductive ones. 
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Supporting information 

 

Additional Supporting Information may be found in the online version of this article: 

 

Appendix S1. Recorded plant species list. For each species the frequency of occurrence in 

each old-field and reference grassland type, as well as reproductive and vegetative traits (i.e., 

pollination strategy, dispersal mode, and growth form) are reported. 
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Table 1. Mean number of species per trait calculated for each old-field and grassland type (mean ± SD). 

 

 

 
Young fields 

Medium 

aged fields 

Late-

successional 

fields 

Open 

reference 

grasslands 

Closed 

reference 

grasslands 

Species richness 
 

16.00 ± 2.44 15.70 ± 4.04 15.00 ± 3.16 10.46 ± 2.29 12.80 ± 3.12 

Floral morphology Inconspicuous flowers 5.10 ± 3.17 7.95 ± 1.84 7.15 ± 1.63 5.38 ± 2.15 6.77 ± 1.73 

Disk flwers 4.35 ± 1.87 5.70 ± 2.86 4.95 ± 1.73 4.23 ± 1.79 4.00 ± 1.46 

Funnel flowers 0.95 ± 0.60 0.35 ± 0.48 0.70 ± 0.86 0.57 ± 0.58 0.35 ± 0.46 

Tube flowers 2.70 ± 0.92 1.35 ± 1.08 1.45 ± 0.99 0.87 ± 0.60 0.42 ± 0.67 

Bilabiate flowers 2.95 ± 1.35 0.35 ± 0.58 0.75 ± 1.33 0.25 ± 0.46 0.88 ± 0.90 

Dispersal mode Anemochorous 8.75 ± 1.83 9.25 ± 3.35 9.90 ± 2.17 7.95 ± 2.25 8.96 ± 2.98 

Autochorous 0.90 ± 0.64 1.00 ± 0.45 1.00 ± 0.32 0.91 ± 0.26 0.80 ± 0.50 

Endozoochorous 1.15 ± 1.08 1.75 ± 0.71 1.70 ± 0.94 0.93 ± 0.80 1.28 ± 0.80 

Epizoochorous 2.60 ± 1.84 0.45 ± 0.75 0.60 ± 0.94 0.42 ± 0.67 0.40 ± 0.66 

Hemerochorous 2.35 ± 1.26 2.25 ± 0.85 1.15 ± 0.74 0.84 ± 0.67 0.47 ± 0.49 

Growth form Creeping 0.60 ± 0.94 0.80 ± 1.10 1.10 ± 0.78 0.54 ± 0.60 0.85 ± 0.79 

Darf shrubs 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.22 0.51 ± 0.50 0.70 ± 0.63 

Erect leafy 10.85 ± 1.81 10.65 ± 2.92 9.75 ± 2.84 6.02 ± 2.20 5.06 ± 1.29 

Short basal 1.65 ± 1.03 0.75 ± 0.71 0.70 ± 0.57 0.66 ± 0.45 0.60 ± 0.57 

Tussocks 2.90 ± 1.29 3.50 ± 1.27 3.40 ± 1.14 3.52 ± 1.12 4.43 ± 1.49 
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