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Abstract 
 
Species dispersal, establishment and assembly are crucial stages of the life history of plants, 
and clear understanding of the governing forces and rules that shape species composition in a 
particular community is vital for successful ecological restoration. In our paper we focus on 
five aspects of seed dispersal and plant establishment, which should be considered during 
habitat restoration actions. In the first two sections we discuss the success of spontaneous 
dispersal and establishment on restoration based either on spatial dispersal or local seed 
banks. In the third section we assess the possibilities of species introduction and assisted 
dispersal. In the fourth section we introduce some possibilities for the improvement of 
establishment success of spontaneously dispersed or introduced species. Finally, we highlight 
issues influencing long-term persistence and sustainability of restored habitats, related to the 
alteration of management type and intensity, climate change and spread of non-native 
species. With the present paper we introduce the special issue entitled ‘Seed dispersal and 
soils seed banks – Promising sources for ecological restoration’ containing 15 papers by 62 
authors from ten countries arranged into the abovementioned five topics. 
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Implications for practice 

 

• The potential of spatial and temporal seed dispersal needs to be evaluated before site 

selection and restoration planning. 

• Knowledge on seed bank, seed rain and landscape-scale dispersal helps to identify the 

most proper, well-timed and cost-effective restoration measures. 

• Creation of small-scale environmental heterogeneity and favorable conditions for species 

establishment is crucial for maximizing restoration success. 

• Suppression of unwanted species via prevention of immigration and depletion of their 

seed banks is crucial. 

• It is vital to plan restoration at the landscape-scale for ensuring the exchange of seeds and 

pollen between habitats, to apply the most suitable post-restoration management, and to 

ensure that established communities are resilient to climate change. 
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Introduction 

 

Species dispersal and establishment are crucial stages in the life history of plant species, and 

clear understanding of governing forces and rules that shape species composition and 

assembly in a particular community is fundamental for a successful ecological restoration. 

Species dispersal and establishment success are influenced by a set of factors, including the 

composition of species pool, habitat conditions determining environmental filtering and 

ecosystem dynamics (Kraft & Ackerley 2014). The species pool represents a set of possibly 

colonizing species that are ‘filtered’ to the final community by regional processes (e.g. 

dispersal), environmental and biotic factors (=filters) and interactions or internal dynamics 

(White & Jentsch 2004). These filters must be considered as dynamic because communities 

are dynamic themselves. Additionally, different filters depend on each other via feedback 

loops (Belyea 2004; Fattorini & Halle 2004). When determining the processes that filter 

species to communities, one can apply either top down (from species pool to community) or 

bottom up (from community to species pool) approach (Temperton & Hobbs 2004). Some 

authors proposed to divide the total species pool in two: the external species pool including 

species occurring in the landscape, and the internal species pool with species already present 

on site, e.g. in the seed bank, bud bank, egg bank or still alive after the disturbance (Fattorini 

& Halle 2004). This second pool is part of what White & Jentsch (2004) called disturbance 

legacy. 

 

A simplified scheme of the interaction of species pools, filters and restoration measures is 

introduced in Figure 1. Only a fraction of the total species pool is able to reach a particular 

site (i.e. available species), and species arrival is governed by spontaneous dispersal 

processes (Prach & Pyšek 2001). Spontaneous species dispersal has a spatial component, 
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which means that dispersal in space is facilitated by abiotic and biotic vectors. While the 

spontaneous spatial dispersal has attracted quite high attention in the literature, the temporal 

component of dispersal, e.g. the formation of persistent seed and bud banks, but also temporal 

dynamics of spatial dispersal, have gained so far much less attention (but see Pausas et al. 

2018). The available species pool (i.e. species able to arrive at a particular site) is generally 

further filtered by abiotic conditions of the respective habitat (i.e. abiotic filtering) and later 

by the respective species assembly at the site (i.e. biotic filtering). While abiotic conditions 

filter species from the species pool which are able to establish in a respective habitat, biotic 

filtering sorts out those species that are not able to assemble in a respective community. Due 

to successional changes, however, the species composition of an established community is 

not constant over time (Hobbs et al. 2007). Fluctuations and internal community dynamics 

strongly influence the actual species composition in a site (Fig. 1). 

 

Applied to restoration, this scheme makes it possible to draw some generalities from various 

projects and provide guidelines (Temperton & Hobbs 2004). It implies that for each 

restoration project, one must consider i) the regional processes determining the composition 

of species pool and species dispersal, ii) the actual and predicted environmental conditions 

and habitat characteristics favoring the target community species and iii) biotic interactions 

(Menninger & Palmer 2006). In this context it is crucial to know that different filters can be 

important at different restoration stages (Hobbs & Norton 2004). Identifying the key filters 

allows the determination of the steps needed to be taken during the restoration process 

(Hobbs & Norton 2004) and to decide if active restoration measures are needed or if passive 

restoration by unassisted succession may be sufficient to reach restoration goals (Prach et al. 

2007). In the last few decades there has been an increasing demand to link ecological theory 

with the practice of restoration, and it was argued that the implication of theories in 
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restoration increase its applicability and success (Prach & Hobbs 2008; Török & Helm 2017). 

With the current special feature and editorial focus on five topics of restoration clearly linked 

to the above introduced filtering scheme (Fig. 1). The ultimate goal of habitat restoration is to 

reach a species composition and community functioning similar to a predefined idealized 

target community (van Andel & Aronson 2012; Helm et al. 2015). 

 

This means that during active restoration we aim at modifying the species composition of a 

particular site by directing compositional changes or development of a species assembly 

towards a desirable targeted direction (Kiehl et al. 2010; Tischew et al. 2014). For a cost-

effective planning and implementation of target species transfer, as well as for ensuring long-

term viability of the restored community, it is vital to know in which magnitude a restoration 

action can be based on spontaneous spatial dispersal and local seed banks. Thus, spontaneous 

succession or assisted regeneration are increasingly promoted (Prach & Hobbs 2008). 

Spontaneous succession is either based on local propagule banks or on spatial dispersal of 

target species. These topics are introduced in the following sections 1 and 2. In section 3, we 

focus on species introduction, with which it is possible to overcome dispersal limitation. This 

is generally done by sowing of seed mixtures or plant material transfer (Kiehl et al. 2010; 

Török et al. 2011). For an effective establishment of species from the habitat-specific species 

pool (Helm et al. 2015) it is often necessary to modify abiotic and biotic habitat conditions in 

degraded landscapes (section 4). Finally, the long-term persistence of restored communities is 

strongly linked to the long-term modification and direction of internal community dynamics. 

Long-term sustainability can be strongly influenced by climate change or by the spread of 

invasive non-native species and the suitability of management measures for reaching 

restoration targets (section 5). 
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This special issue entitled ‘Seed dispersal and soils seed banks – Promising sources for 

ecological restoration’ contains 15 papers by 62 authors from ten countries arranged into the 

above mentioned five topics. The special issue was initiated during the SER Europe 

Conference 2016 on ‘Best practice in Restoration’ (Freising, Germany, 22-26 August, 2016). 

The contributing author teams were mostly invited from the special session ‘Soil seed banks 

and seed dispersal – Promising sources for restoration’ organized by the guest editors. The 

special issue is developed with the collaboration and support of the European chapter of the 

Society for Ecological Restoration (Box 1). 

 

(1) Success of spontaneous dispersal and colonization 

Species spontaneous colonizations and extinctions are fundamental components of 

community dynamics. In ecological restoration, spontaneous dispersal of propagules is a 

highly relevant process that has to be carefully incorporated in restoration planning (Török & 

Helm 2017). Patterns of unassisted dispersal of target and non-target species and the potential 

of target communities to benefit from seed rain determine which restoration measures are 

needed and how restoration has to be carried out. When target species are expected to arrive 

fast, restoration can largely focus on re-creating necessary physical conditions and on 

ensuring the establishment success (Prach & Pyšek 2001; Valkó et al. 2017; Aradottir & 

Halldorsson 2018, this issue). When spontaneous colonization of target species is unlikely to 

occur, or can result in arrival of unwanted species, species introductions and assisted 

dispersal are needed (see section 3 and Kiehl et al. 2010). 

  

However, the scientific knowledge about the positive and negative effects of spontaneous 

dispersal is far from complete (Arruda et al. 2018, this issue). Recovery of vegetation via 

spontaneous dispersal is a complicated process and depends on multitude of factors such as 
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composition of the species pool, landscape structure and connectivity, land-use history, 

dispersal ability of species, availability and behavior of dispersal vectors as well as on aspects 

related to seed production and predation (Marteinsdóttir 2014; Prach et al. 2015; 

Johanidesová et al. 2015; Solbreck & Knape 2017; Arruda et al. 2018, this issue; Schwab et 

al. 2018, this issue). The capacity to incorporate all the aspects in practical restoration is 

hindered both by the lack of standardization in approaches and methods, as well as by the 

lack of basic knowledge of the processes. Based on a systematic review of grassland 

literature, Arruda et al. (2018, this issue) point out that there are significant knowledge gaps 

in seed rain research depending on grassland types and concerning the role of native animals 

as seed dispersers, pre-dispersal and post-dispersal seed predation and the effect of seed rain 

on arrival of non-native species. Aavik & Helm (2018, this issue) additionally emphasize that 

not only dispersal of seeds needs to be considered, but the drivers of gene flow in general: 

successful restoration also needs to result in the recovery of genetic diversity, which is 

dependent both on seed and pollen flow in the landscape, as well as on population size. Thus, 

in order to ensure that restored ecosystems will harbor viable, genetically diverse populations 

and diverse communities, restoration planning should specifically aim for the recovery of 

landscape-scale spontaneous dispersal of target species (Török & Helm 2017; Aavik & Helm 

2018, this issue). Aavik & Helm (2018, this issue) list a number of genetic and ecological 

tools that allow assess landscape-scale dispersal for selecting appropriate restoration methods 

and monitor restoration success. They also propose recommendations for restoration planners 

and practitioners to consider while aiming to restore self-sustainable ecosystems with high 

species- and gene-level biodiversity.  

 

The knowledge of factors influencing spontaneous dispersal in watercourses is even scarcer 

than in terrestrial habitats (Bourgeois et al. 2016). Schwab et al. (2018, this issue) studied the 
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effects of the surrounding vegetation and the local species pool on seed dispersal from the 

Danube to a newly connected watercourse in the Danube floodplain and between different 

habitat types within the restored floodplain. They found that connecting restoration sites with 

upstream donor habitats enhanced restoration success but also pointed out that upstream seed 

sources of potentially invasive non-target species have to be reduced. 

 

Integral component of spontaneous colonization is the establishment success following seed 

dispersal (section 4). Aradóttir & Halldorsson (2018, this issue) showed in severely degraded 

and erosion-prone landscapes in Iceland that colonization of woody species has been both 

seed and microsite limited; thus, both aspects need to be addressed for successful restoration. 

In their study, creation of colonization and establishment nuclei via planting “woodland 

islets” served as a tool to overcome both seed and microsite limitation. 

 

In general, knowledge-based approaches to re-connect habitats and to improve conditions for 

target seed dispersal will promote enhance success (see also other studies of this issue). Each 

restoration project, however, has its specific conditions and often large efforts are necessary 

prior restoration for incorporating spontaneous dispersal effects and maximizing restoration 

success, as well as after restoration for monitoring ecological consequences of implemented 

measures (Watson et al. 2017; Arruda et al. 2018, this issue). 

 

(2) Effectiveness and role of seed bank in restoration 

 

The quality and quantity of the soil seed bank of restoration sites is one of the most important 

prerequisites which determines the required actions and the rate and type of species 

introductions. In their meta-analysis, Bossuyt & Honnay (2008) found that in most grassland 
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and forest communities, target species with persistent seed bank are too scarce to effectively 

support spontaneous recovery. This is especially true, because most of the rare species, and 

also several characteristic matrix species generally lack persistent seed banks in these 

communities (Kiss et al. 2016; Klaus et al. 2018, this issue; Godefroid et al. 2018, this issue; 

Török et al. 2018, this issue). In wetlands, heathlands and habitats with frequent and 

unpredictable disturbances, regeneration from the seed bank is more important and thus 

persistent seed banks can support the spontaneous recovery of these habitats better than in 

grasslands or forests (Bossuyt & Honnay 2008, Kiss et al. 2018, this issue). In general, the 

role of seed bank in recovery decreases with increasing community stability. Thus, in stable 

communities, due to the lack of disturbances creating gaps for germination and establishment 

most species do not have persistent seed banks (Bossuyt & Honnay 2008; Schwab & Kiehl 

2017). But also in ancient grassland habitats regularly disturbed by fire, such as old-growth 

campo rupestre grasslands, seed bank was found to be insufficient for community recovery 

after severe anthropogenic disturbance (Le Stradic et al. 2018, this issue). Obviously the bud 

bank is more important in regularly burnt old-growth grasslands than the seed bank (Fidelis et 

al. 2014; Pausas et al. 2018) and resprouting seems to be the major way of plant regeneration 

(see also Kiss et al. 2018, this issue). 

 

In general, sites with a shorter history of degradation can be restored with higher success 

based on the local seed bank (Bekker et al. 1997). This finding should be considered in 

restoration prioritization: if resources for restoration are limited, site managers should select 

less severely degraded sites for spontaneous recovery or assisted restoration. Given the low 

contribution of soil seed banks to vegetation recovery, enabling the spatial component of seed 

dispersal is crucial in restoration projects (see Török et al. 2018, this issue). Landscape-scale 

extent and spatial configuration of reference grasslands should be evaluated and sites where 
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spatial dispersal of target species is more promising and where unwanted invasive species are 

absent should be prioritized for spontaneous recovery. 

 

In general, the soil seed bank of degraded sites mainly consists of undesired species (Török et 

al. 2012; Hess et al. 2018, this issue; Klaus et al. 2018, this issue; Török et al. 2018, this 

issue). Thus, information about the composition of the seed bank can inform site managers 

about the most important future threats, such as the encroachment of weeds and invasive 

species. With this knowledge, they can also plan the necessary restoration actions. If the seed 

bank contains mainly undesired species, it is important not to allow its activation, i.e. drastic 

site preparation by soil disturbance without additional introduction of target species should be 

avoided (see Valkó et al. 2016; Klaus et al. 2018, this issue). If the seed bank is largely 

infested by invasive species, only its complete removal can prevent future invasion. Hess et 

al. (2018, this issue) provided a novel approach for eradicating the seed bank of undesired 

species by microwave heating of soils. Even though the method is currently being fine-tuned 

for larger-scale field application, it seems to be a promising and innovative approach to fight 

against invasive species without pesticide application. 

 

Finally, knowledge on soil seed banks also supports the monitoring of restoration success and 

helps us estimate the resilience of the restored communities. Török et al. (2018, this issue) 

evaluated the success of spontaneous recovery of sandy old-fields in a chronosequence study 

and showed that the development of seed banks is also a proper indicator of restoration 

success. Seed bank informs us about community resilience, which is especially important 

faced with changing climate as shown by Kiss et al. (2018, this issue). This study highlighted 

that in stable habitats, characterized by predictable and less severe disturbance, such as non-

fire-prone temperate grasslands, climate-induced changes in disturbance regimes cannot be 
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buffered by soil seed bank in the future. They showed that climate-driven changes in 

disturbance regimes can lead to directional and irreversible changes in species composition 

and density of soil seed bank, especially in currently stable ecosystems. 

 

(3) Species introduction and assisted dispersal 

  

As mentioned above, the restoration of grassland ecosystems is often limited by seed 

availability because of depleted seed banks and limited dispersal of diaspores due to a lack of 

dispersal vectors, especially for long-distance dispersal (Walker et al. 2004; Buisson et al. 

2006a; Klaus et al. 2018, this issue; Török et al. 2018, this issue). Also in other plant 

communities of ancient cultural landscapes, e.g. in arable ecosystems, populations of rare and 

threatened target species are often fragmented due to changed land-use techniques (e.g. 

herbicide application, changed crop rotation, seed cleaning of crops in arable ecosystems). 

Nowadays, most rare and threatened arable weed species are not able to disperse over longer 

distances (Mayer & Albrecht 2008, Lang et al. 2018, this issue). 

 

Therefore, active species introduction is necessary, when target species are absent on 

restoration sites in fragmented landscapes and are not able to reach them by natural dispersal 

(Kiehl 2010, Tischew et al. 2014). Suitable restoration measures include e.g. the transfer of 

freshly harvested seed-containing hay or raked material, seeding of site-specific seed 

mixtures (Hedberg & Kotowski 2010; Kiehl et al. 2010; Kiehl et al. 2014). The transfer of 

diaspore-rich topsoil can also be used to introduce target species (Scotton et al. 2012; 

Jaunatre et al. 2014), but it strongly damages the donor site and should mainly be used, when 

donor sites are destroyed anyway e.g. by construction works. Although many studies have 

shown a successful restoration of ecosystems by species transfer, information about practical 
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details of species introduction techniques and about mechanisms of target species 

establishment is still missing for different types of plant communities. 

 

Buisson et al. (2018, this issue) evaluated the effects of the transfer ratio and the timing of 

topsoil-transfer on the establishment of typical dry grassland species in Mediterranean 

grasslands. Although the seed bank contained more species in summer than in spring in their 

study, topsoil transfer in spring was more successful for the establishment of target species 

concerning both species richness and species composition compared to topsoil translocation 

in autumn. The different transfer ratios of 1:1 and 1:3 (donor:receptor site) had no significant 

effect on vegetation development, which indicates that a ratio of 1:3 was sufficient for dry 

grassland restoration in Southern France. Long-term establishment of target communities 

was, however, mainly affected by the underlying seed bank at the receptor site, which 

contained competitive non-target species hampering restoration success (see also Jaunatre et 

al. 2014). 

 

Lang et al. (2018, this issue) introduced arable weed species, which had become rare due to 

herbicide application in conventional farming, to organic farms where the probability of 

population persistence is higher under suitable management. They showed that it was 

possible to establish new populations by seeding, but only two out of three species 

(Consolida regalis, Legousia speculum-veneris) were able to build up a persistent soil seed 

bank at the restoration sites. In contrast, the available seed bank of Lithospermum arvense 

was rapidly depleted in unfavorable years (e.g. by mice feeding). Cultivation techniques led 

to a short distance dispersal of seeds over 16 m within fields in three years indicating that 

species may disperse further in the future especially when sown strips of target species are set 

up rectangular to the direction of cultivation is carried out, instead along the field margins. 
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Wagner et al. (2018, this issue) investigated not only the establishment of introduced target 

species but also the seed bank dynamics in soils of grasslands restored by sowing of low and 

high-diversity seed mixtures. Sowing of species-rich grass-forb mixtures was reflected in a 

faster build-up of sown forbs in the seed bank and a faster decline of non-target forbs in 

comparison to species-poor mixtures containing only grasses. Interestingly, seed bank 

composition and dynamics were more affected by the composition of the seed mixtures than 

by cultivation techniques prior to sowing (deep vs. shallow cultivation). 

 

(4) Improvement of establishment success 

  

Following their arrival in a given community, species need to germinate, survive, grow and 

reproduce. Only species with the physiological capacities to establish in particular 

environmental conditions can do so. One main restoration action is therefore to manipulate 

and re-establish adequate abiotic conditions before introducing species or leaving 

spontaneous succession to work (Fig. 1). This may include manipulation of soil texture and 

nutrient concentrations (Hobbs & Norton 2004; Heneghan et al. 2008; Melnik et al. 2018, this 

issue). In general, species diversity increases with habitat heterogeneity, which provides more 

niches for different species. Thus, ecological restoration often aims at creating structurally 

complex habitats and safe sites (del Moral et al. 2007; Aradóttir & Halldorsson 2018, this 

issue) by modifying the abiotic and the biotic components of ecosystems: microtopography, 

substrate heterogeneity, biocrust and ecosystem engineers, such as ant mounds, thin moss, 

tussock grasses and dwarf-shrubs can play a major role in creating this heterogeneity 

(Whisenant 2002; Larkin et al. 2006; Menninger & Palmer 2006; Aradóttir & Halldorsson 

2018, this issue). Indeed, Melnik et al. (2018, this issue) found that variability in micro-
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topography and substrate can support the expression of a wide range of species from the seed 

bank. They showed that site managers can make use of this method even at the operational 

scale. Aradóttir & Halldorsson (2018, this issue) showed that, in severely degraded and 

erosion-prone landscapes in Iceland, colonization of woody species is microsite limited, and 

the creation of establishment nuclei via planting “woodland islets” is useful. 

 

Species also interact with each other: these interactions can be negative (competition) or 

positive (facilitation), and both of them can considerably influence restoration success (Fig. 

1). Plant species compete for limited resources, such as water, nutrients, light, whereas 

animal species compete for prey and space. Plant and animal communities also interact. 

While everyone agrees that primary producers have the primacy in controlling the structuring 

of communities, predator-prey interactions also play an important role. Dense stands of exotic 

or ruderal species can reduce or enable native target species to establish (Buisson et al. 

2006b; D’Antonio & Chambers 2006; Buisson et al. 2008; Buisson et al. 2018, this issue). 

Grazing is widely studied to restore open landscapes (e.g. Fisher et al. 1996; Opperman & 

Merenlender 2000; Yates et al. 2000; Kiehl & Pfadenhauer 2007) as it can limit competition, 

favor some species and introduce new species. Eichberg & Donath (2018, this issue) studied 

the effects of simulated trampling by artificial sheep hooves on germination and seedling 

recruitment of plant species from dry sandy grasslands and of ruderals in a laboratory 

experiment. They showed that trampling pressed seeds into the upper soil layers and strongly 

promoted seedling emergence due to positive effects on microclimate. Not only target species 

but also ruderal species profited from trampling which means that in practical conservation 

and restoration of sandy grasslands appropriate grazing management is necessary to reduce 

the abundance of non-target species and to promote target species (see also Stroh et al. 2002). 
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In the past 20 years, positive interactions between plants have been studied in detail (e.g. 

Callaway & Walker 1997; Brooker et al. 2008) and have been applied to restoration (e.g. 

Gómez-Aparicio et al. 2004; Padilla & Pugnaire 2006; Aradottír & Halldorsson 2018, this 

issue). At the same time, there has been a growing interest in the linkage between below-

ground and above-ground biota because it influences community and ecosystem processes 

and properties (Wardle et al. 2004). To conclude, both negative and positive interactions must 

be taken into account in ecological restoration in order to improve restoration efforts 

(Menninger & Palmer 2006; Halpern et al. 2007; Wagner et al. 2018, this issue). 

 

(5) Long-term persistence, sustainability and management 

 

Natural fluctuations and internal community dynamics strongly influence species 

establishment and assembly in natural ecosystems (Fig. 1). Both processes are strongly linked 

to the degradation of the species composition and functioning of ecosystems directly driven 

by altered intensity of management and climate change as well as by the spread of invasive 

species (Nelson et al. 2006).  

  

Changes in management intensity i.e. intensification or cessation of former use can shift the 

species composition and ecosystem functioning in an undesired direction causing species 

loss. Management intensity changes were identified as the most crucial drivers of species loss 

in grasslands and other open habitat types over the Palaearctic (Török & Dengler 2018, 

Carboni et al. 2015, Valkó et al. 2018). In most cases decreased management intensity will 

cause an increase in abundance and number of potentially dominant competitors of the 

subjected grassland community. During restoration planning, post-restoration management 

should be carefully selected because cessation or improper management can strongly threaten 
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restoration success (Kelemen et al. 2014; Eichberg & Donath 2018, this issue). Successful 

management of restored sites creates favorable light conditions, ensures the presence of gaps 

needed for the regeneration of target species and provides control of potentially dominant 

native and non-native non-target species (Tischew et al. 2014).  

 

Climate change has become an emerging threat both to original and restored ecosytems 

(Harris et al. 2006), and together with the alteration of spatial and temporal patterns in 

precipitation and temperature, it also increases the chance of weather extremities. Climate 

change can induce community shifts i.e. by changing global and regional patterns of species 

distributions (Thuiller et al. 2005), by affecting population sizes and the timing of 

reproduction (Nelson et al. 2006) and by the facilitation of the spread of pests and biological 

invasions (Walther et al. 2009). The magnitude in which climate change affects ecosystems is 

highly variable in respect to the habitat type, and is often masked by other drivers including 

land-use and management changes. Impacts of global changes can be mitigated by ecological 

restoration via creation of resilient communities of native plant species with as high 

evolutionary potential as possible, as well as via fostering the landscape-scale movement of 

seeds and pollen in order to build up high habitat-specific species and gene-level diversity 

(Aavik & Helm 2018, this issue). 
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Fig.1: A conceptual framework linking the ecological processes filtering the species pool and 

ways how active habitat restoration can modify community assembly. 
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SER Europe is an official chapter of SER 
International and an international non-profit 
organization for ecological restoration. The 
mission of SER Europe is to promote 
ecological restoration essential for 
sustainable recovery of the natural 
biodiversity in Europe and to facilitate the re-

establishment of an ecologically healthy relationship between nature and human culture. SER 
Europe commits to (i) facilitate discussion between researchers, practitioners and 
stakeholders by organizing conferences, workshops and training courses; (ii) support 
practitioners and stakeholders with evidence-based knowledge reaching a cost-effective 
restoration; (iii) encourage the development of research and policy networks over the 
continent and beyond. (iv) contribute the sustainment and scientific mission of the journal 
Restoration Ecology; (v) provide scientific background and support for restoration activities; 
and (vi) provide decision support and contribute to public policy discussions in the field of 
environmental restoration. 
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