ON INFINITE MULTIPLICATIVE SIDON SETS
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Abstract

We prove that if A is an infinite multiplicative Sidon set, then lim inf 7"4(");/7[(") <
n— oo n
(log n)Z§

oo and construct an infinite multiplicative Sidon set satisfying lim inf w >
n—oo 7.

(log n)3

0.
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1. Introduction

Throughout the paper we are going to use the notions [n] = {1,2,...,n} and
An)=AN|n] forneZt, ACZ".

A set A of positive integers is called a multiplicative Sidon set, if for every s
the equation zy = s has at most one solution (up to ordering) with z,y € A. Let
G(n) denote the maximal possible size of a multiplicative Sidon set contained in [n].
In [3] Erdds showed that 7(n) + c1n3/%/(logn)?/? < G(n) < w(n) + cen®/* (with
some c1,cg > 0). 31 years later Erdds [4] himself improved this upper bound to
m(n) 4 can®/*/(logn)3/2. Hence, in the lower and upper bounds of G(n) not only
the main terms are the same, but the error terms only differ in a constant factor.

A generalization of multiplicative Sidon sets is multiplicative k-Sidon sets where
we require that the equation ajas...ar = b1bs...bx does not have a solution with
distinct elements taken from the given set. In [7] the maximal possible size of
a (multiplicative) k-Sidon subset of [n] was determined asymptotically precisely,
furthermore, lower- and upper bounds were given on the error term.

A closely related problem of Erd@s-Sarkozy-T. Sés and Gyéri is the following:
They examined how many elements of the set [n] can be chosen in such a way that
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none of the 2k-element products is a perfect square. Note that if a set satisfies this
property, then it is a multiplicative k-Sidon set, since if the equation ajas...ar =
b1bs ... bx has a solution of distinct elements, then the product of these 2k numbers
is a perfect square. For more details, see [5], [6], [7].

Another related question of Erdés asks for the maximal size of a set of integers
not containing k + 1 different numbers such that ag | ajaz...ag. This question is
connected to the minimal possible size of a multiplicative basis of order k. For more
details, see [1], [2], [8].

In this paper the maximal possible asymptotic density of a multiplicative Sidon
set is investigated. According to the result of Erdés, if A C ZT is a multiplicative
Sidon set, then for every n we have A(n) < m(n) + can’/*/(logn)?/? and the set of
primes is, of course, a multiplicative Sidon set for which |A(n)| = w(n) for every n.

It is not difficult to construct a multiplicative Sidon set for which

o sup A = ()

— >0,
e’ 1374 (log m)?/?

that is, for infinitely many values of n the set A(n) can be “large”. In this paper
our aim is to study how large |A(n)| — w(n) can be for all (sufficiently large) values

of n. That is, how “large” a function f(n) can be, if lim inf W > 0. We are
n—oo

going to show in the following theorems that the “largest” (up to a constant factor)
f(n) for which this holds is f(n) = ~2m

= Togn)?"
More precisely, the following theorems are going to be proven:

Theorem 1. Let A be an infinite multiplicative Sidon set. If

[A(n)| — 7(n)
n3/4
(logn)3

lim sup > 73643,

n—00

then we have
|A(n)| — 7 (n)
(log’%)48

lim inf < 0.

n—o0

Theorem 1 immediately implies the following corollary:

Corollary 2. Let A be an infinite multiplicative Sidon set. Then we have

lim inf Wi/:ﬁ(n) < 73643.
n—00 n
(logn)3

Note that Theorem 1 is logically stronger than this corollary, under the assump-
tion on the limsup we obtain that there must be indeed a negative deviation of
order of magnitude gz"~rs compared to the prime counting function m(n). Veri-
fying only the corollary would not simplify our proof, so we decided to give a proof
for Theorem 1.



Theorem 3. There exists a multiplicative Sidon set A C N such that

lim inf |A(”)|3_4 m(n) L
{log n)°

2. Proofs

Proof of Theorem 1. Let A C ZT be an infinite multiplicative Sidon set. Throug-
hout this proof p and p; denote prime numbers. For a € A, let

a=pipz...ps, where 2 <p; <py <--- < pg. (1)
The characteristic function x 4,5 is defined as

(p) = 1, if there exists an a € A(n) such that p|a
XAn\P) = 0, if pta for every a € A(n)

Erdés [3] proved that every a < n may be written in the form a = uv, where v < u

2/3

and u < n?/° or u is a prime number.

The following subsets of A(n) play a crucial role in the proof. For every [ > 0 let

1/2
Af(n) ={a:ae A(n) and Ju, v such that a = uv,v < u,n'/3 < v < o
(logn)!

and

A**(n) = {a: a € A(n) and there exist u,v such that a = uv,v < u,v < n'/3,

u < n2/3 or u is a prime number}
The proof contains many cases and subcases, therefore we give a brief summary

of the strategy for the reader’s convenience. To prove the theorem it is enough to
show that

n3/4
Af A** < 11- 2
45(m) U A™ ()] < () 11 o 2)
if n is large enough and
lim inf [A() \ (Aﬁn(:fz DA 73630. (3)

(logn)3
To verify these bounds it suffices to prove the following five statements:
e Firstly, we are going to prove that

10n3/4

Ay <
| l(n)| = (logn)l/27



if n is large enough (depending on [). Note that we are going to use this
estimation in two cases: | = 0 and [ = 6. The case | = 6 is necessary for (2)
and the case I = 0 is for (7).

e Secondly, we are going to prove that for every positive integer n we have

A ()] < > Xan(p) +4n*, ()

n2/3<p<n

e Thirdly, we are going to show that if n is large enough, then

A(n) \ (A5(n) U A™(n)) € A1 (n) U As(n), (6)

Ay(n):={a:a€ A(n),a>n/(logn)'? a = dppis1 ...ps,d < (logn)'?,
1/2

L < piy <o < ps < nM2(0gn), p, > —
(logn)® SpiSpin SeooSps S (logn)tps 2 (logn)®

}

and

Az(n):={a:a € An),a>n/(logn)'? a = dps_3ps_aps_1ps,d < (logn)'?,
1/4

n 1/4 9
< s < — < s < s< 1 .
(log )9_1073_27 2 < ps—1 <ps <n ' (logn)’}

Note that according to (1) the number d denotes the product of the ¢ — 1
smallest prime divisors of a in the definition of A;(n), while in the case of
As(n) the number d is the product of the s — 4 smallest prime factors of a,
specially, in this case s > 4.

e Fourthly, we are going to show that the inequality

[ A1 (n)]

n3/4
TTog n)?

lim sup >0

n— oo

implies
|A(n)| — m(n)
oz ™

lim inf
n—oo

<0. (7)
e Finally, we are going to prove the inequality

A2(]_ 73650 (8)

n3/4
{log n)®

lim sup
n—oo




Note that inequality (2) follows from (4) and (5) and inequality (3) follows from
(6), (7) and (8).
In order to prove (4) and (5) we are going to use Lemma 2. of [4]:

Lemma 4. Let G = (V,E) be a graph having t, vertices x1,...,x, . Assume that
each edge of G is incident to one of the vertices x;, 1 < i < to < t1, and that G
contains no rectangle (i.e. no circuit of four edges, the rectangle will be denoted by
Cy). Then

to
1/

-1
t
E| <t +1t #ZD <ty + 267,

1

+ 13 <1+

Proof of (4). Let L = llog,logn. According to the definition of A} (n), every

2

a € A;‘(n) can be expressed as a = uv where v < u and nl/3 <o < %. This
representation might not be uniquely determined, let us choose for every a € A} (n)
the decomposition where v is minimal. As n'/3 < v < %, there is a unique
integer r € [O, % log, n] such that
nl/2 nl/2
SrFITT <wv< o L (9)

Let us take an r € [0, % log, n] and pick those elements a € A(n) for which the
chosen decomposition a = uv satisfies (9) with this choice for .

In this case we have u < n'/227+tL+1 < 9p2/3 Define the graph G, = (V,., E,.)
as follows: The vertices are 1,2,..., Ln1/22T+L“J. There is an edge between u and
v, if @ = uv is the chosen representation for some a € Aj(n) satistying (9).

The graph G, is Cy-free, otherwise for some vy, vs,u1,us € V we would have
(v1,u1), (v1,u2), (va,u1), (v2,u2) € E. This would imply that viuy, viug, vouy, vous €
A, but (u1v1)(ugva) = (ugv2)(ugvy) contradicts the multiplicative Sidon property.

Clearly, G, satisfies the conditions of Lemma 4 with t; = % and t; =
n1/227+L+1 This yields that the number of the edges in graph G, is at most

3/4

1/2
1/2 23 Lo pl/Aos+5+s . L _9p2/3 L
Bl <t 424"ty < 20/° 4 2. pl 28755 o = o 4 V8 ST
The number of those a € A(n) for which @ = wv with v = u is at most n'/2
therefore

Afm) <n'Z+ YT B <
Ogrgélogzn

3/4 2 \fR n3/4

1 n
<nl/242(21 R AL i (- R 7} LGS
<n'/? 4 (6 ogon+1)n +(logn)l/2;o2r/2_ Tog )72’



if n is large enough, which proves (4).
Proof of (5). As a next step, we are going to prove (5). For every a € A**(n)
let us choose the representation a = uv, where

e u < n?/3 or u is a prime number
e and v is minimal.

The previous Lemma 4 is applied again. Define the graph G = (V, E) where the

vertices are
e the integers up to n?/3,

e those primes p from the interval |n?/3 n] for which there exists an a € A(n)
such that pla

e and an extra vertex.
There is an edge between u and v, if the following conditions hold:
o 1<uv<nl/3
e u < n?/3 or uis a prime number,
e v<u
e and @ = uv is a chosen representation for some a € A**(n).

The graph G is Cy-free, otherwise for some uy, ug,v1,v2 € V,
(ula vl)a (UQa Ul)v (u17 Ug), (u27 7)2) ek
we have
U1, UV, U1 V2, U2 € A(n),

but

(u1v1)(u2v2) = (u1v2)(u2v1)
contradicts the multiplicative Sidon property. Thus Lemma 4 can be applied for G
with

=12+ [ ) xan@) | +1, ta=[n'/?].

n2/3<p<n



In this case we have Lf?zJ = 0. (Note that the extra vertex was added in order to
1

guarantee this.) The number of those a € A(n) for which ¢ = uv with v = v is at
most n'/2, therefore

A" () <Va+ Bl < Vit | D xan®) | + [0+ 1+ 0?2 <

n2/3<p<n

<[ X xant |+

n2/3<p<n
which proves (5).

Proof of (6). To prove statement (6), first let us note that if a < Moz T2
then a € A§(n) U A**(n). To see this, by the Erdés’ argument, let us take the
decomposition a = uv, where v < u and u < n2/3 or u is a prime number. The

1/2
condition v < u implies v < m. Hence,

oforn1/3<v<( n'/ )6 we have a € A¥(n)

e for v < n'/3 we have either u < n?/® or u is a prime number, therefore

a € A**(n).

From now on, we are going to assume that a > 0 . Five cases are going to be

log n)

distinguished depending on the size of ps,_1 and ps.
Case 1 ps > n'/?(logn)°.

The choice v = -, u = py shows that a € Ag(n) U A™*(n).
Case 2 There exists a p; such that n!/3 < p; < .2

— (lgg n)6 "
The choice v = p; and u = ;* shows that a € Ag(n).
Case 3 (logn)g < ps_1 < ps < n'/?(logn)b.
In this case a = dps_1ps, where d < (logn)?. Hence we have a € A;(n).

Case 4 5 < ps < n1/2(10g n)% and ps_1 < nt/3,

(log n)

o If H p; > (logn)'?, then for some j we have pips . . Pi—1Ps < n'/2(logn)®

n1/6
LS Tlog )0

and pips ...p;ps > n/?(logn)8, but in this case p1ps...p;jps < n?/3, which
implies that for u = p1ps ... p;ps and v = & we have a € Ag(n) U A**(n).
. 1/6
e Otherwise a = dp;...ps, where d = H p < (logn)'? and (121;7”)6 <
nl/6

2 5
(log n)
pi < -+ < ps. Hence we have a € A;(n).




Case 5 p, < n'/3,
There exists a k such that pry1prio...ps < n/3 but ppry1...ps > n'/3. Note
that prprsr ... ps < n?/3, since py < ps < nl/3.

o If n'/? < prprsr...ps < %, then v = pgpr41 ... ps and u = ¢ shows that
a € A§(n).

o Ifn'/2(logn)® < prprs1-..ps < 0?3, then u = pppry1...ps and v = & shows
that a € Ag(n) U A**(n).

e Finally, let us assume that % < PrPrat---Ds < n'/?(logn)C. If H P>
Pz<(l"1ﬁ/6

D)
(logn)'?, then for some j we have pips...pj_1pk...ps < n'/?(logn)® and
P1P2 .- DDk ---Ps > nt/2(logn)®, but in this case pips...pjpk...ps < n?/3,
thus u = pipa...p;pk ... ps and v = & shows that a € Ag(n) U A™*(n).

Therefore, it suffices to prove the statement in the case when a = dp; ... ps,
where d = [[  p=pip2...pi1 < (logn)'? and % <pi <o <

ps < n'/3. In this case the value of s — i 4+ 1, that is, the number of the
“large” prime factors of a can be 3,4,5 or 6, so a = dps_ops_1ps Or a =
dps—3ps—2ps—lps ora = dps—4ps—3ps—2ps—1ps ora = dps—5p5—4ps—3ps—2ps—lps~
Now, we are going to check these subcases separately.

Subcase 1. a = dps_ops_1Ps-
Let u = ps_ops_1 and v = dps. As

1/3 12 n!/?
=dps < 1 < —
v D n ( og n) (logn)6
and
] 12 2/3
n?/3 > py_opsq = = > n/(logn) = > nl/z(logn)67

dp. ~ n'3(logn)®  (logn)*!

the decomposition a = uv shows that a € Af(n) U A**(n).
Subcase 2. a = dps_3ps—2Ps—1Ds-

o If ps_1ps > n'/%(logn)5, then for u = p,_1p, and v = £ we have

Ps_1ps < n?/3

and
n nl/2
g p—

v nt/2(logn)é  (logn)s’

a
u

so a € A§(n)U A**(n).



o If n'/4(logn)® < p, < n'/3 and ps_1ps < n'/?(logn)®, then p, 1 < %,
1/2
thus v = ps_3ps_2 < (lg'gin)ﬁ and u = dps_1ps < (logn)2n'/?(logn)8 < n?/3
shows that a € A§(n) U A**(n).
e We may assume that p, < n'/4(logn)°.
1/2
- If Ds—3Ps—2 < (lggin)aa then u = dps—lps < (logn)lz(n1/4(10gn)9)2 <

n?/3 and v = ps_3ps_o shows that a € A%(n) U A**(n).

1/4 1/2
— If ps—3 < iy and Pe-—3ps—2 > e then pe_s > n'/4(logn)?, the-
refore n1/2(10g n)6 < ps—1ps < 712/37 thus u = ps_1ps and v = dps_3ps_2
shows that a € A§(n) U A**(n).

— Therefore, we may assume that a = dps_3ps—2ps—1ps Where

d= JI »p=pws...psa<(logn)*
nl/6
PU< Glog )0
and
nt/4 1/4 9
T~ N9 S Ps—3 S Ps—2 S Ps—1 S Ds S n / (logn) )
(logn)

that is, a € As(n).

Subcase 3. a = dpsf4p573p372p871ps-
The inequality

(psf4p373ps>(psf2psflps) > (p574p373ps)2
Ds n1/3 ’

n > Ps—4Ps—3Ps—2Ps—1Ps =

nl/2

yields ps_aps—3ps < n?/3. We claim that dps_ops_1 < Ty
For the sake of contradiction, let us assume that dps_ops_1 > %. This would
imply
nl/2
(logn)S
/4

1
whence (lggin)g < ps—1 < ps. Now,

< dps—2ps—l S (lOg n)lzpz—la

nl/? a n

——— < dps_ops—1 = < =n5"2(logn
(logn)6 Pazabem Ds—4aPs—3Ps nl/6 2 nl/4 ( s
(logn)S (logn)?

)21

. . 1/2
is a contradiction. Hence, dps_ops—1 < (l(’)’gin)ﬁ.

The choice u = ps_4ps—3ps and v = dps_aps—1 shows that a € Af(n) U A**(n).
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Subcase 4. a = dp575psf4p873psf2p571ps-
First of all,

1/2 6 n?/3
n (1Og n) < W < Ps—5DPs—4Ps—3Ps—2,
thus
d < " < n n'/?
Ps—1Ps > < = .
! Ps—5Ps—aDs—3Ds—2  n'/?(logn)8  (logn)8
Also,

n 2 Ps—5Ps—4Ps—3Ps—2Ps—1DPs Z (ps—5ps—4ps—3ps—2)3/23

which yields the bound ps_5ps_4ps—_3ps—2 < n2/3,

Hence u = ps_s5ps_aps—3ps—2 and v = dps_1ps shows that a € Af(n) UA**(n). This
completes the proof of statement (6).

Proof of (7). Now, we continue with proving statement (7). We claim that it
is enough to prove that for every ¢ > 0 there exists an Ny = Ny(c) such that for
every n > Ny and

|A1(n)| = |{a:a € A(n),a=dp;...psd< (logn)?,
1/6 3/4

n 1/2 6
< pi << g 1 . 10
(log )6 <p; <---<ps<n'“(logn)°} >c TE (10)
. 1/2

there exists an m € [(lgg LR n'/2(log n)ﬁ} such that

— 2
Al =) ¢ )

Tog m)™ 10-251 +1

First we are going to check that this statement implies statement (7), then we are
going to prove it.

If the condition of (7) holds, then there is a ¢ > 0 and infinite sequence ny <
ng < ... such that

3/4
Ar(n)| > eI
| 1\ (lognj)g'
1/2
According to our claim for every large enough j there isan m; € (RZ;W’ n;/ 2 (logn;)®
2
|A(m,)| = (m;) 2 e A = () c
such that ijv - 2 < —1ggsr7- Therefore, I%Hl}é%f 7 < - 0251
(log m ) (logn)®®

Hence, it suffices to prove our claim.
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If (10) holds, then there exists an integer d € [17 (log n)u] such that

nl/6

{a:a€ A(n),a=dp;...ps, g <pi <o < ps < n'/?(logn)®} >

(logn -

n3/4

> CW (12)

Let us fix such an integer d. Let us define a bipartite graph G = (V| E) as follows.
Let V = V3 U Vs, where V; contains the prime number p if there exists an a € A(n)
such that a = dp;...p,s and % <p; << ps=p < n?(ogn)b and V4
contains the integers p;...ps—1. There is an edge between vy € V5 and vy € V5 if
and only if dvivy € A(n).

Let V3 = {ng), vgz), ... }. Let us denote the degree of Uj(?) by deg(vj(-z)). We may
assume that deg(vf)) > deg(vf)) > .... Let P be the set of prime numbers. Let
P; C P such that p € P; if and only if the vertex v§2) is connected to p in the graph
G. Clearly, we have |P;| = deg(vj(-z)).

We claim that G is Cy-free. If there is a Cy4, then there are p,,pl, € Vi and
Di---Ps—1,D;...Dy_q € Vo such that

dpi - - - Ps—1Ps, dpi - - Ds—1Dgr, APy - - Py _1Ps, AP - Dy 1Dy € A,
but
((dpi - .. ps—1)ps)((dP; - . . Py _1)P) = ((dps - - - Ps—1)Ps ) (AP} - - - P _1)Ds)
would contradict the multiplicative Sidon property. Therefore, G is Cy-free, so
|P; NPy <1, forj#k. (13)
If ps, pl, € Pj, then py & A(n) or pl, ¢ A(n) because otherwise
(d(pi - - ps—1)ps)Ps = (d(pi - - - ps—1)PL)Ps

would contradict the multiplicative Sidon property, because dp; ...ps—1 = pi >

oz 12 1/2 e
nl%’ffggn)s = Togmys > 1 if n is large enough. Hence,

P\ A(nM2(log m))] > |Py| — 1. (14)
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Using inequalities (13) and (14) we get that

(PLUP,U---UP,)\ A(n'/?(logn)®)| =
= [(PLU(Py\ P)U(P3\ (PLUP,))U- - -U (P \ (USZ] Py))U- - - U (P \ (U2 )\ Al =

=3I\ (VP \ 4] =
k=1

t

t t
> (P \ (USZEP) = 1) = > (1P| — (k- 1) => (|P| = k) (15)
k=1 k=1

k=1
According to (12) and the definition of the graph G we

n3/4

¢ W_UE’\ > | deg(v 2))I—Zle|. (16)

J J

We are going to prove that

c n1/4
e (o2 )2 [ o]
( [s-aaigr] ) 12 (ogn)™t

For the sake of contradiction let us suppose the opposite. Let us split the sum on
the right-hand side of (16) into two parts:

z : 2 z : 2 z : 2
g j . A nl/4 . c nl/4
i<[8 G ] 7> 8 e

n3/4

It is well known that 7(n'/?(logn)%) < M

deg(v; 2 < || < M Hence

, if n is large enough, therefore

1/4 1/2(] 6 3/4
O S N e L
) 2 (logn)?t 2 4 (logn)ts
e nl/4
Jg[g'aogn)ﬂ]

Also, |Va| < n'/?(logn)®, since p, >

% implies that p; ...ps_1 < n'/?(logn)°.
Therefore,

nl/4

@y < €. nt2(1 _ <. 1
Z deg(v;”) = 2 (logn)21 (logn)® = 2 (logn)ts’ (19)

/4
3> {2 (1ogn>21]

Hence, (17), (18) and (19) would imply
n3/4 3¢ p3/4
— ] — —
¢ (logn)® =~ 4 (logn)'®’
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which is a contradiction.

Thus,
(LU UP i VAW o®)| 2 Y (dentl®) -0 2
[5- (og n)zl] ‘ . ~ 1
i[5 G
ot P (5 ] ey e
2 (logn)?! 2 10(logn)*?’
if n is large enough.
As »
5 951, L/z
/2 42”7
—6log, logn—1<k<6log, logn (log ngk )48 (IOg n)

there exists an integer k € [—61log, logn — 1,61og, log n] such that

1/2 1/2 1/2 2nt/?
() (=) 4 ()2 e
2 2kt 2 10 - 251 - (log 7 )48

if n is large enough. Let us fix such a k. If p € (P (”1/2) \ P (%)) \ A (n1/2)7

2k ok
/2
2k -

then X, /2 (p) =0, since p ¢ A and 2p >
)T ok

By Erdés’ argument every a € A (%,:2) can be written in the form a = uv, where

nl/2
ok

2/3 . . 1/2 1/2
) or u is a prime number, thus A ("Qk ) C A5 ("2k ) U

vguandug(

A (nzlk/z) . Therefore, by using (4) and (5) we obtain that

nl/2 (i (2
|A <2k> | <[Ap (216) |+ ]A (216) | <
3/4

nl/2
< Z Xan(p) + 11 (2,6) ,

COREEED

if n is large enough.
Using this upper bound we get

3/4

nl/2 nl/2 2n'/? nl/2
()= (7)o (7)) =

nl/2 2n21£2
Sﬂ(?’“)_ 51 nl/2y48’
(10-251 +1) - (log "57-)
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nl/2
2k

if n is large enough. The choice m = satisfies (11), thus statement (7) holds.

Proof of (8). Finally, we prove (8). We split into parts the set As(n) as follows.
Let a = dps_3ps—aps—1ps € Aa(n) be arbitrary. There exist uniquely determined
integers r and w such that

n n
ﬁ < dps—?)ps—?ps—lps S ?a

qu S d < 2w+1.
Since d < (logn)!? and a > n/(logn)'? we have
0 <r <12log,logn,

0 <w < 12log, log n.

Furthermore,
n n
Srtwrz < Ps-3Ps—2Ps—1Ps < 5o (20)
which implies that ps_3zps_o < 2”%1%2 There exists a uniquely determined integer
q for which
1/2 1/2

n n

T THqrl < Ps—3Ps—2 < PEE (21)

The lower bound (longl% < ps_3ps_o implies
0 < ¢ < 18log, logn.
Let us collect those elements a = dps_3ps—2ps—1ps of A2(n) to Ag“w"” (n), for which

L4 Qr% < dps—Sps—Zps—lps S 2%7

o 2V < d < 2@t and

nl/2 1/2

n
® TrTrar <Ps-3Ps—2 = [zimag-

Now, Az(n) can be partitioned to the union of the Aér’w’q)(n) sets:

[121og, logn| [121og, logn] |18log, logn ]

Amn)= | U U Al ?m).

r=0 w=0 q=0

We are going to give an upper bound for |Ag’w’q)(n)|. Let us define the edge-
coloured bipartite graph Gy w.q = (Viw,q, Erw,q) as follows. Let V.., o = V1 U V5,
where
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e V] contains the integers ps;_1p; if and only if there is an a = dps_3ps_2ps—10s €
Ag",w,q)’

e 1, contains the integers ps_3ps_o if and only if there is an a = dps_3ps_ops—_1Ps €
Aér,w,q)_

The vertices ps_1ps € V; and ps_3ps_o € Vo are connected to each other if and only
if there is a d € [2*,2“ ") such that dps_3ps—ops—1Ps € Ag’w’q)(n). In this case
let the color of this edge be d. (Note that there can be more edges between two
vertices.) For v; € V; and 2% < d < 2%t let us denote by deg,(v1) the number of
edges of color d starting from v;.

Let us suppose that psps—1,pL 0, _, € Vi and ps_sps_2, Pl sl _5 € Vo. Then
there is no C4 on these points such that

o edges (ps—1Ps, Ps—3Ds—2) and (ps—1Ps, Pl gDk _5) are of color d,
e edges (pl,_ 1Pl ps—3ps—2) and (pl, _ D%, Pl 5Dl _5) are of color d',
since otherwise
(dps—3Ps—2Ps—1Ps)(d Dy _3Dy _oPr _1Ps) = (dPly 3Pl _oPs—10s)(d'Ds—3ps 2Pl _1Psr)
would contradict the multiplicative Sidon property. Hence,
) 5 )<y
v €V, 2w <d<2wtl

The set of pairs (vy,d) satisfying v; € Vi and 2% < d < 2¥*! is split into two
classes:

e the first class contains pairs (v1,d) if degy(v1)

IN

[Va]
\JV1|1/221”/2 +17

e the second class contains pairs (vq, d) if deg,(v1) > {%J + 2.

[V1[1/22w/2
Clearly,
qwtl_gq
AT ) = 30 N degy(vr) = Y degy(v)+ Y. dega(vr).
viEVL d=2v (v1,d)Eclassy (v1,d)Eclasss

The number of pairs (v1,d) in class; is at most |V1]2", therefore

V: w w w
E deg,(v1) < <{|V1|1/22|2“’/2J + 1) V|29 < 2%y | + 2%/2| V4 |V |Vl
(v1,d)Eclassy
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By inequality (22) we have

Z deg,(v1) < N Z (de&;(m)) <

(v1,d)Eclassa ‘V1|1/22"’/2J +1 (v1,d)Eclassa

- |Va|

2 1%
< (| 22|) <2w/2|‘/1|1/2|‘/2|. (23)

Hence we obtain that
AT D ()] < 29 (Va| + 2 272 |Vi V2|V, (24)

Our aim is to give upper bounds for |V;| and |V3], respectively.
Let us start with the upper bound for |Va|: If ps_3ps—2 € Va, then there is a
uniquely determined nonnegative integer ¢ such that

nl/4 nl/4
STt e It “Ps3 S Srmiaar (25)
According to the definition of V5 we have
nl/4 _ 1/4
girgig—t+1 ~Ps-2S orpmiay
We are going to give an upper bound for ¢. As
De_1Ps = Ps—3Ps—2Ps—1Ds < Qﬁﬁw _ nl/2
s—1Ds Do3Ps2 = 25@% 23t —q-1’
we get that
nl/4 nl/4
Py <Ps—2 S Ps—1 < Py Ty
thus t < ¢ + 1.5, that is,
t<g+1<18log,logn + 1. (26)

Now, with the help of the prime number theorem with error term w(xz) = (1 +
O(loéx))logm we obtain the following upper bound for those ps_3ps_o € Vo that

satisfy (25):

1 O 1 nt/4
<2+ <10gn)> 21t T3+t Jog o/t 8

SE+ ¥+ Tyt

2
nl/4
( ( )) 2itEts—t-l]og i/t 27)
A
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Here
nl/4 1
log ErEiivt g logn 4+ O(loglogn)
and
L/

1
log =1 logn 4+ O(loglogn).

oft¥+i—t—1

Therefore, the gained upper bound is

loglogn nt/?
12+ 0 T .
( " < log n )>2z+2+q<logn>2

All in all, by using (26) we get the upper bound

loglog n n'/2(q 4+ 2)
logn 252 +4(logn)?’

Va| < (12+O(

As a next step, we give an upper bound for |Vi|. According to (20) and (21) we

have
nl/2 nl/2

pE—) < Ps—1ps < T (28)

1/4

w71 Lhere is a uniquely determined integer ¢ for which
4 4 2 2

therefore p,_1 < ;

nl/A nl/4
I T <Pl S (29)
Now, (28) and (29) implies that
nl/4 nl/4
We are going to give an upper bound for t. By (21) and (29) we get that
nl/4 nl/4
ST eIl S Ps—2 SPs—1 = STrE i I

which implies

t <g+1<18log,logn + 2. (30)

Now, with the help of the prime number theorem with error term w(x) = (1 +

O(loém))logz we obtain the following upper bound for those ps_1ps € Vi that

satisfy (29):

Lo 1 nt/4
X
<2+ <1ogn)> 25+ —§-3+t g n/t
24 4 2

15 1 nt/4
4,+_O - . 31
(16 <logn>) 2£+%*%*%*tlog72 s oy

Tw _d_
It1 7273
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Since
nl/4 1
log P logn + O(loglogn)
and
nl/4

1
log ! logn + O(loglogn),

oitE 53¢

we obtain the upper bound
loglogn nl/?
30+ 0 CapT .
< " ( logn )>22+2—q<10gn>2

loglogn n'/?(q+2)
logn 25157 9(logn)?’

By (30) we get

Wil (s040(

Plugging in these bounds for |V;| and |V5] in (24) yields the following upper bound
(rw,q) .
for |A, (n)l:

rw log1 12(q 42
‘Aé ,U7Q)(n)| < 2w|V1|+2'2w/2|V1|1/2|V2| < <30+O ( 0g Ogﬂ)) n (Q+ )

logn 2575 ~9(logn)2

9 (301/2 40 (loglogn>> ?”Ll/“(cH;?)l/2 (12+O <loglogn>> Tn1:2(q+2) gu/2 _

logn 2it5 -3 logn logn 23+24(logn)?

3/4 3/2
- (24-301/2+O <1Og10gn)> U
logn 242723 (logn)?

Therefore,

12log, log n+1 12log, log n+1 18log, log n+1

[Aa(n)] < Y 3 S Al )] <

r=0 w=0 q=0

oo 00 00 3/4 3/2
<2 @43w”+o(b@%”>) i Ik

r=0 w=0 ¢=0 logn 2%2%2%2(10gn)3
loglogn =1 1 2 (g +2)3/? n3/4
=(24-30"2+0( —=—— , — -
( " logn Z 2% Z 24 Z 23 (logn)3
r=0 w=0 q=0

log 1 3/4

= (73631.3-- ce0BMN )

logn (logn)3

which completes the proof. B

Now, we continue with the proof of Theorem 3. The following lemma will play
an important role in the proof:
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Lemma 5. Let S be a set of size s > 56. Then there exists a family H of 4-element
subsets of S satisfying the following conditions:

(Z) Ile,Hg € H and Hq 75 Hsy, then |H1 ﬂH2| < 2.

(ii) If K,L,M,N are pairwise disjoint 2-element subsets of S, then at least one
of the sets K UL, LUM,M UN,N UK does not lie in H.

(iii) |M| > s3/24576.

Proof. Let p be a prime in the interval (s/8,s/4]. Note that p > 11, since s > 56.
It can be supposed that S D F, x [4]. That is, it can be assumed that S contains
4 disjoint copies of Fp, namely, A, B,C,D. We are going to define a family H of
4-element subsets such that each element of H consists of one element from A, one
from B, one from C and one from D. For a,b,c,d € F,, let (a,b,c,d) denote the
4-element set {(a, 1), (b,2),(c,3),(d,4)} € S. We claim that for some « € F, the
size of the set

'Haz{(a,b,c,d)eIFf,: a+b+c#0,a+b+d#0,a+c+d#0,b+c+d#0,
ab + ac+ ad + be + bd + cd = o}

is at least p® — 4p® > p®/2. The size of the set {(a,b,c,d) € Fy: a+b+c=0}is
p3, and the same holds when another triple from {a, b, ¢, d} adds up to 0, therefore,

{(a,b,c,d) € F;l, Catbtc#0,a+b+d#0,a+ct+d#0,b+c+d# 0} > p*—4p>.

There are p possibilities for @ = ab+ ac+ ad + bc + bd + cd, which proves that for a
well-chosen a we have |H,| > p3/2. Let us fix such an a and delete some elements
of H,, obtaining H, in such a way that the multiset {a,b,c,d} is different for each
element (a,b,c,d) of H. It can be done in such a way that |H| > |H,|/4! holds.
We claim that H satisfies the required properties.

Firstly, for checking (i) it is enough to show that the intersection of two elements
of H can not contain exactly 3 elements. Let us assume that (a,b,¢,d1), (a,b,¢,ds) €
H. Then dy = % = ds, so two elements of H can’t differ just in the fourth
“coordinate”. By symmetry, this holds for the first three “coordinates”, too.

Secondly, for checking (ii) let us assume that

(klv k2, llv l2)7 (m17 ma, ll7 12)7 (mla ma,ni, 'I’LQ), (klv k27 ni, TLQ) S H
According to the definition of H the following equations hold:
k1ka + L1l + (k1 +/€2)(l1+12) =« (32)

lila + mima + (I3 + 12)(m1 + m2) = « (33)



mimg + ning + (my +ma)(n1 +n2) = « (34)
ning + kiks + (n1 + ng)(kl + kg) =« (35)

Now (32) - (33) + (34) - (35) gives (kl + ]fg —my — mz)(ll + l2 —niy — TLQ) = 0.
Without the loss of generality it can be assumed that k1 + ko = mq + mo. Then
(32) — (33) implies that kika = mims. Thus {k1,ka} = {mi,ma}. Therefore,
{kh kg, ll, lg} = {ml, ma, ll, 12}, SO (kl, k’g, ll, l2) = (ml, ma, ll, ZQ), hence K = M.
Finally, |H| > [Ha|/24 > p3/48 > 53 /24576.
L]

The following well-known estimations of [9] are going to be used in the proof of
Theorem 3 to estimate the number of primes up to x:

Lemma 6. For every x > 17 we have % < 7(x). For every x > 1 we have

m(w) < 12612

Proof of Theorem 3.
Let Py consist of the primes from the interval (28=1 2%). If k > 11, then by
Lemma 6

ok 1.26 - 2k—1 ok
Pl = 7(2F) — w(2F 1) > - .
[Pif = m(25) = ( )z log 2k log2k—=1 = 4log 2k

Let us apply Lemma 5 for S = Py and let Hj be the obtained collection of 4-subsets

of Py,. Let Ay, ={ [[ p: H € Hy}. Finally, let A = {primes}U |J Ax.
peH k>11
Now we show that A is a multiplicative Sidon set. Assume that ab = cd for

a,b,c,d € A. As each element of A is either a prime or the product of 4 primes, the
number of prime factors of ab (counted by multiplicity) is Q(ab) = Q(ed) € {2, 5, 8}.
If Q(ab) = Q(cd) = 2, then {a,b} = {c,d}, and we are done. Now let us assume
that Q(ab) = Q(cd) = 5. Without the loss of generality it can be assumed that
Q(a) = Q(c) = 4. Then Q(ged(a,c)) > 3, therefore a,c € Ay for some k, moreover
according to property (i) (of Lemma 5) we get a = ¢. Then b = d also holds, and we
are done. Finally, let us assume that Q(ab) = Q(ed) = 8. If ab is not squarefree, that
is, divisible by p? for some prime p, then p has to divide a, b, ¢, d, since all elements
of A are squarefree. However, it would imply that %|ﬁ . %, therefore Q(ged(a,c))
or Q(ged(a,d)) would be at least 3. Then, again by property (i) we obtain that
a = c (or a = d), thus {a,b} = {c,d}. So we can suppose that ab = cd is squarefree.
Property (i) and a|cd imply that Q(ged(a, ¢)) = Q(ged(a, d)) = 2, so for some primes

a = p1p2p3p4, b = PspeprPs, C = P1P2P5P6, d = P3P4DTP8,

however this contradicts property (ii) of Lemma 5. Hence, A is a multiplicative
Sidon set.
Now we show that for n > 2%, we have |A(n)| > 7 (n) +

n3/4
196608(log )3 *
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If n > 2% then k = FOgTZ”J > 11. Therefore, |Py| > % > 56, so Lemma 5
can be applied for the set P,. Moreover,

ok logan g nl/4
| Pr| > 5 2 a2 :
4log 2 4log2~F—1 ~ 2logn
NE n3/4
Therefore, |A(n)| > m(n) + |Ax| > |Ax| + % > 7(n) + To5s0870z 7 W
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